Frontier Advances and Challenges of High-Power Thulium-Doped Fiber Lasers in Minimally Invasive Medicine
Abstract
:1. Introduction
2. Physical Basis of Thulium-Doped Laser and Mechanism of Interaction with Biological Tissues
3. Recent Progress in Minimally Invasive Medical Applications
3.1. Treatment of Urinary Tract Stones
3.2. Minimally Invasive Ablation for Early-Stage Lung Cancer
3.3. Treatment of Disfiguring Skin Conditions
3.4. Minimally Invasive Endovenous Laser Ablation
4. Frontier Technological Breakthroughs and Challenges
4.1. Multimodal Therapeutic Synergy
4.2. Challenges in Clinical Translation
5. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Gu, Y.; Niu, J.; Yang, J.; Xu, H. Application of laser in the medical field. Chin. Opt. 2023, 16, 283–295. [Google Scholar] [CrossRef]
- Lin, F.; Hu, B.; Ling, Q.; Song, Y.; Gao, X.; Zhang, Y.; Chen, Y.; Duan, X.; Zeng, L.; Zhang, X. Efficacy and safety of micropulse transscleral cyclophotocoagulation in the treatment of refractory glaucoma: A prospective multicenter observational study. Chin. J. Exp. Ophthalmol. 2024, 42, 527–531. [Google Scholar] [CrossRef]
- Ma, X.; Zhou, Y.; Sun, H.; Jing, Y.; Li, Q.; Yin, W.; Liu, S. Effectiveness and Safety of PresbyMAX Monocular Module for the Correction of Ametropia Combined with Presbyopia. Chin. J. Optom. Ophthalmol. Vis. Sci. 2024, 26, 838–844. [Google Scholar] [CrossRef]
- Jing, Y.; Gao, X.; Qi, L. Applications of lasers in urology. Chin. J. Urol. 2024, 45, 497–501. [Google Scholar] [CrossRef]
- Zheng, H.; Hu, X.; Zheng, Y.; Duan, C.; Xiao, Y.; Xu, G.; Tang, X. Research on the beam combining technique of a 350 W blue semiconductor laser for urological applications. Opto-Electron. Eng. 2024, 51, 230302-1. [Google Scholar] [CrossRef]
- Unger, S.; Leich, M.; Schwuchow, A.; Lorenz, M.; Müller, R.; Pratiwi, A.; Kobelke, J.; Lorenz, A.; Dellith, J.; Kränkel, C.; et al. Absorption and emission properties of thulium doped glasses in optical fibers. Opt. Mater. Express 2025, 15, 446–464. [Google Scholar] [CrossRef]
- Wang, H.Y.; Zhao, Q.L.; Liu, H.; Sun, Y.X.; Li, J.L.; Zheng, J.J.; Yuan, Y.; Zhang, Q.W.; Yang, C.S.; Feng, Y.J.; et al. Kilowatt-Level High-Efficiency Narrow-Linewidth All-Fiber Tm3+-Doped Laser. Photonics 2024, 11, 877. [Google Scholar] [CrossRef]
- Bin, C.; Shi, H.; Li, P.; Wang, Y.; Zhang, S. Comparison of efficacy and safety between thulium laser and high frequency electric knife on peroral endoscopic myotomy. Chin. J. Dig. Endosc. 2018, 35, 391–395. [Google Scholar] [CrossRef]
- Corrales, M.; Traxer, O. Initial clinical experience with the new thulium fiber laser: First 50 cases. World J. Urol. 2021, 39, 3945–3950. [Google Scholar] [CrossRef]
- Cao, M.; Chen, W. Interpretation on the global cancer statistics of GLOBOCAN 2022. Chin. J. Front. Med. Sci. (Electron. Version) 2024, 16, 1–5. [Google Scholar] [CrossRef]
