Enhancement of High-Order Harmonic Generation by Suppressing Quantum Diffusion of the Electron Wavepacket
Abstract
1. Introduction
2. Model and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Paul, P.M.; Toma, E.S.; Breger, P.; Mullot, G.; Auge, F.; Balcou, P.; Muller, H.G.; Agostini, P. Observation of a Train of attosecond pulses from high harmonic generation. Science 2001, 292, 1689–1692. [Google Scholar] [CrossRef] [PubMed]
- Kienberger, R.; Goulielmakis, E.; Uiberacker, M.; Baltuska, A.; Yakovlev, V.; Bammer, F.; Scrinzi, A.; Westerwalbesloh, T.; Kleineberg, U.; Heinzmann, U.; et al. Atomic transient recorder. Nature 2004, 427, 817–821. [Google Scholar] [CrossRef] [PubMed]
- Itatani, J.; Levesque, J.; Zeidler, D.; Niikura, H.; Pépin, H.; Kieffer, J.C.; Corkum, P.B.; Villeneuve, D.M. Tomographic imaging of molecular orbitals. Nature 2004, 432, 867–871. [Google Scholar] [CrossRef] [PubMed]
- Kotur, M.; Guénot, D.; Jiménez-Galán, Á.; Kroon, D.; Larsen, E.W.; Louisy, M.; Bengtsson, S.; Miranda, M.; Mauritsson, J.; Arnold, C.L.; et al. Spectral phase measurement of a Fano resonance using tunable attosecond pulses. Nat. Commun. 2016, 7, 10566. [Google Scholar] [CrossRef]
- Li, W.; Zhu, X.; Lan, P.; Wang, K.; He, W.; Hübener, H.; Giovannini, U.D.; Lu, P. Attosecond all-optical retrieval of valley polarization via circular dichroism in transient absorption. arXiv 2024. [Google Scholar] [CrossRef]
- Wang, H.; Chini, M.; Chen, S.; Zhang, C.; He, F. Attosecond time-resolved autoionization of argon. Phys. Rev. Lett. 2010, 105, 143002. [Google Scholar] [CrossRef]
- Long, J.; Zhu, X.; Zhai, C.; Li, W.; He, W.; He, L.; Lan, P.; Lu, P. Polarization control in high harmonic generation using molecular structures in nonaligned molecules. Ultrafast Sci. 2025, 5, 0079. [Google Scholar] [CrossRef]
- Calegari, F.; Ferrari, F.; Lucchini, M.; Negro, M.; Vozzi, C.; Stagira, S.; Sansone, G.; Nisoli, M. Chapter 8—Principles and Applications of Attosecond Technology. In Advances in Atomic, Molecular, and Optical Physics; Arimondo, E., Berman, P., Lin, C., Eds.; Academic Press: Cambridge, MA, USA, 2011; Volume 60, pp. 371–413. [Google Scholar]
- The Nobel Prize in Physics 2023. NobelPrize. Org. Nobel Prize Outreach. Available online: https://www.nobelprize.org/prizes/physics/2023/summary/ (accessed on 28 February 2024).
