Demonstration of Planar Type-II Superlattice-Based Photodetectors Using Silicon Ion-Implantation
Abstract
:Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Data Availability Statements
References
- Petersen, C.R.; Møller, U.; Kubat, I.; Zhou, B.; Dupont, S.; Ramsay, J.; Benson, T.; Sujecki, S.; Abdel-Moneim, N.; Tang, Z.; et al. Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nat. Photonics 2014, 8, 830. [Google Scholar] [CrossRef]
- Seddon, A.B. A prospective for new mid-infrared medical endoscopy using chalcogenide glasses. Int. J. Appl. Glass Sci. 2011, 2, 177–191. [Google Scholar] [CrossRef]
- Wartewig, S.; Neubert, R.H.H. Pharmaceutical applications of Mid-IR and Raman spectroscopy. Adv. Drug Deliv. Rev. 2005, 57, 1144–1170. [Google Scholar] [CrossRef] [PubMed]
- Hackwell, J.A.; Warren, D.W.; Bongiovi, R.P.; Hansel, S.J.; Hayhurst, T.L.; Mabry, D.J.; Sivjee, M.G.; Skinner, J.W. LWIR/MWIR imaging hyperspectral sensor for airborne and ground-based remote sensing. In Proceedings of the International Symposium on Optical Science, Engineering, and Instrumentation, Denver, CO, USA, 4–9 August 1996; pp. 102–107. [Google Scholar]
- Razeghi, M.; Dehzangi, A.; Wu, D.; McClintock, R.; Zhang, Y.; Durlin, Q.; Li, J.; Meng, F. Antimonite-based gap-engineered type-II superlattice materials grown by MBE and MOCVD for the third generation of infrared imagers. In Proceedings of the Infrared Technology and Applications XLV, Baltimore, MD, USA, 14–18 April 2019; p. 110020G. [Google Scholar]
- Rogalski, A.; Martyniuk, P.; Kopytko, M. Type-II superlattice photodetectors versus HgCdTe photodiodes. Prog. Quantum Electron. 2019, 68, 100228. [Google Scholar] [CrossRef]
- Razeghi, M.; Haddadi, A.; Dehzangi, A.; Chevallier, R.; Yang, T. Recent advances in InAs/InAs1−xSbx/AlAs1−xSbx gap-engineered type-II superlattice-based photodetectors. In Proceedings of the SPIE Defense + Commercial Sensing, Anaheim, CA, USA, 9–13 April 2017; p. 1017705. [Google Scholar]
- Piotrowski, J.; Piotrowski, A. Mercury Cadmium Telluride: Growth, Properties and Applications; Wiley: Hoboken, NJ, USA, 2010; Room temperature IR photodetectors; pp. 513–537. [Google Scholar]
- Dehzangi, A.; Haddadi, A.; Adhikary, S.; Razeghi, M. Impact of scaling base thickness on the performance of heterojunction phototransistors. Nanotechnology 2017, 28, 10LT01. [Google Scholar] [CrossRef]
- Dehzangi, A.; McClintock, R.; Wu, D.; Li, J.; Johnson, S.M.; Dial, E.; Razeghi, M. High speed antimony-based superlattice photodetectors transferred on sapphire. Appl. Phys. Express 2019, 12, 116502. [Google Scholar] [CrossRef]
- Hoang, A.M.; Dehzangi, A.; Adhikary, S.; Razeghi, M. High performance bias-selectable three-color Short-wave/Mid-wave/Long-wave Infrared Photodetectors based on Type-II InAs/GaSb/AlSb superlattices. Sci. Rep. Artic. 2016, 6, 24144. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, B.-M.; Hoffman, D.; Delaunay, P.-Y.; Huang, E.K.-W.; Razeghi, M.; Pellegrino, J. Band edge tunability of M-structure for heterojunction design in Sb based type II superlattice photodiodes. Appl. Phys. Lett. 2008, 93, 163502. [Google Scholar] [CrossRef]
- Binh-Minh, N.; Guanxi, C.; Minh-Anh, H.; Razeghi, M. Growth and Characterization of Long-Wavelength Infrared Type-II Superlattice Photodiodes on a 3-in GaSb Wafer. IEEE J. Quantum Electron. 2011, 47, 686–690. [Google Scholar] [CrossRef]
- Zegrya, G.G.; Andreev, A.D. Mechanism of suppression of Auger recombination processes in type-II heterostructures. Appl. Phys. Lett. 1995, 67, 2681–2683. [Google Scholar] [CrossRef]
- Dehzangi, A.; Haddadi, A.; Chevallier, R.; Zhang, Y.; Razeghi, M. Fabrication of 12 µm pixel-pitch 1280 × 1024 extended short wavelength infrared focal plane array using heterojunction type-II superlattice-based photodetectors. Semicond. Sci. Technol. 2019, 34, 03LT01. [Google Scholar] [CrossRef]
