Linear-Mode Gain HgCdTe Avalanche Photodiodes for Weak-Target Spaceborne Photonic System
Abstract
1. Introduction
2. Fundamentals of MCT Avalanche Photodiodes
2.1. Multiplication Effect and Internal Gain Mechanism
2.2. Representation and Performance Metrics
2.3. Primary Approaches and Technical Strategies
3. Progress in LM-APD Technology for HgCdTe Infrared Detectors
3.1. Leonardo UK Infrared Sensors Advancing Precision in Scientific Research
3.1.1. 320 × 256 e-APD Infrared Saphira Detector
3.1.2. Initial Characterization of ME1120 ROIC for 512 × 512 Pixel SAPHIRA e-APD Array
3.1.3. 1 Megapixel NIR APD Array: Ultra-Low Background Space Astronomy Tests
3.1.4. Sub-Electron Noise Infrared Camera Using Leonardo 2 K × 2 K SWIR LmAPD Array
3.2. Performance Enhancements in e-APDs at Leonardo DRS for Spaceborne LiDAR
3.2.1. HgCdTe APD Arrays for Surface Elevation and Atmospheric LiDAR
3.2.2. Record-Breaking DRS LM Photon-Counting APDs for Laser Communication
3.2.3. Monte Carlo Modeling of Bandgap-Engineered HgCdTe APDs
3.2.4. Drift–Diffusion Modeling of Gain and Dark Current in p-Around -n APDs
3.3. CEA/Leti HgCdTe APDs for High-Speed and Large-Dynamic-Range LiDAR
3.3.1. Application-Tailored HgCdTe APDs for High-Dynamic-Range LiDAR
3.3.2. GHz-Rate Single-Photon Detection APDs for ESA Optical Communications
3.3.3. High-Dynamic-Range APDs with Multi-Gain CTIA ROIC for LiDAR Applications
3.3.4. Four-Quadrant Detector Module for Deep Space Optical Communications
3.4. Advancements in Planar APD Research for AIM Applications
3.4.1. HgCdTe e-APD in Short-Wave Infrared Range for Gated Viewing Applications
3.4.2. Extending 3D Range of Laser GV System: Quadratic Model and Longer Laser Pulse Duration
3.4.3. Progress in SWIR Long-Range Identification and Smoke Obscuration Penetration
3.4.4. Assessment of Gated Viewing at 2.09 µm and 1.57 µm Laser Wavelength
3.5. Advancements and Characterization of e-APDs at Shanghai Institute of Technical Physics
3.6. Research on HgCdTe APD Focal Plane Technology at Kunming Institute of Physics
4. Conclusions and Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MCT | Mercury cadmium telluride |
LM-APD | Linear-mode avalanche photodiode |
BBT | Band-to-band tunneling |
ROIC | Readout Integrated Circuit |
FPAs | Focal plane arrays |
HDVIP | High-Density Vertically Integrated Photodiode |
LWIR, MWIR | Long-Wave Infrared, Medium-Wave Infrared |
References
- Mathew, J.; Gilbert, J.; Sharp, R.G.; Grigoriev, A.; Rains, A.D.; Moore, A.M.; Vaccarella, A.; Magniez, A.; Chandler, D.; Price, I.; et al. Emu: A Case Study for TDI-like Imaging for Infrared Observation from Space. J. Astron. Telesc. Inst. 2022, 8, 024002. [Google Scholar] [CrossRef]
- Claveau, C.-A.; Bottom, M.; Jacobson, S.; Hodapp, K.; Walk, A.; Loose, M.; Baker, I.; Zemaityte, E.; Hicks, M.; Barnes, K.; et al. First Tests of a 1 Megapixel Near-Infrared Avalanche Photodiode Array for Ultra-Low Background Space Astronomy. In X-Ray, Optical, and Infrared Detectors for Astronomy X; SPIE: Montréal, QC, Canada, 2022; Volume 12191, pp. 330–346. [Google Scholar]
- Hao, Q.; Tao, Y.; Cao, J.; Cheng, Y. Development of Pulsed-Laser Three-Dimensional Imaging Flash Lidar Using APD Arrays. Microw. Opt. Technol. Lett. 2021, 63, 2492–2509. [Google Scholar] [CrossRef]
- Jack, M.; Chapman, G.; Edwards, J.; Keag, W.M.; Veeder, T.; Wehner, J.; Roberts, T.; Robinson, T.; Neisz, J.; Andressen, C.; et al. Advances in Ladar Components and Subsystems at Raytheon. In Infrared Technology and Applications XXXVIII; SPIE: Baltimore, MD, USA, 2012; Volume 8353, pp. 851–867. [Google Scholar]
- Beck, J.; Welch, T.; Mitra, P.; Reiff, K.; Sun, X.; Abshire, J. A Highly Sensitive Multi-Element HgCdTe e-APD Detector for IPDA Lidar Applications. J. Electron. Mater. 2014, 43, 2970–2977. [Google Scholar] [CrossRef]
- Butko, A.; Sivanandam, S.; Hardy, T.; Liu, S.; Chen, S.; Veran, J.-P.; Hinz, P.M. Developing an Infrared APD Array Camera for Near-Infrared Wavefront Sensing. In Ground-based and Airborne Instrumentation for Astronomy VII; SPIE: Austin, TX, USA, 2018; Volume 10702, pp. 1174–1183. [Google Scholar]