- Corkum, P.B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 1993, 71, 1994–1997. [Google Scholar] [CrossRef]
- Sheehy, B.; Martin, J.D.D.; DiMauro, L.F.; Agostini, P.; Schafer, K.; Gaarde, M.; Kulander, K.C. High harmonic generation at long wavelengths. Phys. Rev. Lett. 1999, 83, 5270–5273. [Google Scholar] [CrossRef]
- Luo, J.; Li, Y.; Wang, Z.; Zhang, Q.; Lu, P. Ultra-short isolated attosecond emission in mid-infrared inhomogeneous fields without CEP stabilization. J. Phys. B At. Mol. Opt. Phys. 2013, 46, 145602. [Google Scholar] [CrossRef]
- Hong, W.; Zhang, Q.; Yang, Z.; Lu, P. Electron dynamic control for the quantum path in the midinfrared regime using a weak near-infrared pulse. Phys. Rev. A 2009, 80, 053407. [Google Scholar] [CrossRef]
- Shan, B.; Chang, Z. Dramatic extension of the high-order harmonic cutoff by using a long-wavelength driving field. Phys. Rev. A 2001, 65, 011804(R). [Google Scholar] [CrossRef]
- Lewenstein, M.; Balcou, P.; Ivanov, M.Y.; L’Huillier, A.; Corkum, P.B. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 1994, 49, 2117. [Google Scholar] [CrossRef] [PubMed]
- Tate, J.; Auguste, T.; Muller, H.G.; Salières, P.; Agostini, P.; DiMauro, L.F. Scaling of wave-packet dynamics in an intense midinfrared field. Phys. Rev. Lett. 2007, 98, 013901. [Google Scholar] [CrossRef]
- Schiessl, K.; Ishikawa, K.L.; Persson, E.; Burgdörfer, J. Quantum path interference in the wavelength dependence of high-harmonic generation. Phys. Rev. Lett. 2007, 99, 253903. [Google Scholar] [CrossRef] [PubMed]
- Frolov, M.V.; Manakov, N.L.; Starace, A.F. Wavelength scaling of high-harmonic yield: Threshold phenomena and bound state symmetry dependence. Phys. Rev. Lett. 2008, 100, 173001. [Google Scholar] [CrossRef]
- Pfeifer, T.; Walter, D.; Gerber, G.; Emelin, M.Y.; Ryabikin, M.Y.; Chernobrovtseva, M.D.; Sergeev, A.M. Transient enhancement of high-order harmonic generation in expanding molecules. Phys. Rev. A 2004, 70, 013805. [Google Scholar] [CrossRef]
- Emelin, M.Y.; Ryabikin, M.Y.; Sergeev, A.M.; Chernobrovtseva, M.D.; Pfeifer, T.; Walter, D.; Gerber, G. High-efficiency generation of attosecond pulses during atomic ionization from excited electronic states. Europhys. Lett. 2005, 69, 913–919. [Google Scholar] [CrossRef]
- Paul, P.M.; Clatterbuck, T.O.; Lyngå, C.; Colosimo, P.; DiMauro, L.F. Enhanced high harmonic generation from an optically prepared excited medium. Phys. Rev. Lett. 2005, 94, 113906. [Google Scholar] [CrossRef]
- Forbes, A.; Oliveira, M.; Dennis, M.R. Structured light. Nat. Photon. 2021, 15, 253–262. [Google Scholar] [CrossRef]
- Chen, Q.; Qu, G.; Yin, J.; Wang, Y.; Ji, Z.; Yang, W.; Wang, Y.; Yin, Z.; Song, Q.; Kivshar, Y.; et al. Highly efficient vortex generation at the nanoscale. Nat. Nanotechnol. 2024, 19, 1000–1006. [Google Scholar] [CrossRef] [PubMed]
- Ciappina, M.F.; Pérez-Hernández, J.A.; Landsman, A.S.; Okell, W.A.; Zherebtsov, S.; Förg, B.; Schötz, J.; Seiffert, L.; Fennel, T.; Shaaran, T.; et al. Attosecond physics at the nanoscale. Rep. Prog. Phys. 2017, 80, 054401. [Google Scholar] [CrossRef] [PubMed]
- Lorek, E.; Mårsell, E.; Losquin, A.; Miranda, M.; Harth, A.; Guo, C.; Svärd, R.; Arnold, C.L.; L’Huiller, A.; Mikkelsen, A.; et al. Size and shape dependent few-cycle near-field dynamics of bowtie nanoantennas. Opt. Exp. 2015, 23, 31460–31471. [Google Scholar] [CrossRef] [PubMed]