- Sardinha, M.D.; Monteiro, M.S.D.B. Evaluation of the safety and efficacy of the thulium 1927 laser in aesthetic health: An integrative review. J. Cosmet. Laser Ther. 2025, 27, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Minaev, V.P.; Minaev, N.V.; Bogachev, V.Y.; Kaperiz, K.A.; Yusupov, V.I. Endovenous laser coagulation: Asymmetrical heat transfer (modeling in water). Lasers Med. Sci. 2020, 36, 1599–1608. [Google Scholar] [CrossRef] [PubMed]
- Grábner, M.; Svejkarová, B.; Aubrecht, J.; Peterka, P. Analytical Model of Thulium-Doped Fiber Laser Pumped by Two-for-One Process. J. Light. Technol. 2024, 42, 2938–2944. [Google Scholar] [CrossRef]
- Sulc, J.; Nemec, M.; Kratochvíl, J.; Jelínková, H. Highly efficient Tm-fiber laser resonantly pumped by a 1.7 μm laser diode. J. Opt. Soc. Am. B-Opt. Phys. 2024, 41, E52–E55. [Google Scholar] [CrossRef]
- Kamrádek, M.; Aubrecht, J.; Varak, P.; Cajzl, J.; Kubecek, V.; Honzátko, P.; Kasík, I.; Peterka, P. Energy transfer coefficients in thulium-doped silica fibers. Opt. Mater. Express 2021, 11, 1814. [Google Scholar] [CrossRef]
- Michalska, M.; Honzatko, P.; Grzes, P.; Kamradek, M.; Podrazky, O.; Kasik, I.; Swiderski, J. Thulium-Doped 1940- and 2034-nm Fiber Amplifiers: Towards Highly Efficient, High-Power All-Fiber Laser Systems. J. Light. Technol. 2024, 42, 339–346. [Google Scholar] [CrossRef]
- Todorov, F.; Aubrecht, J.; Peterka, P.; Schreiber, O.; Jasim, A.A.; Mrázek, J.; Podrazky, O.; Kamrádek, M.; Kanagaraj, N.; Grábner, M.; et al. Active Optical Fibers and Components for Fiber Lasers Emitting in the 2-μm Spectral Range. Materials 2020, 13, 5177. [Google Scholar] [CrossRef]
- Wang, Y.F.; Zhang, Z.; Ma, F.K.; Zhang, Z.H.; Jiang, D.P.; Su, L.B. Enhanced the quantum efficiency of Tm3+ ~2 μm laser in crystal through an energy transfer process of 3H5 level. Ceram. Int. 2025, 51, 721. [Google Scholar] [CrossRef]
- Tao, M.; Huang, Q.; Yu, T.; Yang, P.; Chen, W.; Ye, X. Cross Relaxation in Tm-doped Fiber Lasers. In Proceedings of the 2nd International Symposium on Laser Interaction with Matter (LIMIS), Xi’an, China, 9–12 September 2012. [Google Scholar] [CrossRef]
- Tao, M.; Wang, Y.; Wu, H.; Li, G.; Wang, S.; Tao, B.; Ye, J.; Feng, G.; Ye, X.; Chen, W. Hyperspectral absorption of water around 2 μm based on a boradband tunable, narrow linewidth Tm-doped fiber laser. Acta Phys. Sin. 2022, 71, 114203. [Google Scholar] [CrossRef]
- Gerard, M.D.; Cook, H.; Read, J.A.; Abughazaleh, I.H.; Srisamran, P.; Chugh, S.; Liang, S.J.; Fu, Q.; Oreffo, R.O.C.; Richardson, D.J.; et al. Single-cell high-precision ablation using nanosecond-pulsed thulium-doped fiber laser. Opt. Eng. 2024, 63, 086102. [Google Scholar] [CrossRef]
- Gesierich, W.; Reichenberger, F.; Fertl, A.; Haeussinger, K.; Sroka, R. Endobronchial therapy with a thulium fiber laser (1940 nm). J. Thorac. Cardiovasc. Surg. 2014, 147, 1827–1832. [Google Scholar] [CrossRef] [PubMed]
