High-Speed Structured Polarized Light Imaging of Bovine Heart Valve Leaflet Dynamics
Abstract
1. Introduction
2. Materials and Methods
2.1. High-Speed SPLI Tissue Testing Platform
2.2. Sample Preparation and Imaging
2.3. Quantification of Continuous Tissue Deformation
2.3.1. Rolling Image Processing
2.3.2. Reflectance and Fiber Orientation Quantification and Visualization
3. Results
3.1. SLI Reflectance Sensitive to Tissue Stretch State and Local Tissue Features
3.2. Continuous Quantification of Fiber Orientation with Improved Accuracy
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SLI | Structured light illumination |
SPLI | Structured polarized light imaging |
PLI | Polarized light imaging |
FPS | Frame per second |
References
- Fratzl, P. Collagen: Structure and mechanics, an introduction. In Collagen: Structure and Mechanics; Springer: Berlin/Heidelberg, Germany, 2008; pp. 1–13. [Google Scholar]
- Ihanamäki, T.; Pelliniemi, L.J.; Vuorio, E. Collagens and collagen-related matrix components in the human and mouse eye. Prog. Retin. Eye Res. 2004, 23, 403–434. [Google Scholar] [CrossRef]
- Liu, S.H.; Yang, R.-S.; Al-Shaikh, R.; Lane, J.M. Collagen in Tendon, Ligament, and Bone Healing: A Current Review. Clin. Orthop. Relat. Res. (1976–2007) 1995, 318, 265–278. [Google Scholar]
- Merryman, W.D.; Youn, I.; Lukoff, H.D.; Krueger, P.M.; Guilak, F.; Hopkins, R.A.; Sacks, M.S. Correlation between heart valve interstitial cell stiffness and transvalvular pressure: Implications for collagen biosynthesis. Am. J. Physiol.-Heart Circ. Physiol. 2006, 290, H224–H231. [Google Scholar] [CrossRef] [PubMed]
- Jan, N.-J.; Sigal, I.A. Collagen fiber recruitment: A microstructural basis for the nonlinear response of the posterior pole of the eye to increases in intraocular pressure. Acta Biomater. 2018, 72, 295–305. [Google Scholar] [CrossRef]
- Franchi, M.; Trirè, A.; Quaranta, M.; Orsini, E.; Ottani, V. Collagen structure of tendon relates to function. Sci. World J. 2007, 7, 404–420. [Google Scholar] [CrossRef]
- Mathew-Steiner, S.S.; Roy, S.; Sen, C.K. Collagen in wound healing. Bioengineering 2021, 8, 63. [Google Scholar] [CrossRef]
- Schoen, F.J.; Levy, R.J. Tissue heart valves: Current challenges and future research perspectives. J. Biomed. Mater. Res. 1999, 47, 439–465. [Google Scholar] [CrossRef]
- Zilla, P.; Brink, J.; Human, P.; Bezuidenhout, D. Prosthetic heart valves: Catering for the few. Biomaterials 2008, 29, 385–406. [Google Scholar] [CrossRef]
- Jansen, K.A.; Licup, A.J.; Sharma, A.; Rens, R.; MacKintosh, F.C.; Koenderink, G.H. The role of network architecture in collagen mechanics. Biophys. J. 2018, 114, 2665–2678. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.; Zhou, X.; Riching, K.; Eliceiri, K.W.; Keely, P.J.; Guelcher, S.A.; Weaver, A.M.; Jiang, Y. A three-dimensional computational model of collagen network mechanics. PLoS ONE 2014, 9, e111896. [Google Scholar] [CrossRef]
- Wang, L.V.; Wu, H.-I. Biomedical Optics: Principles and Imaging; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Maitland, D.J.; Walsh, J.T., Jr. Quantitative measurements of linear birefringence during heating of native collagen. Lasers Surg. Med. 1997, 20, 310–318. [Google Scholar] [CrossRef]
- Jacques, S.L. Polarized light imaging of biological tissues. In Handbook of Biomedical Optics; CRC Press: Boca Raton, FL, USA, 2016; pp. 669–692. [Google Scholar]
- Alali, S.; Vitkin, A. Polarized light imaging in biomedicine: Emerging Mueller matrix methodologies for bulk tissue assessment. J. Biomed. Opt. 2015, 20, 061104. [Google Scholar] [CrossRef]
- Sacks, M.S.; Merryman, W.D.; Schmidt, D.E. On the biomechanics of heart valve function. J. Biomech. 2009, 42, 1804–1824. [Google Scholar] [CrossRef]
- Sacks, M.S.; Yoganathan, A.P. Heart valve function: A biomechanical perspective. Philos. Trans. R. Soc. B Biol. Sci. 2007, 362, 1369–1391. [Google Scholar] [CrossRef]
- Yang, B.; Lesicko, J.; Sharma, M.; Hill, M.; Sacks, M.S.; Tunnell, J.W. Polarized light spatial frequency domain imaging for non-destructive quantification of soft tissue fibrous structures. Biomed. Opt. Express 2015, 6, 1520–1533. [Google Scholar] [CrossRef]
- Bromage, T.G.; Goldman, H.M.; McFarlin, S.C.; Warshaw, J.; Boyde, A.; Riggs, C.M. Circularly polarized light standards for investigations of collagen fiber orientation in bone. Anat. Rec. Part B New Anat. Off. Publ. Am. Assoc. Anat. 2003, 274, 157–168. [Google Scholar] [CrossRef]
- Chen, X.; Nadiarynkh, O.; Plotnikov, S.; Campagnola, P.J. Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure. Nat. Protoc. 2012, 7, 654–669. [Google Scholar] [CrossRef]