- Sun, X.; Abshire, J.B.; Beck, J.D.; Mitra, P.; Reiff, K.; Yang, G. HgCdTe Avalanche Photodiode Detectors for Airborne and Spaceborne Lidar at Infrared Wavelengths. Opt. Express 2017, 25, 16589–16602. [Google Scholar] [CrossRef]
- Claveau, C.-A.; Bottom, M.; Jacobson, S.; Huber, G.; Newland, M.; Baker, I.; Barnes, K.; Hicks, M.; Ramos, A. Progress towards a Megapixel Linear-Mode Avalanche Photodiode Array for Ultra-Low Background Shortwave Infrared Astronomy. In X-Ray, Optical, and Infrared Detectors for Astronomy XI; SPIE: Yokohama, Japan, 2024; Volume PC13103, p. PC131030D. [Google Scholar]
- Drescher, A.; Fabricius, M.; Shimizu, T.; Woillez, J.; Bourget, P.; Widmann, F.; Shangguan, J.; Straubmeier, C.; Horrobin, M.; Schuhler, N.; et al. GRAVITY+ Wide: Towards Hundreds of z ~ 2 AGN. In Optical and Infrared Interferometry and Imaging VIII; SPIE: Yokohama, Japan, 2022; Volume 12183, pp. 308–315. [Google Scholar]
- D’Souza, A.I.; Khalap, V.; Baker, I.; Zemaityte, E.; Prighozin, I.; Bellotti, E. Infrared APD Detectors for High Bandwidth Applications. In Image Sensing Technologies: Materials, Devices, Systems, and Applications IX; SPIE: Orlando, FL, USA, 2022; Volume 12091, pp. 16–25. [Google Scholar]
- Graët, J.L.; Secroun, A.; Barbier, R.; Gillard, W.; Clémens, J.-C.; Conseil, S.; Escoffier, S.; Ferriol, S.; Fourmanoit, N.; Kajfasz, E.; et al. Euclid Near Infrared Spectro-Photometer: Spatial Considerations on H2RG Detectors Interpixel Capacitance and IPC Corrected Conversion Gain from on-Ground Characterization. In X-Ray, Optical, and Infrared Detectors for Astronomy X; SPIE: Montréal, QC, Canada, 2022; Volume 12191, pp. 562–574. [Google Scholar]
- Rothman, J.; Bleuet, P.; Abergel, J.; Gout, S.; Lasfargues, G.; Mathieu, L.; Nicolas, J.-A.; Rostaing, J.-P.; Huet, S.; Castelein, P.; et al. HgCdTe APDs Detector Developments at CEA/Leti for Atmospheric Lidar and Free Space Optical Communications. In International Conference on Space Optics—ICSO 2018; SPIE: Chania, Greece, 2019; Volume 11180, pp. 1426–1439. [Google Scholar]
- Ren, M.; Gu, X.; Liang, Y.; Kong, W.; Wu, E.; Wu, G.; Zeng, H. Laser Ranging at 1550 Nm with 1-GHz Sine-Wave Gated InGaAs/InP APD Single-Photon Detector. Opt. Express 2011, 19, 13497–13502. [Google Scholar] [CrossRef]
- Itzler, M.A.; Entwistle, M.; Owens, M.; Patel, K.; Jiang, X.; Slomkowski, K.; Rangwala, S.; Zalud, P.F.; Senko, T.; Tower, J.; et al. Comparison of 32 × 128 and 32 × 32 Geiger-Mode APD FPAs for Single Photon 3D LADAR Imaging. In Advanced Photon Counting Techniques V; SPIE: Orlando, FL, USA, 2011; Volume 8033, pp. 97–108. [Google Scholar]
- Mathew, J.; Gilbert, J.; Sharp, R.; Grigoriev, A.; King, S.; Vaccarella, A.; Chandler, D.; Herrald, N.; Price, I.; Magniez, A. A Space-Based near-Infrared Sky Survey to Study the Oxygen Abundance in Cool Stars. In Space Telescopes and Instrumentation 2020: Optical, Infrared, and Millimeter Wave; SPIE: Bellingham, WA, USA, 2020; Volume 11443, pp. 78–90. [Google Scholar]
- Mao, J.; Abshire, J.B.; Kawa, S.R.; Sun, X.; Riris, H. Airborne Lidar Measurements of Atmospheric CO2 Column Concentrations to Cloud Tops Made during the 2017 ASCENDS/ABoVE Campaign. Atmo. Meas. Tech. 2024, 17, 1061–1074. [Google Scholar] [CrossRef]
- Walker, R.T.; Barker, M.K.; Mazarico, E.; Sun, X.; Neumann, G.A.; Smith, D.E.; Head, J.W.; Zuber, M.T. Near-Infrared Photometry of the Moon’s Surface with Passive Radiometry from the Lunar Orbiter Laser Altimeter (LOLA). Planet. Sci. J. 2024, 5, 122. [Google Scholar] [CrossRef]
- Barker, M.K.; Mazarico, E.; Neumann, G.A.; Smith, D.E.; Zuber, M.T.; Head, J.W.; Sun, X. Large-Scale Roughness Properties of the Lunar North and South Polar Regions as Measured by the Lunar Orbiter Laser Altimeter (LOLA). Planet. Sci. J. 2025, 6, 83. [Google Scholar] [CrossRef]