- Schembri, M.; Sahu, J.; Aboumarzouk, O.; Pietropaolo, A.; Somani, B.K. Thulium fiber laser: The new kid on the block. Türk Urol. Derg./Turk. J. Urol. 2020, 46, S1–S10. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, T.G.S.; Sekar, H.; Chandru, T.; Krishnamoorthy, S. Outcomes of holmium: YAG laser vs. Thulium fiber laser for ureteric stones during ureterorenoscopic lithotripsy—A prospective, randomized single-centre study. World J. Urol. 2025, 43, 167. [Google Scholar] [CrossRef]
- He, J.W. Retrospective study of ureteral stenosis after holmium laser lithotripsy. J. Int. Med. Res. 2024, 52, 03000605241275333. [Google Scholar] [CrossRef]
- Patel, V.; Raghuvanshi, K.; Chaudhari, R. Evaluating temperature dynamics: A single-center prospective randomized pilot study of holmium versus thulium laser fiber for renal stones. World J. Urol. 2025, 43, 91. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, C.; Yang, J.; Li, Z.; Lai, C.; Yu, H.; Xu, K. Study on the efficacy and safety of PT Scope combined with Thulium laser in the treatment of upper urinary tract stones. Chin. J. Urol. 2024, 45, 527–531. [Google Scholar] [CrossRef]
- Enikeev, D.; Grigoryan, V.; Fokin, I.; Morozov, A.; Taratkin, M.; Klimov, R.; Kozlov, V.; Gabdullina, S.; Glybochko, P. Endoscopic lithotripsy with a SuperPulsed thulium-fiber laser for ureteral stones: A single-center experience. Int. J. Urol. 2021, 28, 261–265. [Google Scholar] [CrossRef]
- Lin, Y.; Liu, M.; Ouyang, D.; Xiao, K.; Chen, Y.; Lu, Q.; Ruan, S. Exploration of Thulium-Doped Fiber Lasers in Lithotripsy in vitro. Chin. J. Lasers 2022, 49, 0101015. [Google Scholar] [CrossRef]
- Liu, C.; Shao, Y.; Xia, L.; Yu, X.; Xu, K.W. Efficacy and safety of superpulse thulium laser lithotripsy in the intracavitary treatment of urinary calculi. Zhonghua Yi Xue Za Zhi 2023, 103, 2302–2306. [Google Scholar] [CrossRef]
- Yang, Y.; Li, D.; Ji, E.; Ji, X.; Tian, B.; Yan, P.; Gong, M.; Xiao, Q. Thulium-Doped Fiber Laser and Its Applications in Laser Lithotripsy: Progress and Prospect. Laser Optoelectron. Prog. 2023, 60, 1500007. [Google Scholar] [CrossRef]
- Sanz, J.A.A.; Marrone, S.; Cacciotti, G.; Carpineta, E.; Scavo, C.G.; Roperto, R.; Iacopino, D.G.; Sufianov, R.; Safarov, A.; Sufianov, A.; et al. Safeness and efficacy of 2-μm handheld thulium laser during microsurgical resection of supratentorial and infratentorial meningiomas: Experience of a single center. Front. Surg. 2022, 9, 1021019. [Google Scholar] [CrossRef]
- Liang, L.; Xiao, B.; Ding, T.; Zeng, X.; Ji, C.; Li, J. Comparison of temperature rise curve and steady state temperature during thulium and holmium laser lithotripsy. Chin. J. Urol. 2023, 44, 134–139. [Google Scholar] [CrossRef]
- Lin, Y.; Gu, Q.Y.; Chen, Y.W.; Wang, M.; Zhao, J.Q.; Wu, X.; Liu, M.Q.; Ouyang, D.Q.; Xiao, K.F.; Guo, C.Y.; et al. Realizing enhanced lithotripsy efficiency using 700 W peak power thulium-doped fiber laser. Opt. Laser Technol. 2024, 179, 111267. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Y.; Zhi, X. Comparison of Thulium Laser and Mechanical Staplers During Pulmonary Wedge Resections Under Thoracoscopy. Chin. J. Minim. Invasive Surg. 2019, 19, 1062–1065. [Google Scholar]
