Terahertz Polarization Imaging and Its Applications
Abstract
:1. Introduction
2. Precise and Fast Terahertz Polarization Measurement Methods
2.1. Rotating Polarizer Method
2.2. Utilization of Polarization-Sensitive Intensity Modulation of the Electro-Optic Signal
2.3. Utilization of a Polarization-Sensitive Detector
2.3.1. Polarization-Sensitive Antenna
2.3.2. Polarization-Sensitive Air-Biased Coherent Detection
2.4. Polarization Imaging
3. Applications of Terahertz Polarization Imaging
3.1. High-Resolution Topography
3.2. Visualization of Spatio-Temporal Variation of the E-Field Vector of the Focused Terahertz Beam
- The sample and the detector should be placed at the focus, because the polarization of the focused terahertz pulse is maintained at the focus only.
- The strength of the complicated rotating E-field can be significantly reduced if we increase the focal length () or decrease the radius () of the off-axis parabolic mirror as shown by Equation 1. For example, when we use a 90° off-axis parabolic mirror with a diameter of 2 inches and a 4-inch reflected focal length for focusing, then the magnitude of the rotating E-field at t = t2 and t4 is about 5% of the maximum E-field (observed at t = t1 and t3) at the focus. In such a way, the influence of the polarization change induced by focusing with a parabolic mirror can be controlled.
3.3. Visualization of Anisotropy and Strain in Black Rubbers
4. Summary
Funding
Conflicts of Interest
References
- Mittleman, D.M. Twenty years of terahertz imaging. Opt. Express 2018, 26, 9417–9431. [Google Scholar] [CrossRef] [PubMed]
- Auston, D.H.; Cheung, K.P.; Smith, P.R. Picosecond photoconducting Hertzian dipoles. Appl. Phys. Lett. 1984, 45, 284–286. [Google Scholar] [CrossRef]
- Auston, D.H.; Cheung, K.P.; Valdmanis, J.A.; Kleinman, D.A. Cherenkov radiation from femtosecond optical pulses in electro-optic media. Phys. Rev. Lett. 1984, 53, 1555–1558. [Google Scholar] [CrossRef]
- Smith, P.R.; Auston, D.H.; Nuss, M.C. Subpicosecond photoconducting dipole antennas. IEEE J. Quantum Electron. 1988, 24, 255–260. [Google Scholar] [CrossRef]
- Mittleman, D.M.; Hunsche, S.; Boivin, L.; Nuss, M.C. T-ray tomography. Opt. Lett. 1997, 22, 904–906. [Google Scholar] [CrossRef] [PubMed]
- Ueno, Y.; Ajito, K. Analytical terahertz spectroscopy. Anal. Sci. 2008, 24, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Mittleman, D.M.; Cunningham, J.; Nuss, M.C.; Geva, M. Noncontact semiconductor wafer characterization with the terahertz Hall effect. Appl. Phys. Lett. 1997, 71, 16–18. [Google Scholar] [CrossRef]
- Nagashima, T.; Hangyo, M. Measurement of complex optical constants of a highly doped Si wafer using terahertz ellipsometry. Appl. Phys. Lett. 2001, 79, 3917–3919. [Google Scholar] [CrossRef]
- Woodward, R.M.; Cole, B.E.; Wallace, V.P.; Pye, R.J.; Arnone, D.D.; Linfield, E.H.; Pepper, M. Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue. Phys. Med. Biol. 2002, 47, 3853–3863. [Google Scholar] [CrossRef]
- Crawley, D.; Longbottom, C.; Wallace, V.P.; Cole, B.; Arnone, D.; Pepper, M. Three-dimensional terahertz pulse imaging of dental tissue. J. Biomed. Opt. 2003, 8, 303–307. [Google Scholar] [CrossRef]
- Zeitler, J.A.; Shen, Y.C.; Baker, C.; Taday, P.F.; Pepper, M.; Rades, T. Analysis of coating structures and interfaces in solid oral dosage forms by three dimensional terahertz pulsed imaging. J. Pharm. Sci. 2007, 96, 330–340. [Google Scholar] [CrossRef] [PubMed]
