λ-Scale Embedded Active Region Photonic Crystal (LEAP) Lasers for Optical Interconnects †
Abstract
:1. Introduction
2. λ-Scale Embedded Active Region PhC (LEAP) Laser on an InP Substrate
3. LEAP Laser on a SiO2/Si Substrate
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Miller, D.A.B. Device Requirements for Optical Interconnects to Silicon Chips. Proc. IEEE 2009, 97, 1166–1185. [Google Scholar] [CrossRef] [Green Version]
- Krishnamoorthy, A.; Goossen, K.; Jan, W.; Zheng, X.; Ho, R.; Li, G.; Rozier, R.; Liu, F.; Patil, D.; Lexau, J.; et al. Progress in Low-Power Switched Optical Interconnects. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 357–376. [Google Scholar] [CrossRef]
- Moser, P.; Lott, J.A.; Wolf, P.; Larisch, G.; Li, H.; Ledentsov, N.N.; Bimberg, D. 56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s. Electron. Lett. 2012, 48, 1292–1294. [Google Scholar] [CrossRef]
- Li, H.; Wolf, P.; Moser, P.; Larisch, G.; Mutig, A.; Lott, J.A. Bimberg Energy-efficient and temperature-stable oxide-confined 980 nm VCSELs operating error-free at 38 Gbit/s at 85 °C. Electron. Lett. 2014, 50, 103–105. [Google Scholar] [CrossRef]
- Matsuo, S.; Sato, T.; Takeda, K.; Shinya, A.; Nozaki, K.; Kuramochi, E.; Taniyama, H.; Notomi, M.; Fujii, T.; Hasebe, K.; et al. Photonic crystal lasers using wavelength-scale embedded active region. J. Phys. D 2014, 47, 023001. [Google Scholar] [CrossRef]
- Matsuo, S.; Kakitsuka, T. Low-operating-energy directly modulated lasers for short-distance optical interconnects. Adv. Opt. Photon. 2018, 10, 567–643. [Google Scholar] [CrossRef]
- Tanabe, T.; Notomi, M.; Kuramochi, E.; Shinya, A.; Taniyama, H. Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity. Nat. Photon. 2007, 1, 49–52. [Google Scholar] [CrossRef]
- Takahashi, Y.; Hagino, H.; Tanaka, Y.; Song, B.-S.; Asano, T.; Noda, S. High-Q nanocavity with a 2-ns photon lifetime. Opt. Express 2007, 15, 17206–17213. [Google Scholar] [CrossRef]
- Painter, O.; Lee, R.K.; Scherer, A.; Yariv, A.; O’Brien, J.D.; Dapkus, P.D.; Kim, I. Two-Dimensional Photonic Band-Gap Defect Mode Laser. Science 1999, 284, 1819–1821. [Google Scholar] [CrossRef] [Green Version]
- Matsuo, S.; Shinya, A.; Kakitsuka, T.; Nozaki, K.; Segawa, T.; Sato, T.; Kawaguchi, Y.; Notomi, M. High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted. Nat. Photon. 2010, 4, 648–654. [Google Scholar] [CrossRef]
- Matsuo, S.; Shinya, A.; Kakitsuka, T.; Nozaki, K.; Segawa, T.; Sato, T.; Kawaguchi, Y.; Notomi, M. Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser. Opt. Express 2012, 20, 3773–3780. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, S.; Sato, T.; Takeda, K.; Shinya, A.; Nozaki, K.; Taniyama, H.; Notomi, M.; Hasebe, K.; Kakitsuka, T. Ultra-low operating energy electrically driven photonic crystal lasers. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 4900311. [Google Scholar] [CrossRef]
- Matsuo, S.; Shinya, A.; Chen, C.-H.; Nozaki, K.; Sato, T.; Kawaguchi, Y.; Taniyama, H.; Notomi, M. 20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption. Opt. Express 2011, 19, 2242–2250. [Google Scholar] [CrossRef] [PubMed]