- Zhang, X.; Sun, C.; Yang, M.; Liu, L. Safety analysis of thulium laser in thoracoscopic pulmonary wedge resection. Chin. J. Clin. Thorac. Cardiovasc. Surg. 2019, 26, 988–991. [Google Scholar]
- Huang, Y.Z.; Jivraj, J.; Zhou, J.Q.; Ramjist, J.; Wong, R.; Gu, X.J.; Yang, V.X.D. Pulsed and CW adjustable 1942 nm single-mode all-fiber Tm-doped fiber laser system for surgical laser soft tissue ablation applications. Opt. Express 2016, 24, 16674–16686. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Y.; Zhi, X.; Liu, B. Thulium laser wedge resection under uniportal thoracoscopy in the treatment of small pulmonary nodules: A retrospective cohort study. Chin. J. Clin. Thorac. Cardiovasc. Surg. 2022, 29, 1323–1329. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, R.T.; Qian, K.; Liu, L.; Li, Y.B.; Hu, M.; Zhao, X.; Hua, L.; Zhi, X.Y. A Retrospective Comparative Study of 2-μm Thulium Laser During Thoracoscopic Resection of Pulmonary Nodules. Indian J. Surg. 2020, 82, 1021–1025. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Z.R.; Liu, D.R.; Shao, W.P.; Feng, H.X. A randomized trial of who is better at treating the incomplete pulmonary fissure between stapler and thulium laser. Minerva Surg. 2021, 76, 436–443. [Google Scholar] [CrossRef]
- Cui, S.; Wang, G.; Huang, Z.; Wu, M.; Wu, H.; Zhou, H.; Xu, M.; Xie, M. Clinical Efficacy Analysis of Wedge Resection of Pulmonary in Patients with Small Volume Invasive Lung Adenocarcinoma. Zhongguo Fei Ai Za Zhi = Chin. J. Lung Cancer 2024, 27, 359–366. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Y.; Zhi, X.Y.; Liu, B.D. A retrospective comparative study of thulium laser and mechanical stapler in pulmonary wedge resection under thoracoscopy. J. Cancer Res. Ther. 2021, 17, 1696–1701. [Google Scholar] [CrossRef] [PubMed]
- Scanagatta, P.; Ancona, G.; Cagnetti, S.; Giorgetta, C.E.; Inzirillo, F.; Ravalli, E.; Maiolani, M.; Naldi, G. The Case for Pulmonary Metastasectomy-Clinical Practice Narrative Review and Commentary. Life 2024, 14, 702. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.; Mishra, V.; Alsaad, S.; Winstanley, D.; Blalock, T.; Tingey, C.; Qiu, J.Z.; Romine, S.; Ross, E.V. Clinical Evaluation of a Non-Ablative 1940 nm Fractional Laser. J. Drugs Dermatol. 2014, 13, 1324–1329. [Google Scholar] [PubMed]
- Alharbi, M.A.; Kemp, E.H. 1927 nm Thulium Laser Successfully Treats PostInflammatory Hyperpigmentation in Skin of Color. Dermatol. Res. Pract. 2021, 2021, 1–5. [Google Scholar] [CrossRef]
- Kim, S.M.; Hwang, S.; Almurayshid, A.; Park, M.-Y.; Oh, S.H. Non-Ablative 1927 nm Fractional Thulium Fiber Laser: New, Promising Treatment Modality for Riehl’s Melanosis. Lasers Surg. Med. 2021, 53, 640–646. [Google Scholar] [CrossRef]
- Kurmus, G.; Tatliparmak, A.; Aksoy, B.; Koç, E.; Serdar, Z.A.; Ergin, C. Efficacy and safety of 1927 nm fractional Thulium fiber laser for the treatment of melasma: A retrospective study of 100 patients. J. Cosmet. Laser Ther. 2019, 21, 408–411. [Google Scholar] [CrossRef]