- Mao, J.; Abshire, J.B.; Kawa, S.R.; Riris, H.; Sun, X.; Nicely, J.M.; Kolbeck, P.T. The NASA Goddard CO2 Sounder Lidar: 2017 Airborne Campaign as a Demonstration toward a Future Space Mission. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium, Brussels, Belgium, 11–16 July 2021; pp. 1673–1676. [Google Scholar]
- Sun, X.; Abshire, J.B.; Krainak, M.A.; Lu, W.; Beck, J.D.; Iii, W.W.S.; Mitra, P.; Rawlings, D.M.; Fields, R.A.; Hinkley, D.A.; et al. HgCdTe Avalanche Photodiode Array Detectors with Single Photon Sensitivity and Integrated Detector Cooler Assemblies for Space Lidar Applications. Opt. Eng. 2019, 58, 067103. [Google Scholar] [CrossRef]
- Sun, X.; Abshire, J.B.; Lauenstein, J.-M.; Iii, W.S.; Beck, J.; Hubbs, J.E. Evaluation of Space Radiation Effects on HgCdTe Avalanche Photodiode Arrays for Lidar Applications. In Proceedings of the Infrared Technology and Applications XLIV, Orlando, FL, USA, 16–19 April 2018; SPIE: Orlando, FL, USA, 2018; Volume 10624, pp. 91–102. [Google Scholar]
- Sun, X.; Cremons, D.R.; Mazarico, E.; Smith, D.E.; Storm, M.; Utano, R.; Hwang, J.; Dang, X.; Abshire, J.B.; Beck, J. A Small All-Range LIDAR for Topographic Mapping from Orbit and Guidance during Descent and Touchdown. In Proceedings of the Laser Radar Technology and Applications XXIX, National Harbor, MD, USA, 24–25 April 2024; SPIE: National Harbor, MD, USA, 2024; Volume 13049, pp. 21–33. [Google Scholar]
- Hall, D.N.B.; Baker, I.M.; Isgar, V.; Jacobson, S.M.; Weller, H. A Megapixel Class HgCdTe Linear Mode Avalanche Photo-Diode Array for Low Background Astronomy (Conference Presentation). In Proceedings of the High Energy, Optical, and Infrared Detectors for Astronomy VIII, Austin, TX, USA, 10–13 June 2018; SPIE: Austin, TX, USA, 2018; Volume 10709, p. 107091N. [Google Scholar]
- Zemaityte, E.; Owton, D.; Maxey, C.; Gordon, J.; Isgar, V.; Hipwood, L.; Hicks, M.; Barnes, K.; Thorne, P.; Baker, I. Linear-Mode Avalanche Photodiode Arrays in HgCdTe at Leonardo UK. In Optical and Infrared Interferometry and Imaging VIII; SPIE: Baltimore, MD, USA, 2022; Volume 12183, pp. 435–447. [Google Scholar]
- Borniol, E.d.; Abergel, J.; Badano, G.; Nicolas, J.-A.; Rostaing, J.-P.; Rothman, J. High Dynamic Range HgCdTe APD Detector Dedicated to LiDAR Applications: Design and Test Results. In Proceedings of the International Conference on Space Optics—ICSO, Dubrovnik, Croatia, 3–7 October 2022; SPIE: Dubrovnik, Croatia, 2023; Volume 12777, pp. 984–997. [Google Scholar]
- Kinch, M.A. Fundamentals of Infrared Detector Materials; SPIE: Bellingham, WA, USA, 2007; ISBN 978-0-8194-6731-7. [Google Scholar]
- Beck, J.D.; Wan, C.-F.; Kinch, M.A.; Robinson, J.E. MWIR HgCdTe Avalanche Photodiodes. In Materials for Infrared Detectors; SPIE: San Diego, CA, USA, 2001; Volume 4454, pp. 188–197. [Google Scholar]
- Singh, A.; Srivastav, V.; Pal, R. HgCdTe Avalanche Photodiodes: A Review. Opt. Laser Technol. 2011, 43, 1358–1370. [Google Scholar] [CrossRef]
- Zhu, L.; Guo, H.; Deng, Z.; Yang, L.; Huang, J.; Yang, D.; Zhou, Z.; Shen, C.; Chen, L.; Lin, C.; et al. Temperature-Dependent Characteristics of HgCdTe Mid-Wave Infrared E-Avalanche Photodiode. IEEE J. Sel. Top. Quantum Electron. 2022, 28, 1–9. [Google Scholar] [CrossRef]
- Leveque, G.; Nasser, M.; Bertho, D.; Orsal, B.; Alabedra, R. Ionization Energies in CdxHg1-xTe Avalanche Photodiodes. Semicond. Sci. Technol. 1993, 8, 1317. [Google Scholar] [CrossRef]
- McIntyre, R.J. A New Look at Impact Ionization-Part I: A Theory of Gain, Noise, Breakdown Probability, and Frequency Response. IEEE Trans. Electron. Devices 1999, 46, 1623–1631. [Google Scholar] [CrossRef]
- Lecoy, G.; Orsal, B.; Alabedra, R. Impact Ionization Resonance and Auger Recombination in Hg1–xCdxTe (0.6 ≤ x ≤ 0.7). IEEE J. Quantum Electron. 1987, 23, 1145–1154. [Google Scholar] [CrossRef]
- Wang, H.; Xia, H.; Liu, Y.; Chen, Y.; Xie, R.; Wang, Z.; Wang, P.; Miao, J.; Wang, F.; Li, T.; et al. Room-Temperature Low-Threshold Avalanche Effect in Stepwise van-Der-Waals Homojunction Photodiodes. Nat. Commun. 2024, 15, 3639. [Google Scholar] [CrossRef]