- Rutz, F.; Koch, M.; Khare, S.; Moneke, M.; Richter, H.; Ewert, U. Terahertz quality control of polymeric products. Int. J. Infrared Millim. Waves 2006, 27, 547–556. [Google Scholar] [CrossRef]
- Fukunaga, K.; Sekine, N.; Hosako, I.; Oda, N.; Yoneyama, H.; Sudoh, T. Real-time terahertz imaging for art conservation science. J. Eur. Opt. Soc.-Rapid Public 2008, 3, 08027. [Google Scholar] [CrossRef]
- Shen, Y.C.; Lo, T.; Taday, P.F.; Cole, B.E.; Tribe, W.R.; Kemp, M.C. Detection and identification of explosives using terahertz pulsed spectroscopic imaging. Appl. Phys. Lett. 2005, 86, 241116. [Google Scholar] [CrossRef]
- Kawase, K.; Ogawa, Y.; Watanabe, Y.; Inoue, H. Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Opt. Express 2003, 11, 2549–2554. [Google Scholar] [CrossRef] [PubMed]
- Shimano, R.; Ino, Y.; Svirko, Y.S.; Kuwata-Gonokami, M. Terahertz frequency Hall measurement by magneto-optical Kerr spectroscopy in InAs. Appl. Phys. Lett. 2002, 81, 199–201. [Google Scholar] [CrossRef]
- Iwata, T.; Uemura, H.; Mizutani, Y.; Yasui, T. Double-modulation reflection-type terahertz ellipsometer for measuring the thickness of a thin paint coating. Opt. Express 2014, 22, 20595–20606. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, R.V.; Stier, A.V.; Liu, W.; Bilbro, L.S.; George, D.K.; Bansal, N.; Wu, L.; Cerne, J.; Markelz, A.G.; Oh, S.; et al. Terahertz response and colossal kerr rotation from the surface states of the topological insulator Bi2Se3. Phys. Rev. Lett. 2012, 108, 087403. [Google Scholar] [CrossRef] [PubMed]
- Shimano, R.; Yumoto, G.; Yoo, J.Y.; Matsunaga, R.; Tanabe, S.; Hibino, H.; Morimoto, T.; Aoki, H. Quantum Faraday and Kerr rotations in graphene. Nat. Commun. 2013, 4, 1841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, L.; Salehi, M.; Koirala, N.; Moon, J.; Oh, S.; Armitage, N.P. Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator. Science 2016, 354, 1124–1127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yumoto, G.; Matsunaga, R.; Hibino, H.; Shimano, R. Ultrafast Terahertz nonlinear optics of landau level transitions in a monolayer graphene. Phys. Rev. Lett. 2018, 120, 107401. [Google Scholar] [CrossRef] [PubMed]
- Arikawa, T.; Zhang, Q.; Ren, L.; Belyanin, A.; Kono, J. Review of anisotropic terahertz material response. J. Infrared Millim. Terahz Waves 2013, 34, 724–739. [Google Scholar] [CrossRef]
- Zhang, L.L.; Zhong, H.; Deng, C.; Zhang, C.L.; Zhao, Y.J. Polarization sensitive terahertz time-domain spectroscopy for birefringent materials. Appl. Phys. Lett. 2009, 94, 211106. [Google Scholar] [CrossRef]
- Katletz, S.; Pfleger, M.; Pühringer, H.; Mikulics, M.; Vieweg, N.; Peters, O.; Scherger, B.; Scheller, M.; Koch, M.; Wiesauer, K. Polarization sensitive terahertz imaging: Detection of birefringence and optical axis. Opt. Express 2012, 20, 23025–23035. [Google Scholar] [CrossRef] [PubMed]
- Van der Valk, N.C.J.; Van der Marel, W.A.M.; Planken, P.C.M. Terahertz polarization imaging. Opt. Lett. 2005, 30, 2802–2804. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Cui, Y.; Sun, W.F.; Zhang, Y. Polarization information for terahertz imaging. Appl. Opt. 2008, 47, 6422–6427. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.L.; Zhong, H.; Deng, C.; Zhang, C.L.; Zhao, Y.J. Terahertz polarization imaging with birefringent materials. Opt. Commun. 2010, 283, 4993–4995. [Google Scholar] [CrossRef]