- Schoetz, J.; Wang, Z.; Pisanty, E.; Lewenstein, M.; Kling, M.F.; Ciappina, M.F. Perspective on petahertz electronics and attosecond nanoscopy. ACS Photon. 2019, 6, 3057. [Google Scholar] [CrossRef]
- Zürch, M.; Kern, C.; Hansinger, P.; Dreischuh, A.; Spielmann, C. Strong-field physics with singular light beams. Nat. Phys. 2012, 8, 743–746. [Google Scholar] [CrossRef]
- Park, I.Y.; Kim, S.; Choi, J.; Lee, D.H.; Kim, Y.J.; Kling, M.F.; Stockman, M.I.; Kim, S.W. Plasmonic generation of ultrashort extreme-ultraviolet light pulses. Nat. Photon. 2011, 5, 677–681. [Google Scholar] [CrossRef]
- Han, S.; Kim, H.; Kim, Y.W.; Kim, Y.J.; Kim, S.; Park, I.Y.; Kim, S.W. High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure. Nat. Commun. 2016, 7, 13105. [Google Scholar] [CrossRef]
- Jalil, S.A.; Awan, K.M.; Ali, I.A.; Rashid, S.; Baxter, J.; Korobenko, A.; Ernotte, G.; Naumov, A.; Villeneuve, D.M.; Staudte, A.; et al. Controlling the polarization and phase of high-order harmonics with a plasmonic metasurface. Optica 2022, 9, 987–991. [Google Scholar] [CrossRef]
- Zograf, G.; Koshelev, K.; Zalogina, A.; Korolev, V.; Hollinger, R.; Choi, D.Y.; Zuerch, M.; Spielmann, C.; Luther-Davies, B.; Kartashov, D.; et al. High-harmonic generation from resonant dielectric metasurfaces empowered by bound states in the continuum. ACS Photon. 2022, 9, 567–574. [Google Scholar] [CrossRef]
- Tiliouine, I.; Leventoux, Y.; Orlianges, J.C.; Crunteanu, A.; Froidevaux, M.; Merdji, H.; Février, S. High-harmonic generation in an optical fiber functionalized with zinc oxide thin films. Photonics 2025, 12, 82. [Google Scholar] [CrossRef]
- Luo, J.; Xiao, J.; Wu, Z.; Li, Y.; Zhu, X.; Zhou, Y. Enhanced high-order harmonic generation by spatially-structured-light-induced topological-edge-state dynamics. Phys. Rev. A 2024, 110, 033111. [Google Scholar] [CrossRef]
- Feit, M.D.; Fleck, J.A.; Steiger, A. Solution of the Schrödinger equation by a spectral method. J. Comput. Phys. 1982, 47, 412. [Google Scholar] [CrossRef]
- Burnett, K.; Reed, V.C.; Cooper, J.; Knight, P.L. Calculation of the background emitted during high-harmonic generation. Phys. Rev. A 1992, 45, 3347. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, M.; Zhu, X.; Ke, S.; Zhang, X.; Liao, Q. Enhancement of High-Order Harmonic Generation by Suppressing Quantum Diffusion of the Electron Wavepacket. Photonics 2025, 12, 899. https://doi.org/10.3390/photonics12090899
Qin M, Zhu X, Ke S, Zhang X, Liao Q. Enhancement of High-Order Harmonic Generation by Suppressing Quantum Diffusion of the Electron Wavepacket. Photonics. 2025; 12(9):899. https://doi.org/10.3390/photonics12090899
Chicago/Turabian StyleQin, Meiyan, Xiaosong Zhu, Shaolin Ke, Xiaofan Zhang, and Qing Liao. 2025. "Enhancement of High-Order Harmonic Generation by Suppressing Quantum Diffusion of the Electron Wavepacket" Photonics 12, no. 9: 899. https://doi.org/10.3390/photonics12090899
APA StyleQin, M., Zhu, X., Ke, S., Zhang, X., & Liao, Q. (2025). Enhancement of High-Order Harmonic Generation by Suppressing Quantum Diffusion of the Electron Wavepacket. Photonics, 12(9), 899. https://doi.org/10.3390/photonics12090899