Objective User Visual Experience Evaluation When Working with Virtual Pixel-Based 3D System and Real Voxel-Based 3D System
Abstract
:1. Introduction
1.1. Near Work-Induced Refraction Shifts
1.2. Accommodative Microfluctuations
1.3. Pupil Size
2. Materials and Methods
2.1. Participants
2.2. Instrumentation and Stimuli
2.2.1. Volumetric 3D Imaging
2.2.2. Anaglyph 3D Imaging
2.3. Experimental Procedure
2.4. Data Analysis
Statistical Analysis
3. Results
3.1. Near Work-Induced Refraction Shifts
3.2. Accommodative Microfluctuations
3.3. Pupil Size
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Osmanis, K.; Valters, G.; Zabels, R.; Gertners, U.; Osmanis, I.; Kalnins, L.; Kandere, U.; Ozols, A. Advanced multiplanar volumetric 3D display. Proc. SPIE 2018, 10555, 1055510. [Google Scholar] [CrossRef]
- Bando, T.; Iijima, A.; Yano, S. Visual fatigue caused by stereoscopic images and the search for the requirement to prevent them: A review. Displays 2012, 33, 76–83. [Google Scholar] [CrossRef]
- Hoffman, D.M.; Girshick, A.R.; Akeley, K.; Banks, M.S. Vergence–accommodation conflicts hinder visual performance and cause visual fatigue. J. Vis. 2008, 8, 33. [Google Scholar] [CrossRef] [PubMed]
- Ukai, K.; Howarth, P.A. Visual fatigue caused by viewing stereoscopic motion images: Background, theories, and observations. Displays 2008, 29, 106–116. [Google Scholar] [CrossRef]
- Cutting, J.E.; Vishton, P.M. Perceiving layout and knowing distances: The integration, relative potency, and contextual use of different information about depth. In Perception of Space and Motion; Elsevier: Amsterdam, The Netherlands, 1995; pp. 69–117. [Google Scholar] [CrossRef]
- Arunthavaraja, M.; Vasudevan, B.; Ciuffreda, K.J. Nearwork-induced transient myopia (NITM) following marked and sustained, but interrupted, accommodation at near. Ophthalmic Physiol. Opt. 2010, 30, 766–775. [Google Scholar] [CrossRef] [PubMed]
- Ciuffreda, K.J.; Vasudevan, B. Nearwork-induced transient myopia (NITM) and permanent myopia-is there a link? Ophthalmic Physiol. Opt. 2008, 28, 103–114. [Google Scholar] [CrossRef]
- Iribarren, R.; Fornaciarr, A.; Hung, G.K. Effect of cumulative nearwork on accommodative facility and asthenopia. Int. Ophthalmol. 2001, 24, 205–212. [Google Scholar] [CrossRef]
- Ong, E.; Ciuffreda, K.J. Nearwork-induced transient myopia: A critical review. Doc. Ophthalmol. J. Clin. Electrophysiol. Vis.-Off. J. Int. Soc. Clin. Electrophysiol. Vis. 1995, 91, 57–85. [Google Scholar] [CrossRef]
- Ciuffreda, K.J.; Wallis, D.M. Myopes show increased susceptibility to nearwork aftereffects. Investig. Ophthalmol. Vis. Sci. 1998, 39, 1797–1803. [Google Scholar]
- Moulakaki, A.I.; Recchioni, A.; Águila-Carrasco, A.J.D.; Esteve-Taboada, J.J.; Montés-Micó, R. Assessing the accommodation response after near visual tasks using different handheld electronic devices. Arq. Bras. Oftalmol. 2017, 80, 9–13. [Google Scholar] [CrossRef]
- Owens, D.A.; Wolf-Kelly, K. Near work, visual fatigue, and variations of oculomotor tonus. Investig. Ophthalmol. Vis. Sci. 1987, 28, 743–749. [Google Scholar]
- Ip, J.M.; Saw, S.M.; Rose, K.A.; Morgan, I.G.; Kifley, A.; Wang, J.J.; Mitchell, P. Role of Near Work in Myopia: Findings in a Sample of Australian School Children. Investig. Opthalmology Vis. Sci. 2008, 49, 2903. [Google Scholar] [CrossRef] [PubMed]