- Wang, X.K.; Cui, Y.; Sun, W.F.; Ye, J.S.; Zhang, Y. Terahertz polarization real-time imaging based on balanced electro-optic detection. J. Opt. Soc. Am. A 2010, 27, 2387–2393. [Google Scholar] [CrossRef]
- Zhang, L.L.; Zhong, H.; Deng, C.; Zhang, C.L.; Zhao, Y.J. THz wave polarization-controlled spectroscopic imaging for anisotropic materials. Opt. Commun. 2011, 284, 4356–4359. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Q. Dual-axis reflective continuous-wave terahertz confocal scanning polarization imaging and image fusion. Opt. Eng. 2017, 56, 013103. [Google Scholar] [CrossRef]
- Földesy, P. Current steering detection scheme of three terminal antenna-coupled terahertz field effect transistor detectors. Opt. Lett. 2013, 38, 2804–2806. [Google Scholar] [CrossRef] [PubMed]
- Doradla, P.; Alavi, K.; Joseph, C.S.; Giles, R.H. In Detection of colon cancer by continuous-wave terahertz polarization imaging technique. J. Biomed. Opt. 2013, 18, 090504. [Google Scholar] [CrossRef]
- Jenkins, G.S.; Schmadel, D.C.; Drew, H.D. Simultaneous measurement of circular dichroism and Faraday rotation at terahertz frequencies utilizing electric field sensitive detection via polarization modulation. Rev. Sci. Instrum. 2010, 81, 083903–083910. [Google Scholar] [CrossRef] [PubMed]
- Morris, C.M.; Aguilar, R.V.; Stier, A.V.; Armitage, N.P. Polarization modulation time-domain terahertz polarimetry. Opt. Express 2012, 20, 12303–12317. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Park, H.; Parrott, E.P.J.; Chan, H.P.; Pickwell-MacPherson, E. Robust Thin-Film Wire-Grid THz Polarizer Fabricated Via a Low-Cost Approach. IEEE Photonics Technol. Lett. 2013, 25, 81–84. [Google Scholar] [CrossRef]
- George, D.K.; Stier, A.V.; Ellis, C.T.; McCombe, B.D.; Černe, J.; Markelz, A.G. Terahertz magneto-optical polarization modulation spectroscopy. J. Opt. Soc. Am. B 2012, 29, 1406–1412. [Google Scholar] [CrossRef]
- Aschaffenburg, D.J.; Williams, M.R.C.; Talbayev, D.; Santavicca, D.F.; Prober, D.E.; Schmuttenmaer, C.A. Efficient measurement of broadband terahertz optical activity. Appl. Phys. Lett. 2012, 100, 241114. [Google Scholar] [CrossRef] [Green Version]
- Okano, M.; Watanabe, S. Anisotropic optical response of optically opaque elastomers with conductive fillers as revealed by terahertz polarization spectroscopy. Sci. Rep. 2016, 6, 39079. [Google Scholar] [CrossRef] [Green Version]
- Dong, H.; Gong, Y.D.; Paulose, V.; Hong, M.H. Polarization state and Mueller matrix measurements in terahertz-time domain spectroscopy. Opt. Commun. 2009, 282, 3671–3675. [Google Scholar] [CrossRef]
- Singh, R.; George, D.K.; Bae, C.J.; Niessen, K.A.; Markelz, A.G. Modulated orientation-sensitive terahertz spectroscopy. Photonics Res. 2016, 4, A1–A8. [Google Scholar] [CrossRef]
- Jepsen, P.U.; Winnewisser, C.; Schall, M.; Schyja, V.; Keiding, S.R.; Helm, H. Detection of THz pulses by phase retardation in lithium tantalate. Phys. Rev. E 1996, 53, R3052. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, X.C. Ultrafast electro-optic field sensors. Appl. Phys. Lett. 1996, 68, 1604–1606. [Google Scholar] [CrossRef]
- Nahata, A.; Auston, D.H.; Heinz, T.F.; Wu, C.J. Coherent detection of freely propagating terahertz radiation by electro-optic sampling. Appl. Phys. Lett. 1996, 68, 150–152. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, X.C. Free-space electro-optic sampling of terahertz beams. Appl. Phys. Lett. 1995, 67, 3523–3525. [Google Scholar] [CrossRef]