- Ryabochkina, P.A.; Khrushchalina, S.A.; Kulikov, O.A.; Shlyapkina, V.I.; Ageev, V.P.; Tabachkova, N.Y.; Veselova, V.O. Use of dielectric nanoparticles doped with rare-earth ions for the treatment of melanoma with non-contact exposure to near-IR laser radiation (experiments). Bull. Mater. Sci. 2025, 48, 1–13. [Google Scholar] [CrossRef]
- Gronovich, Y.; Raderman, Y.; Toledano, R.; Nahear, R.; Suliman, N.; Shacham, A.; Fridman, D.; Noach, S. Evaluation of a Novel Ablative 1940 nm Pulsed Laser for Skin Rejuvenation. Lasers Surg. Med. 2024, 56, 592–596. [Google Scholar] [CrossRef]
- Kim, K.E.; Jeong, J.Y.; Jo, J.Y.; Ryu, H.J.; Kim, I. Efficacy of skin rejuvenation with a fractional 1927-nm thulium laser alone or combined with a chemical peel: A controlled histopathological preliminary study in a mouse model. Lasers Med. Sci. 2023, 38, 262. [Google Scholar] [CrossRef]
- Vingan, N.R.; Panton, J.A.; Barillas, J.; Lazzarini, A.; Hoopman, J.; Kenkel, J.M.; Culver, A. Investigating the efficacy of a fractionated 1927 nm laser for diffuse dyspigmentation and actinic changes. Lasers Surg. Med. 2023, 55, 344–358. [Google Scholar] [CrossRef]
- Gao, R.D.; Qian, S.Y.; Wang, H.H.; Liu, Y.S.; Ren, S.Y. Strategies and challenges in treatment of varicose veins and venous insufficiency. World J. Clin. Cases 2022, 10, 5946–5956. [Google Scholar] [CrossRef]
- Padaria, S.F. Endovenous Treatment for Varicose Veins. Indian J. Surg. 2021, 85, 30–43. [Google Scholar] [CrossRef]
- Setia, A.; Schmedt, C.G.; Beisswenger, A.; Dikic, S.; Demhasaj, S.; Setia, O.; Schmitz-Rixen, T.; Sroka, R. Safety and efficacy of endovenous laser ablation (EVLA) using 1940 nm and radial emitting fiber: 3-year results of a prospective, non-randomized study and comparison with 1470 nm. Lasers Surg. Med. 2021, 54, 511–522. [Google Scholar] [CrossRef]
- Minaev, V.P.; Minaev, N.V.; Bogachev, V.Y.; Kaperiz, K.A.; Yusupov, V.I. Endovenous laser coagulation: Asymmetrical heat transfer and coagulation (modeling in blood plasma). Lasers Med. Sci. 2021, 37, 627–638. [Google Scholar] [CrossRef]
- Willenberg, T.; Bossart, S.; Schubert, M.; Ghorpade, S.; Haine, A. Pain after 1940 nm Laser for Unilateral Incompetence of the Great Saphenous Vein. J. Clin. Med. 2024, 13, 3839. [Google Scholar] [CrossRef]
- Keo, H.H.; Gondek, K.; Diehm, N.; Leib, C.; Uthoff, H.; Engelberger, R.P.; Staub, D. Complication rate with the 1940-nm versus 1470-nm wavelength laser. Phlebology 2024, 40, 283–291. [Google Scholar] [CrossRef]
- John, S.; Yan, Y.; Abbasi, S.; Mehrmohammadi, M. Ultrasound and Photoacoustic Imaging for the Guidance of Laser Ablation Procedures. Sensors 2024, 24, 3542. [Google Scholar] [CrossRef]
- Ding, Y.; Jia, M.; Gu, S.; Qiu, J.; Chen, G. Research Progress on Thulium-Doped Silica Fibers for 2 μm High-Power Lasers (Invited). Chin. J. Lasers 2024, 51, 1901011. [Google Scholar] [CrossRef]