- Choi, H.; Li, J.; Kang, T.; Kang, C.; Son, H.; Jeon, J.; Hwang, E.; Lee, S. A Steep Switching WSe2 Impact Ionization Field-Effect Transistor. Nat. Commun. 2022, 13, 6076. [Google Scholar] [CrossRef]
- Son, B.; Wang, Y.; Luo, M.; Lu, K.; Kim, Y.; Joo, H.-J.; Yi, Y.; Wang, C.; Wang, Q.J.; Chae, S.H.; et al. Efficient Avalanche Photodiodes with a WSe2/MoS2 Heterostructure via Two-Photon Absorption. Nano Lett. 2022, 22, 9516–9522. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, Z.; Hong, E.; Yan, T.; Fang, X. Effective Dual Cation Release in Quasi-2D Perovskites for Ultrafast UV Light-Powered Imaging. Adv. Mater. 2025, 37, 2412014. [Google Scholar] [CrossRef]
- Bullock, J.; Amani, M.; Cho, J.; Chen, Y.-Z.; Ahn, G.H.; Adinolfi, V.; Shrestha, V.R.; Gao, Y.; Crozier, K.B.; Chueh, Y.-L.; et al. Polarization-Resolved Black Phosphorus/Molybdenum Disulfide Mid-Wave Infrared Photodiodes with High Detectivity at Room Temperature. Nat. Photon. 2018, 12, 601–607. [Google Scholar] [CrossRef]
- Morteza Najarian, A.; Vafaie, M.; Chen, B.; García de Arquer, F.P.; Sargent, E.H. Photophysical Properties of Materials for High-Speed Photodetection. Nat. Rev. Phys. 2024, 6, 219–230. [Google Scholar] [CrossRef]
- Kleinow, P.; Rutz, F.; Aidam, R.; Bronner, W.; Heussen, H.; Walther, M. Charge-Layer Design Considerations in SAGCM InGaAs/InAlAs Avalanche Photodiodes. Phys. Status Solidi A 2016, 213, 925–929. [Google Scholar] [CrossRef]
- Villa, F.; Severini, F.; Madonini, F.; Zappa, F. SPADs and SiPMs Arrays for Long-Range High-Speed Light Detection and Ranging (LiDAR). Sensors 2021, 21, 3839. [Google Scholar] [CrossRef]
- Qiu, W.-C.; Hu, W.-D.; Chen, L.; Lin, C.; Cheng, X.-A.; Chen, X.-S.; Lu, W. Dark Current Transport and Avalanche Mechanism in HgCdTe Electron-Avalanche Photodiodes. IEEE Trans. Electron Devices 2015, 62, 1926–1931. [Google Scholar] [CrossRef]
- Martyniuk, P.; Rogalski, A.; Krishna, S. Interband Quantum Cascade Infrared Photodetectors: Current Status and Future Trends. Phys. Rev. Appl. 2022, 17, 027001. [Google Scholar] [CrossRef]
- Kinch, M.A. A Theoretical Model for the HgCdTe Electron Avalanche Photodiode. J. Electron. Mater. 2008, 37, 1453–1459. [Google Scholar] [CrossRef]
- Rothman, J.; Abergel, J.; Coquiard, A.; Gout, S.; Lonjon, M.; Montel, A.; Lechevallier, L.; Ferron, A.; Mavel, A.; Bustillos-Vasco, S.; et al. Avalanche Gain Modeling Revisited in HgCdTe APDs. J. Electron. Mater. 2024, 53, 5829–5841. [Google Scholar] [CrossRef]
- Liu, S.; Han, Q.; Luo, W.; Lei, W.; Zhao, J.; Wang, J.; Jiang, Y.; Raschke, M.B. Recent Progress of Innovative Infrared Avalanche Photodetectors. Infrared Phys. Technol. 2024, 137, 105114. [Google Scholar] [CrossRef]
- Perrais, G.; Derelle, S.; Mollard, L.; Chamonal, J.-P.; Destefanis, G.; Vincent, G.; Bernhardt, S.; Rothman, J. Study of the Transit-Time Limitations of the Impulse Response in Mid-Wave Infrared HgCdTe Avalanche Photodiodes. J. Electron. Mater. 2009, 38, 1790–1799. [Google Scholar] [CrossRef]
- Beck, J.D.; Wan, C.-F.; Kinch, M.A.; Robinson, J.E.; Ma, F.; Campbell, J.C. The HgCdTe Electron Avalanche Photodiode. In Proceedings of the 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, Tucson, AZ, USA, 27–28 October 2003; IEEE: Tucson, AZ, USA, 2003; Volume 2, pp. 849–850. [Google Scholar]
- Okuto, Y.; Crowell, C.R. Ionization Coefficients in Semiconductors: A Nonlocalized Property. Phys. Rev. B 1974, 10, 4284–4296. [Google Scholar] [CrossRef]
- Tyagi, M.S.; Van Overstraeten, R. Minority Carrier Recombination in Heavily-Doped Silicon. Solid-State Electron. 1983, 26, 577–597. [Google Scholar] [CrossRef]
- Nemirovsky, Y.; Fastow, R.; Meyassed, M.; Unikovsky, A. Trapping Effects in HgCdTe. AIP Conf. Proc. 1991, 235, 1829–1839. [Google Scholar] [CrossRef]
- Anderson, W.W. Tunnel Current Limitations of Narrow Bandgap Infrared Charge Coupled Devices∗. Infrared Phys. 1977, 17, 147–164. [Google Scholar] [CrossRef]