- Leitenstorfer, A.; Hunsche, S.; Shah, J.; Nuss, M.C.; Knox, W.H. Detectors and sources for ultrabroadband electro-optic sampling: Experiment and theory. Appl. Phys. Lett. 1999, 74, 1516–1518. [Google Scholar] [CrossRef]
- Bakker, H.J.; Cho, G.C.; Kurz, H.; Wu, Q.; Zhang, X.C. Distortion of terahertz pulses in electro-optic sampling. J. Opt. Soc. Am. B 1998, 15, 1795–1801. [Google Scholar] [CrossRef]
- Gallot, G.; Grischkowsky, D. Electro-optic detection of terahertz radiation. J. Opt. Soc. Am. B 1999, 16, 1204–1212. [Google Scholar] [CrossRef]
- Planken, P.C.M.; Nienhuys, H.-K.; Bakker, H.J.; Wenckebach, T. Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe. J. Opt. Soc. Am. B. 2001, 18, 313–317. [Google Scholar] [CrossRef]
- Van der Valk, N.C.J.; Wenckebach, T.; Planken, P.C.M. Full mathematical description of electro-optic detection in optically isotropic crystals. J. Opt. Soc. Am. B. 2004, 21, 622–631. [Google Scholar] [CrossRef]
- Yasumatsu, N.; Watanabe, S. Precise real-time polarization measurement of terahertz electromagnetic waves by a spinning electro-optic sensor. Rev. Sci. Instrum. 2012, 83, 023104. [Google Scholar] [CrossRef]
- Nemoto, N.; Higuchi, T.; Kanda, N.; Konishi, K.; Kuwata-Gonokami, M. Highly precise and accurate terahertz polarization measurements based on electro-optic sampling with polarization modulation of probe pulses. Opt. Express 2014, 22, 17915–17929. [Google Scholar] [CrossRef] [PubMed]
- Yasumatsu, N.; Kasatani, A.; Oguchi, K.; Watanabe, S. High-speed terahertz time-domain polarimeter based on an electro-optic modulation technique. Appl. Phys. Express 2014, 7, 092401. [Google Scholar] [CrossRef] [Green Version]
- Oguchi, K.; Okano, M.; Watanabe, S. Retrieving the undistorted terahertz time-domain electric-field vector from the electro-optic effect. J. Opt. Soc. Am. B 2017, 34, 1946–1956. [Google Scholar] [CrossRef]
- Castro-Camus, E.; Lloyd-Hughes, J.; Johnston, M.B.; Fraser, M.D.; Tan, H.H.; Jagadish, C. Polarization-sensitive terahertz detection by multicontact photoconductive receivers. Appl. Phys. Lett. 2005, 86, 254102. [Google Scholar] [CrossRef] [Green Version]
- Castro-Camus, E.; Lloyd-Hughes, J.; Fu, L.; Tan, H.H.; Jagadish, C.; Johnston, M.B. An ion-implanted InP receiver for polarization resolved terahertz spectroscopy. Opt. Express 2007, 15, 7047–7057. [Google Scholar] [CrossRef] [PubMed]
- Makabe, H.; Hirota, Y.; Tani, M.; Hangyo, M. Polarization state measurement of terahertz electromagnetic radiation by three-contact photoconductive antenna. Opt. Express 2007, 15, 11650–11657. [Google Scholar] [CrossRef] [PubMed]
- Niehues, G.; Funkner, S.; Bulgarevich, D.S.; Tsuzuki, S.; Furuya, T.; Yamamoto, K.; Shiwa, M.; Tani, M. A matter of symmetry: Terahertz polarization detection properties of a multi-contact photoconductive antenna evaluated by a response matrix analysis. Opt. Express 2015, 23, 16184–16195. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Andrews, S.R. Ultrabroadband polarization analysis of terahertz pulses. Opt. Express 2008, 16, 7251–7257. [Google Scholar] [CrossRef] [PubMed]