- Takeda, K.; Sato, T.; Shinya, A.; Nozaki, K.; Kobayashi, W.; Taniyama, H.; Notomi, M.; Hasebe, K.; Kakitsuka, T.; Matsuo, M. Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers. Nat. Photon. 2013, 7, 569–575. [Google Scholar] [CrossRef]
- Sato, T.; Takeda, K.; Shinya, A.; Notomi, M.; Hasebe, K.; Kakitsuka, T.; Matsuo, M. Photonic Crystal Lasers for Chip-to-Chip and On-Chip Optical Interconnects. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 4900410. [Google Scholar] [CrossRef]
- Takeda, K.; Sato, T.; Fujii, T.; Kuramochi, E.; Notomi, M.; Hasebe, K.; Kakitsuka, T.; Matsuo, M. Heterogeneously integrated photonic-crystal lasers on silicon for on/off chip optical interconnects. Opt. Express 2015, 23, 702–708. [Google Scholar] [CrossRef] [PubMed]
- Takeda, K.; Fujii, T.; Shinya, A.; Kuramochi, E.; Notomi, M.; Hasebe, K.; Kakitsuka, T.; Matsuo, M. Photonic-crystal lasers on silicon for chip-scale optical interconnects. Proc. SPIE Photon. West 2016, 9767, 976710. [Google Scholar]
- Matsuo, M.; Fujii, T.; Hasebe, K.; Takeda, K.; Sato, T.; Kakitsuka, T. Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer. Opt. Express 2014, 22, 12139–12147. [Google Scholar] [CrossRef]
- Fujii, T.; Sato, T.; Takeda, K.; Hasebe, K.; Kakitsuka, T.; Matsuo, M. Epitaxial growth of InP to bury directly bonded thin active layer on SiO2/Si substrate for fabricating distributed feedback lasers on silicon. IET Optoelectron. 2015, 9, 151–157. [Google Scholar] [CrossRef]
- Fontcubertai Morral, A.; Zahler, J.M.; Atwater, H.A. InGaAs/InP double heterostructures on InP/Si templates fabricated by wafer bonding and hydrogen-induced exfoliation. Appl. Phys. Lett. 2003, 83, 5413–5415. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Liang, D.; Bowers, J.E. MOCVD regrowth of InP on hybrid silicon substrate. ECS Solid State Lett. 2013, 2, Q82–Q86. [Google Scholar] [CrossRef]
- Matsumoto, K.; Makino, T.; Kimura, K.; Shimomura, K. Growth of GaInAs/InP MQW using MOVPE on directly-bonded InP/Si substrate. J. Cryst. Growth 2013, 370, 133–135. [Google Scholar] [CrossRef]
- Takeda, K.; Fujii, T.; Kuramochi, E.; Shinya, A.; Notomi, K.; Kakitsuka, T.; Matsuo, M. Reduction of Cavity Length in λ-scale Embedded Active-region Photonic Crystal (LEAP) Lasers. In Proceedings of the 2018 IEEE International Semiconductor Laser Conference (ISLC), Santa Fe, NM, USA, 16–19 September 2018; pp. 103–104. [Google Scholar]
- Takata, K.; Notomi, M. Photonic Topological Insulating Phase Induced Solely by Gain and Loss. Phys. Rev. Lett. 2018, 121, 213902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsuo, S.; Takeda, K. λ-Scale Embedded Active Region Photonic Crystal (LEAP) Lasers for Optical Interconnects. Photonics 2019, 6, 82. https://doi.org/10.3390/photonics6030082
Matsuo S, Takeda K. λ-Scale Embedded Active Region Photonic Crystal (LEAP) Lasers for Optical Interconnects. Photonics. 2019; 6(3):82. https://doi.org/10.3390/photonics6030082
Chicago/Turabian StyleMatsuo, Shinji, and Koji Takeda. 2019. "λ-Scale Embedded Active Region Photonic Crystal (LEAP) Lasers for Optical Interconnects" Photonics 6, no. 3: 82. https://doi.org/10.3390/photonics6030082
APA StyleMatsuo, S., & Takeda, K. (2019). λ-Scale Embedded Active Region Photonic Crystal (LEAP) Lasers for Optical Interconnects. Photonics, 6(3), 82. https://doi.org/10.3390/photonics6030082