- Muhamedagic, L.; Muhamedagic, B.; Halilovic, E.A.; Halimic, J.A.; Stankovic, A.; Muracevic, B. Relation between near work and myopia progression in student population. Mater. Sociomed. 2014, 26, 100–103. [Google Scholar] [CrossRef] [PubMed]
- Díaz Llopis, M.; Cisneros Lanuza, A. Myopia, the challenge of Ophthalmology and its worldwide “explosive epidemic”. Arch. La Soc. Española Oftalmol. (Engl. Ed.) 2018, 93, 365–367. [Google Scholar] [CrossRef]
- Rudnicka, A.R.; Kapetanakis, V.V.; Wathern, A.K.; Logan, N.S.; Gilmartin, B.; Whincup, P.H.; Cook, D.G.; Owen, C.G. Global variations and time trends in the prevalence of childhood myopia, a systematic review and quantitative meta-analysis: Implications for aetiology and early prevention. Br. J. Ophthalmol. 2016, 100, 882–890. [Google Scholar] [CrossRef] [PubMed]
- Charman, W.N.; Heron, G. Microfluctuations in accommodation: An update on their characteristics and possible role. Ophthalmic Physiol. Opt. 2015, 35, 476–499. [Google Scholar] [CrossRef] [PubMed]
- Lambooij, M.T.M.; IJsselsteijn, W.A.; Heynderickx, I. Visual discomfort in stereoscopic displays: A review. In Proceeding SPIE 6490: Stereoscopic Displays and Virtual Reality Systems XIV; Society of Photo Optical: Bellingham, WC, USA, 2007; Volume 64900I. [Google Scholar] [CrossRef]
- Alpern, M. Variability of accommodation during steady fixation at various levels of illuminance. J. Opt. Soc. Am. 1958, 48, 193. [Google Scholar] [CrossRef]
- Leahy, C.; Leroux, C.; Dainty, C.; Diaz-Santana, L. Temporal dynamics and statistical characteristics of the microfluctuations of accommodation: Dependence on the mean accommodative effort. Opt. Express 2010, 18, 2668–2681. [Google Scholar] [CrossRef]
- Day, M.; Strang, N.C.; Seidel, D.; Gray, L.S.; Mallen, E.A.H. Refractive group differences in accommodation microfluctuations with changing accommodation stimulus. Ophthalmic Physiol. Opt. 2006, 26, 88–96. [Google Scholar] [CrossRef]
- Gray, L.S.; Winn, B.; Gilmartin, B. Effect of target luminance on microfluctuations of accommodation. Ophthalmic Physiol. Opt. 1993, 13, 258–265. [Google Scholar] [CrossRef]
- Daum, K.M. Accommodative dysfunction. Doc. Ophthalmol. 1983, 55, 177–198. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, A.L.; Wolffsohn, J.S. Digital eye strain: Prevalence, measurement and amelioration. BMJ Open Ophthalmol. 2018, 3, 146. [Google Scholar] [CrossRef] [PubMed]
- Bullimore, M.A.; Gilmartin, B. Tonic accommodation, cognitive demand, and ciliary muscle innervation. Am. J. Optom. Physiol. Opt. 1987, 64, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, G.M.; Mutti, D.O. Evaluation of infant accommodation using retinoscopy and photoretinoscopy. Optom. Vis. Sci. 2009, 86, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Roberts, T.L.; Manny, R.E.; Benoit, J.S.; Anderson, H.A. Impact of cognitive demand during sustained near tasks in children and adults. Optom. Vis. Sci. 2018, 95, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Harb, E.; Thorn, F.; Troilo, D. Characteristics of accommodative behavior during sustained reading in emmetropes and myopes. Vision Res. 2006, 46, 2581–2592. [Google Scholar] [CrossRef] [Green Version]
- Seidel, D.; Gray, L.S.; Heron, G. Retinotopic accommodation responses in myopia. Invest. Ophthalmol. Vis. Sci. 2003, 44, 1035–1041. [Google Scholar] [CrossRef]