- Karpowicz, N.; Dai, J.M.; Lu, X.F.; Chen, Y.Q.; Yamaguchi, M.; Zhao, H.W.; Zhang, X.C.; Zhang, L.L.; Zhang, C.L.; Price-Gallagher, M.; et al. Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”. Appl. Phys. Lett. 2008, 92, 011131. [Google Scholar] [CrossRef]
- Lü, Z.H.; Zhang, D.W.; Meng, C.; Sun, L.; Zhou, Z.Y.; Zhao, Z.X.; Yuan, J.M. Polarization-sensitive air-biased-coherent-detection for terahertz wave. Appl. Phys. Lett. 2012, 101, 081119. [Google Scholar] [CrossRef]
- Zhang, J. Polarization-dependent study of THz air-biased coherent detection. Opt. Lett. 2014, 39, 4096–4099. [Google Scholar] [CrossRef] [PubMed]
- Takai, M.; Takeda, M.; Sasaki, M.; Tachizaki, T.; Yasumatsu, N.; Watanabe, S. Video-rate terahertz electric-field vector imaging. Appl. Phys. Lett. 2014, 105, 151103. [Google Scholar] [CrossRef]
- Keiber, S.; Sederberg, S.; Schwarz, A.; Trubetskov, M.; Pervak, V.; Krausz, F.; Karpowicz, N. Electro-optic sampling of near-infrared waveforms. Nat. Photonics 2016, 10, 159–163. [Google Scholar] [CrossRef]
- Ashida, M. Ultra-Broadband Terahertz Wave Detection Using Photoconductive Antenna. Jpn. J. Appl. Phys. 2008, 47, 8221–8225. [Google Scholar] [CrossRef]
- Ashida, M.; Matsubara, E.; Katayama, I. Ultra-Broadband IR and THz Generation and Detection With Ultrashort Pulses. Available online: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/8964/896409/Ultra-broadband-IR-and-THz-generation-and-detection-with-ultrashort/10.1117/12.2042829.short?SSO=1 (accessed on 11 December 2018).
- Yasumatsu, N.; Watanabe, S. T-ray topography by time-domain polarimetry. Opt. Lett. 2012, 37, 2706–2708. [Google Scholar] [CrossRef] [PubMed]
- Takayanagi, J.; Jinno, H.; Ichino, S.; Suizu, K.; Yamashita, M.; Ouchi, T.; Kasai, S.; Ohtake, H.; Uchida, H.; Nishizawa, N.; et al. High-resolution time-of-flight terahertz tomography using a femtosecond fiber laser. Opt. Express 2009, 17, 7533–7539. [Google Scholar] [CrossRef]
- Yasumatsu, N.; Watanabe, S. IEEE Terahertz profilometer by time-domain polarimetry. In Proceedings of the 2012 Conference on Lasers and Electro-Optics, San Jose, CA, USA, 6–11 May 2012. [Google Scholar]
- Shibata, K.; Takai, M.; Uemoto, M.; Watanabe, S. Intrinsic formation of electromagnetic divergence and rotation by parabolic focusing. Phys. Rev. A 2015, 92, 053806. [Google Scholar] [CrossRef]
- Takai, M.; Shibata, K.; Uemoto, M.; Watanabe, S. Spatial polarization variation in terahertz electromagnetic wave focused by off-axis parabolic mirror. Appl. Phys. Express 2016, 9, 052206. [Google Scholar] [CrossRef] [Green Version]
- Hebling, J.; Almási, G.; Kozma, I.; Kuhl, J. Velocity matching by pulse front tilting for large area THz-pulse generation. Opt. Express 2002, 10, 1161–1166. [Google Scholar] [CrossRef]
- Watanabe, S.; Minami, N.; Shimano, R. Intense terahertz pulse induced exciton generation in carbon nanotubes. Opt. Express 2011, 19, 1528–1538. [Google Scholar] [CrossRef]
- Wiesauer, K.; Jördens, C. Recent Advances in birefringence studies at THz frequencies. J. Infrared Millim. Terahertz Waves 2013, 34, 663–681. [Google Scholar] [CrossRef]
- Rutz, F.; Hasek, T.; Koch, M.; Richter, H.; Ewert, U. Terahertz birefringence of liquid crystal polymers. Appl. Phys. Lett. 2006, 89, 221911. [Google Scholar] [CrossRef]
- Reid, M.; Fedosejevs, R. Terahertz birefringence and attenuation properties of wood and paper. Appl. Opt. 2006, 45, 2766–2772. [Google Scholar] [CrossRef] [PubMed]
