Reconfigurable High-Efficiency Power Dividers Using Waveguide Epsilon-Near-Zero Media for On-Demand Splitting
Abstract
1. Introduction
2. Concept and Theoretical Analysis
3. Practical Designs of Reconfigurable ENZ-Based Waveguide Power Dividers
3.1. Mechanically Reconfigurable ENZ-Based Power Divider Based on Magnetic Field Redistribution
3.2. Electrically Reconfigurable ENZ-Based Power Divider Based on Cross-Sectional Area Modulation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ENZ | epsilon-near-zero |
RPD | reconfigurable power divider |
SIW | substrate-integrated waveguide |
PIN | positive–intrinsic–negative |
EM | electromagnetic |
RF | radio-frequency |
MIMO | multi-input–multi-output |
IoT | Internet of Things |
PTFE | polytetrafluoroethylene |
PEC | perfect electric conductor |
2-D | two-dimensional |
References
- Han, L.; Kuo, B.P.P.; Alic, N.; Radic, S. Ultra-broadband multimode 3dB optical power splitter using an adiabatic coupler and a Y-branch. Opt. Express 2018, 26, 14800. [Google Scholar] [CrossRef]
- Pallavi, M.; Kumar, P.; Ali, T.; Shenoy, S.B.; Shivakumar, B. Design and validation of a miniaturized reconfigurable power divider with arbitrary power split ratio and flexible output phase difference. Int. J. Electron. Commun. 2024, 183, 155373. [Google Scholar] [CrossRef]
- Wu, Y.; Jiao, L.; Zhuang, Z.; Liu, Y. The art of power dividing: A review for state-of-the-art planar power dividers. China Commun. 2017, 14, 1–16. [Google Scholar] [CrossRef]
- Lee, S.; Park, J.; Hong, S. Millimeter-Wave Multi-Band Reconfigurable Differential Power Divider for 5G Communication. IEEE Trans. Microw. Theory Tech. 2022, 70, 886–894. [Google Scholar] [CrossRef]
- Jamshidi, M.B.; Roshani, S.; Talla, J.; Roshani, S.; Peroutka, Z. Size reduction and performance improvement of a microstrip Wilkinson power divider using a hybrid design technique. Sci. Rep. 2021, 11, 7773. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Liu, Z.; Zhang, J.; Zhou, Z.; Chen, W.; Zhang, Z.; Chen, X.; Wei, K.; Li, Y. Antenna Thousandfold Miniaturization with Ohmic-Biased Transistor Circuit. Electromagn. Sci. 2025, 3, 0100583. [Google Scholar] [CrossRef]
- Antoniades, M.; Eleftheriades, G. A broadband series power divider using zero-degree metamaterial phase-shifting lines. IEEE Microw. Wireless Compon. 2005, 15, 808–810. [Google Scholar] [CrossRef]
- Guo, Z.; Jiang, J.; Wang, Y.; Alvarez-Cuervo, J.; Martin-Luengo, A.T.; Hu, S.; Jiang, J.; Gonzalez, P.A.; Duan, J.; Chen, H. Exceptional point empowered near-field routing of hyperbolic polaritons. Sci. Bull. 2024, 69, 3491–3495. [Google Scholar] [CrossRef]
- Kinsey, N.; DeVault, C.; Boltasseva, A.; Shalaev, V.M. Near-zero-index materials for photonics. Nat. Rev. Mater. 2019, 4, 742–760. [Google Scholar] [CrossRef]
- Liberal, I.; Engheta, N. Near-zero refractive index photonics. Nat. Photonics 2017, 11, 149–158. [Google Scholar] [CrossRef]
- Liberal, I.; Mahmoud, A.M.; Li, Y.; Edwards, B.; Engheta, N. Photonic doping of epsilon-near-zero media. Science 2017, 355, 1058–1062. [Google Scholar] [CrossRef]
- Maas, R.; Parsons, J.; Engheta, N.; Polman, A. Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths. Nat. Photonics 2013, 7, 907–912. [Google Scholar] [CrossRef]
- Ziolkowski, R.W. Propagation in and scattering from a matched metamaterial having a zero index of refraction. Phys. Rev. E 2004, 70, 046608. [Google Scholar] [CrossRef]
- Li, H.; Zhou, Z.; He, Y.; Sun, W.; Li, Y.; Liberal, I.; Engheta, N. Geometry-independent antenna based on Epsilon-near-zero medium. Nat. Commun. 2022, 13, 3568. [Google Scholar] [CrossRef]
- Li, H.; Zhou, Z.; Li, Y. Length-Irrelevant Dual-Polarized Antenna Based on Antiphase Epsilon-Near-Zero Mode. IEEE Trans. Antennas Propag. 2022, 70, 720–725. [Google Scholar] [CrossRef]
- Liberal, I.; Li, Y.; Engheta, N. Magnetic field concentration assisted by epsilon-near-zero media. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2017, 375, 20160059. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Feng, Y.J. Optical field enhancements and applications by epsilon-near-zero medium with dielectric dopant. Acta Phys. Sin. 2020, 69, 154101. [Google Scholar] [CrossRef]
- Zhao, L.; Feng, Y.; Zhu, B.; Zhao, J. Electromagnetic properties of magnetic epsilon-near-zero medium with dielectric dopants. Opt. Express 2019, 27, 20073. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, Y. A Photonic-Doping-Inspired SIW Antenna with Length-Invariant Operating Frequency. IEEE Trans. Antennas Propag. 2020, 68, 5151–5158. [Google Scholar] [CrossRef]
- Edwards, B.; Alù, A.; Silveirinha, M.G.; Engheta, N. Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects. J. Appl. Phys. 2009, 105, 044905. [Google Scholar] [CrossRef]