- Gray, L.S.; Winn, B.; Gilmartin, B. Accommodative microfluctuations and pupil diameter. Vision Res. 1993, 33, 2083–2090. [Google Scholar] [CrossRef]
- Day, M.; Gray, L.S.; Seidel, D.; Strang, N.C. The relationship between object spatial profile and accommodation microfluctuations in emmetropes and myopes. J. Vis. 2009, 9, 1–13. [Google Scholar] [CrossRef]
- Aggarwala, K.R.; Kruger, E.S.; Mathews, S.; Kruger, P.B. Spectral bandwidth and ocular accommodation. J. Opt. Soc. Am. A 1995, 12, 450. [Google Scholar] [CrossRef]
- Anderson, H.A.; Glasser, A.; Manny, R.E.; Stuebing, K.K. Age-related changes in accommodative dynamics from preschool to adulthood. Investig. Ophthalmol. Vis. Sci. 2010, 51, 614–622. [Google Scholar] [CrossRef]
- Mordi, J.A.; Ciuffreda, K.J. Dynamic aspects of accommodation: Age and presbyopia. Vision Res. 2004, 44, 591–601. [Google Scholar] [CrossRef]
- Panke, K.; Svede, A.; Jaschinski, W.; Krumina, G. Usage of CISS and Conlon surveys in eye accommodation studies. Proc. SPIE 2017, 10453, 104533A. [Google Scholar] [CrossRef]
- Mira-Agudelo, A.; Lundströ, L.; Artal, P. Temporal dynamics of ocular aberrations: Monocular vs. binocular vision. Ophthalmic Physiol. Opt. 2009, 29, 256–263. [Google Scholar] [CrossRef]
- Maeda, F.; Tabuchi, A.; Kani, K. Influence of three-dimensional image viewing on visual function. Jpn. J. Ophthalmol. 2011, 5, 175–182. [Google Scholar] [CrossRef]
- Iwasaki, T.; Tawara, A. Effects of viewing distance on accommodative and pupillary responses following a three-dimensional task. Ophthalmic Physiol. Opt. 2002, 22, 113–118. [Google Scholar] [CrossRef]
- McDougal, D.H.; Gamlin, P.D. Autonomic control of the eye. Compr. Physiol. 2015, 5, 439–473. [Google Scholar] [CrossRef]
- Tekin, K.; Sekeroglu, M.A.; Kiziltoprak, H.; Doguizi, S.; Inanc, M.; Yilmazbas, P. Static and dynamic pupillometry data of healthy individuals. Clin. Exp. Optom. 2018, 101, 659–665. [Google Scholar] [CrossRef]
- Lowenstein, O.; Feinberg, R.; Loewenfeld, I. Pupillary movements during acute and chronic fatigue. Invest. Ophthalmol. Vis. Sci. 1963, 2, 138–157. [Google Scholar]
- Gislén, A.; Gustafsson, J.; Kröger, R.H.H. The accommodative pupil responses of children and young adults at low and intermediate levels of ambient illumination. V. Res. 2008, 48, 989–993. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.C.; Lee, J.W.; Park, K.R. Experimental investigations of pupil accommodation factors. Investig. Ophthalmol. Vis. Sci. 2011, 52, 6478–6485. [Google Scholar] [CrossRef]
- Sreenivasan, V.; Irving, E.L.; Bobier, W.R. Effect of near adds on the variability of accommodative response in myopic children. Ophthalmic Physiol. Opt. 2011, 31, 145–154. [Google Scholar] [CrossRef]
- Jainta, S.; Hoormann, J.; Jaschinski, W. Ocular accommodation and cognitive demand: An additional indicator besides pupil size and cardiovascular measures? J. Negat. Results Biomed. 2008, 7, 1–14. [Google Scholar] [CrossRef]
- Hunt, O.A.; Wolffsohn, J.S.; Gilmartin, B. Evaluation of the measurement of refractive error by the PowerRefractor: A remote, continuous and binocular measurement system of oculomotor function. Br. J. Ophthalmol. 2003, 87, 1504–1508. [Google Scholar] [CrossRef]
- Jainta, S.; Jaschinski, W.; Hoormann, J. Measurement of refractive error and accommodation with the photorefractor PowerRef II. Ophthalmic Physiol. Opt. 2004, 24, 520–527. [Google Scholar] [CrossRef]