- Ryan, J.R.; Nguyen, M.H.; Linscott, J.A.; Nowicki, S.W.; James, E.; Jumper, B.M.; Ordoñez, M.; Ingimarsson, J.P. Ureteroscopy with thulium fiber laser lithotripsy results in shorter operating times and large cost savings. World J. Urol. 2022, 40, 2077–2082. [Google Scholar] [CrossRef]
- Calisto, A.; Dorfmüller, G.; Fohlen, M.; Bulteau, C.; Conti, A.; Delalande, O. Endoscopic disconnection of hypothalamic hamartomas: Safety and feasibility of robot-assisted, thulium laser-based procedures. J. Neurosurg. Pediatr. 2014, 14, 563–572. [Google Scholar] [CrossRef] [PubMed]
- de Boorder, T.; Brouwers, H.B.; Noordmans, H.J.; Woerdeman, P.A.; Han, K.S.; Verdaasdonk, R.M. Thulium laser-assisted endoscopic third ventriculostomy: Determining safe laser settings using in vitro model and 2 year follow-up results in 106 patients. Lasers Surg. Med. 2017, 50, 629–635. [Google Scholar] [CrossRef]
- Tunc, B.; Gulsoy, M. Stereotaxic laser brain surgery with 1940-nm Tm: Fiber laser: An in vivo study. Lasers Surg. Med. 2019, 51, 643–652. [Google Scholar] [CrossRef] [PubMed]
- Tunc, B.; Gulsoy, M. The Comparison of Thermal Effects of a 1940-nm Tm: Fiber Laser and 980-nm Diode Laser on Cortical Tissue: Stereotaxic Laser Brain Surgery. Lasers Surg. Med. 2020, 52, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Katta, N.; Estrada, A.D.; Mcerloy, A.B.; Milner, T.E. Fiber-laser platform for precision brain surgery. Biomed. Opt. Express 2022, 13, 1985–1994. [Google Scholar] [CrossRef]
- Zhang, B.; Yu, T. Progress in nanodrug delivery system combined with photothermal therapy to treat multidrug resistance of tumor. Tumor 2020, 40, 299–304. [Google Scholar]
- Ren, Y.T.; Yan, Y.Y.; Qi, H. Photothermal conversion and transfer in photothermal therapy: From macroscale to nanoscale. Adv. Colloid Interface Sci. 2022, 308, 102753. [Google Scholar] [CrossRef]
- Genin, V.D.; Bucharskaya, A.B.; Kirillin, M.Y.; Kurakina, D.A.; Navolokin, N.A.; Terentyuk, G.S.; Khlebtsov, B.N.; Khlebtsov, N.G.; Maslyakova, G.N.; Tuchin, V.V.; et al. Monitoring of optical properties of tumors during laser plasmon photothermal therapy. J. Biophotonics 2024, 17, e202300322. [Google Scholar] [CrossRef]
- Arkhipova, V.; Enikeev, M.; Laukhtina, E.; Kurkov, A.; Andreeva, V.; Yaroslavsky, I.; Altschuler, G. Ex vivo and animal study of the blue diode laser, Tm fiber laser, and their combination for laparoscopic partial nephrectomy. Lasers Surg. Med. 2019, 52, 437–448. [Google Scholar] [CrossRef]
- Lu, M.; Shi, X.; Xue, J.; Wu, L.; Zhang, X. Laser-Induced Liquid Micro-Jet Effect and Its Application in Medical Field. Laser Optoelectron. Prog. 2021, 58, 1100004. [Google Scholar]
- Yusupov, V.I. Features of Laser-Induced Thermocavitation of Water. Acoust. Phys. 2024, 70, 957–965. [Google Scholar] [CrossRef]
- Fu, B.; Zhao, X.; Zhang, H.; Xu, L. Application and Progress of Laser Technology for Thrombus Ablation. Chin. J. Lasers 2022, 49, 1907001. [Google Scholar] [CrossRef]