- Tanabe, T.; Watanabe, K.; Oyama, Y.; Seo, K. Polarization sensitive THz absorption spectroscopy for the evaluation of uniaxially deformed ultra-high molecular weight polyethylene. NDT E Int. 2010, 43, 329–333. [Google Scholar] [CrossRef]
- Fuse, N.; Sato, R.; Mizuno, M.; Fukunaga, K.; Itoh, K.; Ohki, Y. Observation and analysis of molecular vibration modes in polylactide at terahertz frequencies. Jpn. J. Appl. Phys. 2010, 49, 102402. [Google Scholar] [CrossRef]
- Hoshina, H.; Morisawa, Y.; Sato, H.; Minamide, H.; Noda, I.; Ozaki, Y.; Otani, C. Polarization and temperature dependent spectra of poly(3-hydroxyalkanoate)s measured at terahertz frequencies. Phys. Chem. Chem. Phys. 2011, 13, 9173–9179. [Google Scholar] [CrossRef]
- Iwasaki, H.; Nakamura, M.; Komatsubara, N.; Okano, M.; Nakasako, M.; Sato, H.; Watanabe, S. Controlled terahertz birefringence in stretched poly(lactic acid) films investigated by terahertz time-domain spectroscopy and wide-angle X-ray scattering. J. Phys. Chem. B 2017, 121, 6951–6957. [Google Scholar] [CrossRef]
- Komatsu, M.; Mizuno, M.; Saito, S.; Fukunaga, K.; Ohki, Y. Terahertz spectral change associated with glass transition of poly-epsilon-caprolactone. J. Appl. Phys. 2015, 117, 133102. [Google Scholar] [CrossRef]
- Pfleger, M.; Roitner, H.; Pühringer, H.; Wiesauer, K.; Grün, H.; Katletz, S. Advanced birefringence measurements in standard terahertz time-domain spectroscopy. Appl. Opt. 2014, 53, 3183–3190. [Google Scholar] [CrossRef]
- Pfleger, M.; Pühringer, H.; Katletz, S. IEEE Terahertz-elasticity measurements on elastomers. In Proceedings of the 2014 39th International Conference on Infrared, Millimeter, and Terahertz Waves, Tucson, AZ, USA, 14–19 September 2014. [Google Scholar]
- Moriwaki, A.; Okano, M.; Watanabe, S. Internal triaxial strain imaging of visibly opaque black rubbers with terahertz polarization spectroscopy. APL Photonics 2017, 2, 106101. [Google Scholar] [CrossRef] [Green Version]
- Okano, M.; Fujii, M.; Watanabe, S. Anisotropic percolation conduction in elastomer-carbon black composites investigated by polarization-sensitive terahertz time-domain spectroscopy. Appl. Phys. Lett. 2017, 111, 221902. [Google Scholar] [CrossRef]
- Okano, M.; Watanabe, S. Internal status of visibly opaque black rubbers investigated by terahertz polarization spectroscopy: Fundamentals and applications. Unpublished work. 2018. [Google Scholar]
- Dorney, T.D.; Baraniuk, R.G.; Mittleman, D.M. Material parameter estimation with terahertz time-domain spectroscopy. J. Opt. Soc. Am. A 2001, 18, 1562–1571. [Google Scholar] [CrossRef]
- Li, Z.; Qi, B.K.; Zhang, X.H.; Zeinolabedinzadeh, S.; Sang, L.; Cressler, J.D. A 0.32-THz SiGe Imaging Array With Polarization Diversity. IEEE Trans. Terahertz Sci. Technol. 2018, 8, 215–223. [Google Scholar] [CrossRef]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watanabe, S. Terahertz Polarization Imaging and Its Applications. Photonics 2018, 5, 58. https://doi.org/10.3390/photonics5040058
Watanabe S. Terahertz Polarization Imaging and Its Applications. Photonics. 2018; 5(4):58. https://doi.org/10.3390/photonics5040058
Chicago/Turabian StyleWatanabe, Shinichi. 2018. "Terahertz Polarization Imaging and Its Applications" Photonics 5, no. 4: 58. https://doi.org/10.3390/photonics5040058
APA StyleWatanabe, S. (2018). Terahertz Polarization Imaging and Its Applications. Photonics, 5(4), 58. https://doi.org/10.3390/photonics5040058