- Sravani, N.G.; Nilagiri, V.K.; Bharadwaj, S.R. Photorefraction estimates of refractive power varies with the ethnic origin of human eyes. Sci. Rep. 2015, 5, 1–8. [Google Scholar] [CrossRef]
- Horwood, A.M.; Riddell, P.M. The use of cues to convergence and accommodation in naïve, uninstructed participants. Vision Res. 2008, 48, 1613–1624. [Google Scholar] [CrossRef]
- Oyamada, H.; Iijima, A.; Tanaka, A.; Ukai, K.; Toda, H.; Sugita, N.; Yoshizawa, M.; Bando, T. A pilot study on pupillary and cardiovascular changes induced by stereoscopic video movies. J. Neuroeng. Rehabil. 2007, 4, 1–7. [Google Scholar] [CrossRef]
- Van der Wel, P.; Van Steenbergen, H. Pupil dilation as an index of effort in cognitive control tasks: A review. Psychon. Bull. Rev. 2018, 25, 2005–2015. [Google Scholar] [CrossRef]
- Charman, W.N. Night myopia and driving. Ophthalmic Physiol. Opt. 1996, 16, 474–485. [Google Scholar] [CrossRef]
- MacKenzie, K.J.; Hoffman, D.M.; Watt, S.J. Accommodation to multiple-focal-plane displays: Implications for improving stereoscopic displays and for accommodation control. J. Vis. 2010, 10, 22. [Google Scholar] [CrossRef] [PubMed]
- Monticone, P.P.; Menozzi, M. A review on methods used to record and analyze microfluctuations of the accommodation in the human eye. J. Eur. Opt. Soc. 2011, 6, 1–7. [Google Scholar] [CrossRef]
Volumetric 3D (n = 19) | Anaglyph 3D (n = 19) | p-Value * | |
---|---|---|---|
Age, years (mean ± SD) | 24 ± 4 | 23 ± 3 | 0.15 |
Stereoacuity, arc.sec (mean ± SD) | 42″ ± 9″ | 44″ ± 14″ | 0.30 |
Baseline refraction, D (mean ± SD) | +0.30 ± 0.48 | +0.22 ± 0.40 | 0.50 |
Baseline pupil size, mm (mean ± SE) | 5.90 ± 0.10 | 6.14 ± 0.12 | 0.13 |
Condition | Myopic Shift, % | Hypermetropic Shift, % | |
---|---|---|---|
Volumetric 3D | Task shift | 34 | 42 |
Post-task shift | 32 | 47 | |
Anaglyph 3D | Task shift | 32 | 47 |
Post-task shift | 39 | 34 |
Accommodative Microfluctuations RMS (mean ± SD), D | ||||||
---|---|---|---|---|---|---|
Before | After Session 1 | After Session 2 | After Session 3 | After 5 min | ||
Far (5 m) | Volumetric 3D | 0.098 ± 0.06 | 0.076 ± 0.03 | 0.084 ± 0.05 | 0.078 ± 0.04 | 0.077 ± 0.04 |
Anaglyph 3D | 0.083 ± 0.07 | 0.091 ± 0.06 | 0.100 ± 0.06 | 0.096 ± 0.06 | 0.089 ± 0.07 | |
Near (20 cm) | Volumetric 3D | 0.148 ± 0.06 | 0.161 ± 0.07 | 0.162 ± 0.08 | 0.183 ± 0.100 | - |
Anaglyph 3D | 0.139 ± 0.07 | 0.160 ± 0.09 | 0.175 ± 0.10 | 0.160 ± 0.067 | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panke, K.; Pladere, T.; Velina, M.; Svede, A.; Krumina, G. Objective User Visual Experience Evaluation When Working with Virtual Pixel-Based 3D System and Real Voxel-Based 3D System. Photonics 2019, 6, 106. https://doi.org/10.3390/photonics6040106
Panke K, Pladere T, Velina M, Svede A, Krumina G. Objective User Visual Experience Evaluation When Working with Virtual Pixel-Based 3D System and Real Voxel-Based 3D System. Photonics. 2019; 6(4):106. https://doi.org/10.3390/photonics6040106
Chicago/Turabian StylePanke, Karola, Tatjana Pladere, Mara Velina, Aiga Svede, and Gunta Krumina. 2019. "Objective User Visual Experience Evaluation When Working with Virtual Pixel-Based 3D System and Real Voxel-Based 3D System" Photonics 6, no. 4: 106. https://doi.org/10.3390/photonics6040106