- Pierce, M.C.; Sheridan, R.L.; Park, B.H.; Cense, B.; De Boer, J.F. Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography. Burns 2004, 30, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Mansfield, J.C.; Winlove, C.P.; Moger, J.; Matcher, S.J. Collagen fiber arrangement in normal and diseased cartilage studied by polarization sensitive nonlinear microscopy. J. Biomed. Opt. 2008, 13, 044020. [Google Scholar] [CrossRef] [PubMed]
- Ingram, G.; Lee, P.-Y.; Bernarding, B.; Sigal, I.A.; Yang, B. Real-time structured polarized light imaging of dynamics of thick collagenous tissues. In Proceedings of the Emerging Digital Micromirror Device Based Systems and Applications XIII, San Francisco, CA, USA, 6–11 March 2021; pp. 16–22. [Google Scholar]
- Yang, B.; Brazile, B.; Jan, N.-J.; Hua, Y.; Wei, J.; Sigal, I.A. Structured polarized light microscopy for collagen fiber structure and orientation quantification in thick ocular tissues. J. Biomed. Opt. 2018, 23, 106001. [Google Scholar] [CrossRef] [PubMed]
- Rebhan, D.; Rosenberger, M.; Notni, G. Principle investigations on polarization image sensors. In Proceedings of the Photonics and Education in Measurement Science 2019, Jena, Germany, 17–19 September 2019; pp. 50–54. [Google Scholar]
- Bai, B.; Wang, H.; Liu, T.; Rivenson, Y.; FitzGerald, J.; Ozcan, A. Pathological crystal imaging with single-shot computational polarized light microscopy. J. Biophotonics 2020, 13, e201960036. [Google Scholar] [CrossRef]
- Maeda, Y.; Shibata, S.; Hagen, N.; Otani, Y. Birefringence compensation for single-shot 3D profilometry using a full-Stokes imaging polarimeter. Opt. Rev. 2021, 28, 425–433. [Google Scholar] [CrossRef]
- Lane, C.; Rode, D.; Rösgen, T. Two-dimensional birefringence measurement technique using a polarization camera. Appl. Opt. 2021, 60, 8435–8444. [Google Scholar] [CrossRef]
- Shibata, S.; Onuma, T.; Otani, Y. Realtime birefringence mapping by polarization camera. In Proceedings of the 2012 International Symposium on Optomechatronic Technologies (ISOT 2012), Paris, France, 29–31 October 2012; pp. 1–2. [Google Scholar]
- Cuccia, D.J.; Bevilacqua, F.; Durkin, A.J.; Tromberg, B.J. Modulated imaging: Quantitative analysis and tomography of turbid media in the spatial-frequency domain. Opt. Lett. 2005, 30, 1354–1356. [Google Scholar] [CrossRef] [PubMed]
- Gioux, S.; Mazhar, A.; Cuccia, D.J. Spatial frequency domain imaging in 2019: Principles, applications, and perspectives. J. Biomed. Opt. 2019, 24, 071613. [Google Scholar] [CrossRef]
- Collett, E. Field Guide to Polarization; SPIE Press: Bellingham, WA, USA, 2005. [Google Scholar]
- Yang, B.; Nayyar, N.; Sanchez, B. High-Speed Full-Color Polarized Light Imaging of Collagen Using a Polarization Camera. Bioengineering 2025, 12, 720. [Google Scholar] [CrossRef]
- Axer, M.; Grässel, D.; Kleiner, M.; Dammers, J.; Dickscheid, T.; Reckfort, J.; Hütz, T.; Eiben, B.; Pietrzyk, U.; Zilles, K. High-resolution fiber tract reconstruction in the human brain by means of three-dimensional polarized light imaging. Front. Neuroinform. 2011, 5, 34. [Google Scholar] [CrossRef]
- Schlichenmeyer, T.C.; Wang, M.; Elfer, K.N.; Brown, J.Q. Video-rate structured illumination microscopy for high-throughput imaging of large tissue areas. Biomed. Opt. Express 2014, 5, 366–377. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Lu-Walther, H.-W.; Förster, R.; Jost, A.; Kielhorn, M.; Zhou, J.; Heintzmann, R. Fast structured illumination microscopy using rolling shutter cameras. Meas. Sci. Technol. 2016, 27, 055401. [Google Scholar] [CrossRef]
- Appelt, D.; Ehler, E.; Shukla Mukherjee, S.; Heintzmann, R.; Wicker, K. Polarized illumination coded structured illumination microscopy (picoSIM): Experimental results. Philos. Trans. R. Soc. A 2022, 380, 20210193. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, B. High-Speed Structured Polarized Light Imaging of Bovine Heart Valve Leaflet Dynamics. Photonics 2025, 12, 935. https://doi.org/10.3390/photonics12090935
Yang B. High-Speed Structured Polarized Light Imaging of Bovine Heart Valve Leaflet Dynamics. Photonics. 2025; 12(9):935. https://doi.org/10.3390/photonics12090935
Chicago/Turabian StyleYang, Bin. 2025. "High-Speed Structured Polarized Light Imaging of Bovine Heart Valve Leaflet Dynamics" Photonics 12, no. 9: 935. https://doi.org/10.3390/photonics12090935
APA StyleYang, B. (2025). High-Speed Structured Polarized Light Imaging of Bovine Heart Valve Leaflet Dynamics. Photonics, 12(9), 935. https://doi.org/10.3390/photonics12090935