- Hutfilz, A.; Theisen-Kunde, D.; Bonsanto, M.M.; Brinkmann, R. Pulsed thulium laser blood vessel haemostasis as an alternative to bipolar forceps during neurosurgical tumour resection. Lasers Med. Sci. 2023, 38, 94. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Zhao, H.; Xia, T.; Liu, A.; Pan, S.; Zhang, Q.; Wang, X.; Yan, C.; Wang, P. Mechanism analysis of 2 μm thulium-doped picosecond laser ablation on myocardial tissue in minimizing thermal injury. Opt. Express 2025, 33, 10419–10433. [Google Scholar] [CrossRef]
- Bo, Q.; Wu, Y.; Qiu, S.; Zhang, Z. Current Progress of Third Harmonic Generation Microscopy in Tumor Diagnosis. Chin. J. Lasers 2024, 51, 0307101. [Google Scholar] [CrossRef]
- Fu, Z.; Li, R.; Li, H.; Shao, D.; Cao, J. Progress in Biomedical Imaging Based on Terahertz Quantum Cascade Lasers. Chin. J. Lasers 2020, 47, 207014. [Google Scholar] [CrossRef]
- Liang, L.; Li, L.; Gao, T.; Wang, G.; Ding, H.; Wan, M.; Zhang, Z. Research Progress of Intelligent Optic-Assisted Technology and Laser Ablation in Minimally Invasive Intervention. Chin. J. Lasers 2023, 50, 1507201. [Google Scholar] [CrossRef]
- Fang, G.; Chow, M.C.K.; Ho, J.D.L.; He, Z.L.; Wang, K.; Ng, T.C.; Tsoi, J.K.H.; Chan, P.L.; Chang, H.C.; Chan, D.T.M.; et al. Soft robotic manipulator for intraoperative MRI-guided transoral laser microsurgery. Sci. Robot. 2021, 6, eabg5575. [Google Scholar] [CrossRef]
- Zhang, B.Q.; Zhang, G.Y. A novel integrated angioscope-laser system for atherosclerotic carotid artery occlusion: Feasibility and techniques. Front. Surg. 2022, 9, 937492. [Google Scholar] [CrossRef]
- He, X.; Mcgee, S.; Coad, J.E.; Schmidlin, F.; Iaizzo, P.A.; Swanlund, D.J.; Kluge, S.; Rudie, E.; Bischof, J.C. Investigation of the thermal and tissue injury behaviour in microwave thermal therapy using a porcine kidney model. Int. J. Hyperth. 2004, 20, 567–593. [Google Scholar] [CrossRef]
- Li, Z.L.; Wu, S.J.; Tang, X.Y.; Zuo, Y.T.; Liu, T.Z.; Wang, D.; Li, S.; Wang, X.H. Exploring the optimal parameter settings of a thulium fiber laser during soft tissue resection. Lasers Med. Sci. 2025, 40, 118. [Google Scholar] [CrossRef] [PubMed]
- Cumpanas, A.D.; Katta, N.; Vu, T.N.; Wu, Y.X.; Gorgen, A.R.H.; Hernandez, M.C.; Vo, K.; Ali, S.N.; Tano, Z.E.; Jiang, P.B.; et al. Warm irrigation fluid effect on Thulium fiber laser (TFL) ablation of uroliths. Lasers Med. Sci. 2025, 40, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Luan, J.; Wei, R.X. Application Analysis of Low-Pressure Perfusion Combined with Occluder in Holmium Laser Lithotripsy for Patients with Middle and Upper Ureteral Calculi. Arch. Esp. De Urol. 2024, 77, 440–445. [Google Scholar] [CrossRef] [PubMed]
- Uzan, A.; Chiron, P.; Panthier, F.; Haddad, M.; Berthe, L.; Traxer, O.; Doizi, S. Comparison of Holmium: YAG and Thulium Fiber Lasers on the Risk of Laser Fiber Fracture. J. Clin. Med. 2021, 10, 2960. [Google Scholar] [CrossRef]
- Sierra, A.; Corrales, M.; Piñero, A.; Traxer, O. Thulium fiber laser pre-settings during ureterorenoscopy: Twitter’s experts’ recommendations. World J. Urol. 2022, 40, 1529–1535. [Google Scholar] [CrossRef]