- Mitrovic, M.; Jokanovic, B.; Vojnovic, N. Wideband Tuning of the Tunneling Frequency in a Narrowed Epsilon-Near-Zero Channel. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 631–634. [Google Scholar] [CrossRef]
- Yan, W.; Zhou, Z.; Li, H.; Li, Y. Transmission-type photonic doping for high-efficiency epsilon-near-zero supercoupling. Nat. Commun. 2023, 14, 6154. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Li, H.; Sun, W.; He, Y.; Liberal, I.; Engheta, N.; Feng, Z.; Li, Y. Dispersion coding of ENZ media via multiple photonic dopants. Light Sci. Appl. 2022, 11, 207. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, Y.; Li, H.; Sun, W.; Liberal, I.; Engheta, N. Substrate-integrated photonic doping for near-zero-index devices. Nat. Commun. 2019, 10, 4132. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, Y.; Nahvi, E.; Li, H.; He, Y.; Liberal, I.; Engheta, N. General Impedance Matching via Doped Epsilon-Near-Zero Media. Phys. Rev. Appl. 2020, 13, 034005. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, J.; Xu, P. Transmission-reflection decoupling of non-Hermitian photonic doping epsilon-near-zero media. Front. Phys. 2024, 19, 33206. [Google Scholar] [CrossRef]
- Hong, B.; Sun, L.; Wang, W.; Qiu, Y.; Feng, N.; Su, D.; Somjit, N.; Robertson, I.; Wang, G.P. Five-channel frequency-division multiplexing using low-loss epsilon-near-zero metamaterial waveguide. Sci. China Phys. Mech. Astron. 2022, 65, 274211. [Google Scholar] [CrossRef]
- Edwards, B.; Alù, A.; Young, M.E.; Silveirinha, M.; Engheta, N. Experimental Verification of Epsilon-Near-Zero Metamaterial Coupling and Energy Squeezing Using a Microwave Waveguide. Phys. Rev. Lett. 2008, 100, 033903. [Google Scholar] [CrossRef]
- Li, P.; Yan, W.; Wang, S.; Fu, P.; Zhang, Y.; Li, Y. Engineering Epsilon-Near-Zero Media with Waveguides. Adv. Phys. Res. 2024, 3, 2400070. [Google Scholar] [CrossRef]
- Li, Y.; Liberal, I.; Della Giovampaola, C.; Engheta, N. Waveguide metatronics: Lumped circuitry based on structural dispersion. Sci. Adv. 2016, 2, e1501790. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Cheng, Q.; Hand, T.; Mock, J.J.; Cui, T.J.; Cummer, S.A.; Smith, D.R. Experimental Demonstration of Electromagnetic Tunneling Through an Epsilon-Near-Zero Metamaterial at Microwave Frequencies. Phys. Rev. Lett. 2008, 100, 023903. [Google Scholar] [CrossRef] [PubMed]
- Rotman, W. Plasma simulation by artificial dielectrics and parallel-plate media. IRE Trans. Antennas Propag. 1962, 10, 82–95. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, Y. N-Port Equal/Unequal-Split Power Dividers Using Epsilon-Near-Zero Metamaterials. IEEE Trans. Microw. Theory Tech. 2021, 69, 1529–1537. [Google Scholar] [CrossRef]
- Esfahlani, H.; Byrne, M.S.; Alù, A. Acoustic Power Divider Based on Compressibility-Near-Zero Propagation. Phys. Rev. Appl. 2020, 14, 024057. [Google Scholar] [CrossRef]
- Collin, R.E. Foundations for Microwave Engineering, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Ourir, A.; Maurel, A.; Pagneux, V. Tunneling of electromagnetic energy in multiple connected leads using ε-near-zero materials. Opt. Lett. 2013, 38, 2092. [Google Scholar] [CrossRef] [PubMed]
- Silveirinha, M.; Engheta, N. Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials. Phys. Rev. Lett. 2006, 97, 157403. [Google Scholar] [CrossRef]
- Silveirinha, M.G.; Engheta, N. Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε near-zero metamaterials. Phys. Rev. B 2007, 76, 245109. [Google Scholar] [CrossRef]
- Che, W.; Xu, L.; Wang, D.; Deng, K.; Chow, Y. Short-circuit equivalence between rectangular waveguides of regular sidewalls (rectangular waveguide) and sidewalls of cylinders (substrate-integrated rectangular waveguides), plus its extension to cavity. IET Microw. Antennas Propag. 2007, 1, 639–644. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, L.; Hu, Q.; Feng, Y. Reconfigurable High-Efficiency Power Dividers Using Waveguide Epsilon-Near-Zero Media for On-Demand Splitting. Photonics 2025, 12, 897. https://doi.org/10.3390/photonics12090897
Jiang L, Hu Q, Feng Y. Reconfigurable High-Efficiency Power Dividers Using Waveguide Epsilon-Near-Zero Media for On-Demand Splitting. Photonics. 2025; 12(9):897. https://doi.org/10.3390/photonics12090897
Chicago/Turabian StyleJiang, Lin, Qi Hu, and Yijun Feng. 2025. "Reconfigurable High-Efficiency Power Dividers Using Waveguide Epsilon-Near-Zero Media for On-Demand Splitting" Photonics 12, no. 9: 897. https://doi.org/10.3390/photonics12090897
APA StyleJiang, L., Hu, Q., & Feng, Y. (2025). Reconfigurable High-Efficiency Power Dividers Using Waveguide Epsilon-Near-Zero Media for On-Demand Splitting. Photonics, 12(9), 897. https://doi.org/10.3390/photonics12090897