- Okuto, Y.; Crowell, C.R. Threshold Energy Effect on Avalanche Breakdown Voltage in Semiconductor Junctions. Solid-State Electron. 1975, 18, 161–168. [Google Scholar] [CrossRef]
- Landsberg, P.T.; Beattie, A.R. Auger Effect in Semiconductors. J. Phys. Chem. Solids 1959, 8, 73–75. [Google Scholar] [CrossRef]
- van Roosbroeck, W.; Shockley, W. Photon-Radiative Recombination of Electrons and Holes in Germanium. Phys. Rev. 1954, 94, 1558–1560. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Li, X.; He, J.; Yang, L.; Wang, J.; Yu, F.; Zhao, Z.; Shen, C.; Guo, H.; et al. High-Performance HgCdTe Avalanche Photodetector Enabled with Suppression of Band-to-Band Tunneling Effect in Mid-Wavelength Infrared. npj Quantum Mater. 2021, 6, 103. [Google Scholar] [CrossRef]
- Guo, H.; Chen, L.; Yang, L.; Yang, D.; Shen, C.; Sun, Q.; Chen, H.; Lin, C.; Ding, R.; He, L. The Latest Developments of HgCdTe E-APDs at SITP. In Proceedings of the 24th National Laser Conference & Fifteenth National Conference on Laser Technology and Optoelectronics, Shanghai, China, 17–20 October 2020; SPIE: Shanghai, China, 2020; Volume 11717, pp. 798–806. [Google Scholar]
- Xie, H.; Guo, H.; Shen, C.; Yang, L.; Chen, L.; He, L. Study on Dark Current Suppression of HgCdTe Avalanche Photodiodes for Low Flux Photon Detection. Appl. Phys. Lett. 2024, 124, 221103. [Google Scholar] [CrossRef]
- Baker, I.; Maxey, C.; Hipwood, L.; Barnes, K. Leonardo (Formerly Selex ES) Infrared Sensors for Astronomy: Present and Future. In High Energy, Optical, and Infrared Detectors for Astronomy VII; SPIE: Edinburgh, UK, 2016; Volume 9915, pp. 44–51. [Google Scholar]
- Sullivan, W.; Beck, J.; Scritchfield, R.; Skokan, M.; Mitra, P.; Sun, X.; Abshire, J.; Carpenter, D.; Lane, B. Linear-Mode HgCdTe Avalanche Photodiodes for Photon-Counting Applications. J. Electron. Mater. 2015, 44, 3092–3101. [Google Scholar] [CrossRef]
- Rothman, J.; Borniol, E.d.; Gravrand, O.; Kern, P.; Feautrier, P.; Bouquin, J.-B.L.; Boulade, O. MCT APD Focal Plane Arrays for Astronomy at CEA-LETI. In High Energy, Optical, and Infrared Detectors for Astronomy VII; SPIE: Edinburgh, UK, 2016; Volume 9915, pp. 101–112. [Google Scholar]
- Baker, I.; Lindley-DeCaire, A.; Owton, D.; Maxey, C.; Hicks, M. Leonardo UK Infrared Sensors for Scientific Applications. In X-Ray, Optical, and Infrared Detectors for Astronomy XI; SPIE: Yokohama, Japan, 2024; Volume 13103, pp. 63–74. [Google Scholar]
- Baker, I.; Hicks, M.; Maxey, C.; Owton, D. Leonardo UK High Performance Shortwave APDs for Astronomy. In Infrared Sensors, Devices, and Applications XIII; SPIE: San Diego, CA, USA, 2023; Volume 12687, p. 1268702. [Google Scholar]
- Sun, X.; Lu, W.; Yang, G.; Babu, S.; Lauenstein, J.-M.; Roch, A.L.; Baker, I. Effects of Proton Irradiation on a SAPHIRA HgCdTe Avalanche Photodiode Array. In Infrared Technology and Applications XLVIII; SPIE: Orlando, FL, USA, 2022; Volume 12107, pp. 85–95. [Google Scholar]
- Feautrier, P.; Gach, J.-L. Last Performances Improvement of the C-RED One Camera Using the 320x256 e-APD Infrared Saphira Detector. In Optical and Infrared Interferometry and Imaging VIII; SPIE: Montréal, QC, Canada, 2022; Volume 12183, pp. 837–848. [Google Scholar]
- Thorne, P.; Turner, C. Progress at Leonardo UK in APD Array Technology Development for High-Speed 2D Linear Mode Photon-Counting Applications. In Infrared Technology and Applications L; SPIE: National Harbor, MD, USA, 2024; Volume 13046, pp. 59–65. [Google Scholar]
- Hardy, T.; Zhao, E.; Burley, G. High-Speed Array Controller (HIAC) for Multi-Channel Imaging Detectors. In X-Ray, Optical, and Infrared Detectors for Astronomy X; SPIE: Montréal, QC, Canada, 2022; Volume 12191, pp. 708–716. [Google Scholar]
- Finger, G.; Eisenhauer, F.; Hardy, T.; Burley, G.; Mandla, C.; Stegmeier, J. Initial Characterization of the ME1120 ROIC for the 512x512 Pixel Large SAPHIRA Infrared E-APD Array. In X-Ray, Optical, and Infrared Detectors for Astronomy X; SPIE: Montréal, QC, Canada, 2022; Volume 12191, pp. 635–648. [Google Scholar]