- Tao, M.M.; Ye, J.F.; Ye, X.S.; Feng, G.B.; Wang, Y.M.; Yu, T.; Qi, Y.F.; Quan, Z.; Chen, W.B. Thermal modeling of resonantly pumped high power Tm-doped fiber amplifiers. Results Phys. 2022, 36, 105407. [Google Scholar] [CrossRef]
Medical Application | Wavelength (nm) | Tunable Range (nm) | Max. Output Power (W) | Operation Mode | Key Parameter Considerations |
---|---|---|---|---|---|
Stone fragmentation lithotripsy | 1940 (standard) | 1900–2100 | 10–60 | Short pulse (μs level) | Dusting/lithotripsy settings of 0.2–0.5 J/10–15 W are recommended for ureteral stones, 0.1–0.2 J/15–30 W for kidney stones, and 2–5 J/30–50 W [9] |
Early-stage lung cancer ablation | 1940 | 1920–2000 | 30–50 | CW-dominant | CW mode is recommended for stable power and uniform thermal coverage [10] |
Treatment of disfiguring dermatoses | 1940 | 1900–1940 | 10–30 | Pulsed or CW | Short pulses (ms–level) for precise pigment/vascular targeting; CW for coagulation [11] |
Endovenous laser ablation | 1920 | 1900–1940 | 10–20 | Continuous wave (CW) | Low power and controlled fiber pullback (1–3 mm/s) to optimize thermal dose for venous occlusion [12] |
Index Name of Product | Olympus (SOLTIVE™ Premium) | EMS (LaserClast Thulium Power) | Jena Surgical (MultiPulse Tm + 1470) | LAKH (LKSPTm120) | Industry Consensus |
---|---|---|---|---|---|
Central wavelength (nm) | 1940 ± 20 | 1940 ± 20 | 1940 & 1470 | 1940 ± 20 | 1940 nm (water absorption peak) |
Max. average power (W) | 60 | 60 | 120 | 120 | 60–120 W |
Max. peak power (W) | 500 | 500 | 120 | 500 | 120–500 W |
Max. pulse energy (J) | 6 | 6 | — | — | ≤6 J (lithotripsy-optimized) |
Pulse width range(ms) | 0.2–50 | >0.1 | >0.5 | >0.1 | 0.1–50 ms (flexible) |
Repetition rate(Hz) | 1–2400 | 1–2500 and CW | 1–1000 and CW | 1–2500 and CW | 1–2500 Hz and CW mode |
Cooling mode | Air cooling | Air cooling | Water cooling | Air cooling | Air (portable)/water (high-power) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.-Y.; Wang, G.; Li, Y.-F.; Yu, Y.; Wang, Y.; Lu, Z. Frontier Advances and Challenges of High-Power Thulium-Doped Fiber Lasers in Minimally Invasive Medicine. Photonics 2025, 12, 614. https://doi.org/10.3390/photonics12060614
Xu W-Y, Wang G, Li Y-F, Yu Y, Wang Y, Lu Z. Frontier Advances and Challenges of High-Power Thulium-Doped Fiber Lasers in Minimally Invasive Medicine. Photonics. 2025; 12(6):614. https://doi.org/10.3390/photonics12060614
Chicago/Turabian StyleXu, Wen-Yue, Gong Wang, Yun-Fei Li, Yu Yu, Yulei Wang, and Zhiwei Lu. 2025. "Frontier Advances and Challenges of High-Power Thulium-Doped Fiber Lasers in Minimally Invasive Medicine" Photonics 12, no. 6: 614. https://doi.org/10.3390/photonics12060614
APA StyleXu, W.-Y., Wang, G., Li, Y.-F., Yu, Y., Wang, Y., & Lu, Z. (2025). Frontier Advances and Challenges of High-Power Thulium-Doped Fiber Lasers in Minimally Invasive Medicine. Photonics, 12(6), 614. https://doi.org/10.3390/photonics12060614