- Claveau, C.-A.; Bottom, M.; Jacobson, S.; Hodapp, K.; Huber, G.; Newland, M.; Walk, A.; Loose, M.; Baker, I.; Zemaityte, E.; et al. Progress towards a Megapixel Linear-Mode Avalanche Photodiode Array for Ultra-Low Background Shortwave Infrared Astronomy. arXiv 2024, arXiv:2411.09185. [Google Scholar]
- Atkinson, D.; Hall, D.; Jacobson, S.; Baker, I.M. Photon-Counting Properties of SAPHIRA APD Arrays. Astron. J. 2018, 155, 220. [Google Scholar] [CrossRef]
- Skrutskie, M.F.; Cutri, R.M.; Stiening, R.; Weinberg, M.D.; Schneider, S.; Carpenter, J.M.; Beichman, C.; Capps, R.; Chester, T.; Elias, J.; et al. The Two Micron All Sky Survey (2MASS). Astron. J. 2006, 131, 1163. [Google Scholar] [CrossRef]
- Feautrier, P.; Gach, J.-L.; Owton, D.; Hicks, M.; Baker, I.; Barnes, K.; Boutolleau, D. Sub-Electron Noise Infrared Camera Development Using Leonardo Large Format 2Kx2K SWIR LmAPD Array. In X-Ray, Optical, and Infrared Detectors for Astronomy X; SPIE: Montréal, QC, Canada, 2022; Volume 12191, pp. 626–634. [Google Scholar]
- Cremons, D.R.; Abshire, J.B.; Sun, X.; Allan, G.; Riris, H.; Smith, M.D.; Guzewich, S.; Yu, A.; Hovis, F. Design of a Direct-Detection Wind and Aerosol Lidar for Mars Orbit. CEAS Space J. 2020, 12, 149–162. [Google Scholar] [CrossRef]
- Refaat, T.F.; Singh, U.N.; Petros, M.; Remus, R. MCT Avalanche Photodiode Detector FOR Two-MICRON Active Remote Sensing Applications. In Proceedings of theIGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; IEEE: Valencia, Spain, 2018; pp. 1865–1868. [Google Scholar]
- Riris, H.; Numata, K.; Wu, S.; Gonzalez, B.; Rodriguez, M.; Scott, S.; Kawa, S.; Mao, J. Methane Optical Density Measurements with an Integrated Path Differential Absorption Lidar from an Airborne Platform. J. Appl. Remote Sens. 2017, 11, 034001. [Google Scholar] [CrossRef]
- Anderson, P.D.; Beck, J.D.; Sullivan, W.; Schaake, C.; McCurdy, J.; Skokan, M.; Mitra, P.; Sun, X. Recent Advancements in HgCdTe APDs for Space Applications. J. Electron. Mater. 2022, 51, 6803–6814. [Google Scholar] [CrossRef]
- Sun, X. Review of Photodetectors for Space Lidars. Sensors 2024, 24, 6620. [Google Scholar] [CrossRef]
- Anderson, P.D.; McCurdy, J.; Huebner, A.; Sawatsky, A.; Schaake, C.; Cook, G.; Sun, X.; Mitra, P. Advancements in Linear-Mode Photon-Counting HgCdTe e-APDs for Space and Defense Applications. In Advanced Photon Counting Techniques XVII; SPIE: Orlando, FL, USA, 2023; Volume 12512, pp. 31–36. [Google Scholar]
- Zhu, M.; Prigozhin, I.; Mitra, P.; Schaake, C.; Scritchfield, R.; Bellotti, E. Monte Carlo Modeling of HgCdTe Avalanche Photodiodes. In Infrared Sensors, Devices, and Applications XIII; SPIE: San Diego, CA, USA, 2023; Volume 12687, pp. 90–98. [Google Scholar]
- Zhu, M.; Prighozhin, I.; Mitra, P.; Scritchfield, R.; Schaake, C.; Martin, J.; Park, J.H.; Aqariden, F.; Bellotti, E. Dark Current and Gain Modeling of Mid-Wave and Short-Wave Infrared Compositionally Graded HgCdTe Avalanche Photodiodes. IEEE Trans. Electron Devices 2022, 69, 4962–4969. [Google Scholar] [CrossRef]
- Rothman, J.; Borniol, E.D.; Pes, S.; Dumas, A.; Hoareau, B.; Renet, S.; Mathieu, L.; Nicolas, J.-A.; Rostaing, J.-P.; Perchec, J.l.; et al. HgCdTe APDs Detector Developments for High Speed, Low Photon Number and Large Dynamic Range Photo-Detection. In International Conference on Space Optics—ICSO 2020; SPIE: San Diego, CA, USA, 2021; Volume 11852, pp. 177–189. [Google Scholar]
- Zayer, I.; Sodnik, Z.; Daddato, R.J.; Lanucara, M.; Schulz, K.-J.; Smit, H.; Sans, M.; Becker, P.; Giggenbach, D.; Mata-Calvo, R.; et al. Lunar Optical Communications Link Demonstration Between NASA’s Ladee Spacecraft and ESA’s Optical Ground Station. In Proceedings of the SpaceOps 2014 Conference; American Institute of Aeronautics and Astronautics, Pasadena, CA, USA, 5–9 May 2014. [Google Scholar] [CrossRef]
- Pes, S.; Rothman, J.; Bleuet, P.; Abergel, J.; Gout, S.; Ballet, P.; Santailler, J.-L.; Nicolas, J.-A.; Rostaing, J.-P.; Renet, S.; et al. Reaching GHz Single Photon Detection Rates with HgCdTe Avalanche Photodiodes Detectors. In International Conference on Space Optics—ICSO 2020; SPIE: Bellingham, WA, USA, 2021; Volume 11852, pp. 2382–2398. [Google Scholar]
- Rothman, J.; Pes, S.; Abergel, J.; Gout, S.; Coquiard, A.; Badano, G.; Lasfargues, G.; Vandeneyde, A.; Nicolas, J.-A.; Santailler, J.-L.; et al. HgCdTe APD Detector Module for Deep Space Optical Communications. In International Conference on Space Optics—ICSO 2022; SPIE: Dubrovnik, Croatia, 2023; Volume 12777, pp. 1858–1867. [Google Scholar]
- Sieck, A.; Benecke, M.; Eich, D.; Oelmaier, R.; Wendler, J.; Figgemeier, H. Short-Wave Infrared HgCdTe Electron Avalanche Photodiodes for Gated Viewing. J. Electron. Mater. 2018, 47, 5705–5714. [Google Scholar] [CrossRef]
- Breiter, R.; Benecke, M.; Eich, D.; Figgemeier, H.; Ihle, T.; Sieck, A.; Weber, A.; Wendler, J. Extended SWIR Imaging for Targeting and Reconnaissance. In Infrared Technology and Applications XLIV; SPIE: Orlando, FL, USA, 2018; Volume 10624, pp. 11–21. [Google Scholar]
- Göhler, B.; Lutzmann, P. Review on Short-Wavelength Infrared Laser Gated-Viewing at Fraunhofer IOSB. Opt. Eng. 2016, 56, 031203. [Google Scholar] [CrossRef]
- Göhler, B.; Lutzmann, P. Extending the 3D Range of a Short-Wave Infrared Laser-Gated Viewing System Capable of Correlated Double Sampling. In Electro-Optical Remote Sensing XII; SPIE: Berlin, Germany, 2018; Volume 10796, pp. 82–91. [Google Scholar]
- Göhler, B.; Lutzmann, P. Super-Resolution Depth Information from a Short-Wave Infrared Laser Gated-Viewing System by Using Correlated Double Sampling. In Electro-Optical Remote Sensing XI; SPIE: Warsaw, Poland, 2017; Volume 10434, pp. 186–195. [Google Scholar]
- Breiter, R.; Benecke, M.; Eich, D.; Figgemeier, H.; Lutz, H.; Sieck, A.; Weber, A.; Wiegleb, R. MCT SWIR Modules for Active Imaging. In Infrared Technology and Applications XLV; SPIE: Baltimore, MD, USA, 2019; Volume 11002, pp. 209–218. [Google Scholar]
- Göhler, B.; Lutzmann, P.; Walter, D.; Bürsing, H.; Deutsch, J.; Eichhorn, M.; Kieleck, C.; Sieck, A.; Wiegleb, R. Gated Viewing at 2.09 μm Laser Wavelength: Experimental System Assessment and Comparison to 1.57 μm. In Electro-Optical and Infrared Systems: Technology and Applications XX; SPIE: Amsterdam, The Netherlands, 2023; Volume 12737, pp. 68–81. [Google Scholar]
- Guo, H.; Yang, L.; Shen, C.; Xie, H.; Yang, D.; Zhu, L.; Sun, Q.; Lin, C.; Chen, L.; Ding, R.; et al. Developments and Characterization of HgCdTe E-APDs at SITP. In Earth and Space: From Infrared to Terahertz (ESIT 2022); SPIE: Nantong, China, 2023; Volume 12505, pp. 82–93. [Google Scholar]
- Xie, H.; Guo, H.; Zhu, L.; Yang, L.; Shen, C.; Chen, B.; Chen, L.; He, L. Study on High Gain-Bandwidth Product HgCdTe MWIR Electron Avalanche Photodiodes. Infrared Phys. Technol. 2023, 135, 104994. [Google Scholar] [CrossRef]
- Guo, H.; Chen, L.; Yang, L.; Shen, C.; Xie, H.; Lin, C.; Ding, R.; He, L. Linear-mode HgCdTe avalanche photodiode detectors for photon-counting applications (invited). Infrared Laser Eng. 2023, 52, 20230036. [Google Scholar] [CrossRef]
- Xie, H.; Li, H.; Yang, L.; Guo, H.; Shen, C.; Liang, Q.; Zhou, Y.; Chen, L.; He, L. Study on Area-Dependent Multiplication Region Width and Optimization of HgCdTe Avalanche Focal Plane. Infrared Phys. Technol. 2025, 147, 105781. [Google Scholar] [CrossRef]
- Han, X.; Guo, H.; Yang, L.; Zhu, L.; Yang, D.; Xie, H.; Wang, F.; Chen, L.; Chen, B.; He, L. Dark Current and Noise Analysis for Long-Wavelength Infrared HgCdTe Avalanche Photodiodes. Infrared Phys. Technol. 2022, 123, 104108. [Google Scholar] [CrossRef]
- Zhu, L.; Guo, H.; Zhou, Z.; Xie, Z.; Xie, H.; Chen, L.; Lin, C.; Chen, B. Bandwidth Characterization and Optimization of High-Performance Mid-Wavelength Infrared HgCdTe e-Avalanche Photodiodes. Infrared Phys. Technol. 2023, 131, 104682. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, Z.; Lin, J.; Huang, J.; He, L.; Wang, X.; Zhou, S.; Gan, Z.; Li, X.; Li, Q.; et al. High-Temperature Mid-Wavelength Infrared Avalanche Photodiode with Modified Fully-Depleted Absorption and Multiplication Region. Commun. Mater. 2025, 6, 71. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Chen, X.; Li, L.; Zhao, P.; Yang, Z.; Yang, D.; Jiang, W.; Yang, P.; Kong, J.; et al. Study on HgCdTe APD focal plane technology. J. Infrared Millim. Waves 2022, 41, 965–971. (In Chinese) [Google Scholar] [CrossRef]
- Li, X.; Han, F.; Li, L.; Li, D.; Hu, Y.; Yang, D.; Yang, C.; Kong, J.; Shu, X.; Zhuang, J.; et al. Gain Characteristics of MW HgCdTe Avalanche Photodiodes. J. Infrared Millim. Waves 2019, 38, 02175. (In Chinese) [Google Scholar] [CrossRef]
Transport Models | Equation |
---|---|
Drift–diffusion model | |
SRH recombination and TAT | |
BBT generation | |
Avalanche generation | |
Auger recombination | |
Radiative recombination |
Parameter | SAPHIRA | ME1070 (Engineering-Grade, Already Tested) | ME1070 (Science-Grade, This Work) |
---|---|---|---|
Pixel size | 24 µm | 15 µm | 15 µm |
Format | 320 × 256 pixs2 | 1024 × 1024 pixs2 | 1024 × 1024 pixs2 |
Max frame rate | 1000 Hz | ∼10 Hz | ∼10 Hz |
Reference pixel | No | Yes | Yes |
Number of video outputs | 32 | 16 | 16 |
Bandgap structure | Widened | Widened | Widened and graded |
Onset of tunneling current | 8 volts | 8 volts | 13 volts (est.) |
Parameters | 4 × 4-Pixel HgCdTe APD Arrays | 2 × 8-Pixel HgCdTe APD Arrays |
---|---|---|
Quantum efficiency | >90%, 0.9 to 4.4 µm | >90%, 0.9 to 4.4 µm |
APD gain | 1 to 900, APD bias (0–12 V) | 1 to1900, APD bias (0–12 V) |
Excess noise factor | 1.05 | 1.15 |
Dark current | <0.5 pA/pixel | <8 fA (50,000 electrons/s) per pixel |
Responsivity | >2 × 109 V/W | 1.0 to 1.5 × 109 V/W with amplifiers |
Electrical bandwidth | 8 MHz | 50 MHz |
NEP at 1.55 µm | <0.5 fW/Hz1/2/pixel | <0.2 fW/Hz1/2/pixel |
Pixel size | 80 × 80 µm | 64 × 64 µm |
Pixel pitch | 80 µm | 64 µm |
Photographs |
Parameter | Value |
---|---|
Format/pitch | |
Input stage | CTIA |
Operating modes | GV, GV-CDS, ITR |
Charge handling capacity | 120,000 e− |
Readout noise (w/o CDS) | 80 e− |
Clock master/PLL | 10 MHz/200 MHz |
Full frame rate (no CDS) | 100 Hz |
Full frame rate w/CDS | 50 Hz |
Subframe steps | 1 pixel vertical, 4 pixels horizontal |
Scan direction | Programmable independently for rows and columns |
Polarity photodiodes | 2 ROIC variants for n on p and for p on n |
Device/Material | Wavelength (nm) | QE (%) | Gain, Voltage (V) |
---|---|---|---|
Si APD | 400–1100 | 77 | 20–400, 150–400 V |
InGaAs APD | 900–1700 | 60–70 | 10–40, 20–30 V |
Leonardo-MCT APD | 2500–3500 | 90 | 66, 14.5 V |
DRS- MCT APD | 4300 | 72 | 6 100, 15.9 V |
CEA/Leti- MCT APD | 2500–5300 | 90 | 2 k SW, 13 k MW |
AIM- GV MCT APD | 900–2400 | 75 | 20, 14 V |
PEA2MA3 Pb4I13 | 250–450 | 122 | 0.41 A/W |
WSe2 APD | 500–800 | 2000 | 470, 1.44–3 V |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Zhang, Z.; Liu, M.; Xing, W.; Wu, Q.; Zhang, Y.; Zhang, W.; Xu, J.; Tan, Q. Linear-Mode Gain HgCdTe Avalanche Photodiodes for Weak-Target Spaceborne Photonic System. Photonics 2025, 12, 829. https://doi.org/10.3390/photonics12080829
Yu H, Zhang Z, Liu M, Xing W, Wu Q, Zhang Y, Zhang W, Xu J, Tan Q. Linear-Mode Gain HgCdTe Avalanche Photodiodes for Weak-Target Spaceborne Photonic System. Photonics. 2025; 12(8):829. https://doi.org/10.3390/photonics12080829
Chicago/Turabian StyleYu, Hui, Zhichao Zhang, Ming Liu, Weirong Xing, Qing Wu, Yi Zhang, Weiting Zhang, Jialin Xu, and Qiguang Tan. 2025. "Linear-Mode Gain HgCdTe Avalanche Photodiodes for Weak-Target Spaceborne Photonic System" Photonics 12, no. 8: 829. https://doi.org/10.3390/photonics12080829
APA StyleYu, H., Zhang, Z., Liu, M., Xing, W., Wu, Q., Zhang, Y., Zhang, W., Xu, J., & Tan, Q. (2025). Linear-Mode Gain HgCdTe Avalanche Photodiodes for Weak-Target Spaceborne Photonic System. Photonics, 12(8), 829. https://doi.org/10.3390/photonics12080829