- Dehzangi, A.; Haddadi, A.; Chevallier, R.; Zhang, Y.; Razeghi, M. Bn extended short-wavelength infrared focal plane array. Opt. Lett. 2018, 43, 591–594. [Google Scholar] [CrossRef] [PubMed]
- Delaunay, P.-Y.; Hood, A.; Nguyen, B.M.; Hoffman, D.; Wei, Y.; Razeghi, M. Passivation of type-II InAs∕GaSb double heterostructure. Appl. Phys. Lett. 2007, 91, 091112. [Google Scholar] [CrossRef]
- Salihoglu, O.; Muti, A.; Aydinli, A. A comparative passivation study for InAs/GaSb pin superlattice photodetectors. IEEE J. Quantum Electron. 2013, 49, 661–666. [Google Scholar] [CrossRef] [Green Version]
- Rutkowski, J. Planar junction formation in HgCdTe infrared detectors. Opto-Electron. Rev. 2004, 12, 123–128. [Google Scholar]
- Musca, C.A.; Antoszewski, J.; Dell, J.M.; Faraone, L.; Terterian, S. Planar p-on-n HgCdTe heterojunction mid-wavelength infrared photodiodes formed using plasma-induced junction isolation. J. Electron. Mater. 2003, 32, 622–626. [Google Scholar] [CrossRef]
- Chang, S.-H.; Fang, Y.-K.; Ting, S.-F.; Chen, S.-F.; Lin, C.-Y.; Wu, C.-Y. Ultra high performance planar InGaAs PIN photodiodes for high speed optical fiber communication. Sens. Actuators A Phys. 2007, 133, 9–12. [Google Scholar] [CrossRef]
- Arias, J.M.; Arias, J.M.; Pasko, J.G.; Zandian, M.; Shin, S.H.; Williams, G.M.; Bubulac, L.O.; DeWames, R.E.; Tennant, W.E. Planar p-on-n HgCdTe heterostructure photovoltaic detectors. Appl. Phys. Lett. Appl. Phys. Lett. 1993, 62, 976. [Google Scholar] [CrossRef]
- Arias, J.; Pasko, J.G.; Zandian, M.; Shin, S.H.; Williams, G.M.; Bubulac, L.O.; de Wames, R.E.; Tennant, W.E. MBE HgCdTe heterostructure p-on-n planar infrared photodiodes. J. Electron. Mater. 1993, 22, 1049. [Google Scholar] [CrossRef]
- Zandian, M.; Scott, D.; Garnett, J.; Edwall, D.D.; Pasko, J.; Farris, M.; Daraselia, M.; Arias, J.M.; Bajaj, J.; Hall, D.N.B.; et al. Ten-inch molecular beam epitaxy production system for HgCdTe growth. J. Electron. Mater. 2005, 34, 891. [Google Scholar] [CrossRef]
- Wu, D.; Dehzangi, A.; Li, J.; Razeghi, M. High performance Zn-diffused planar mid-wavelength infrared type-II InAs/InAs1−xSbx superlattice photodetector by MOCVD. Appl. Phys. Lett. 2020, 116, 161108. [Google Scholar] [CrossRef] [Green Version]
- Pearton, S. Ion implantation for isolation of III-V semiconductors. J. Mater. Sci. Rep. 1990, 4, 313–363. [Google Scholar] [CrossRef]
- Eisen, F.H. Ion implantation in III–V compounds. Radiat. Eff. 1980, 47, 99–115. [Google Scholar] [CrossRef]
- Donnelly, J.P. The electrical characteristics of ion implanted compound semiconductors. Nucl. Instrum. Methods 1981, 182–183, 553–571. [Google Scholar] [CrossRef]
- Dehzangi, A.; Wu, D.; McClintock, R.; Li, J.; Razeghi, M. Planar nBn type-II superlattice mid-wavelength infrared photodetectors using zinc ion-implantation. Appl. Phys. Lett. 2020, 116, 221103. [Google Scholar] [CrossRef]
- Asano, T.; Atanassov, R.D.; Ishiwara, H.; Furukawa, S. Formation of Thick, Thermally-Stable High-Resistivity-Layers in GaAs by Oxygen Ion Implantation. Jpn. J. Appl. Phys. 1981, 20, 90107. [Google Scholar] [CrossRef]
- Ting, A.S.; Rafol, S.B.; Fisher, A.M.; Keo, S.A.; Khoshakhlagh, A.; Gunapala, S.D. Mid-wavelength infrared InAsSb/InAs nBn detectors and FPAs with very low dark current density. Appl. Phys. Lett. 2019, 114, 161103. [Google Scholar]
- Haddadi, A.; Dehzangi, A.; Chevallier, R.; Adhikary, S.; Razeghi, M. Bias-selectable nBn dual-band long-/very long-wavelength infrared photodetectors based on InAs/InAs1−xSbx/AlAs1−xSbx type-II superlattices. Sci. Rep. 2017, 7, 3379. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Dehzangi, A.; Razeghi, M. Demonstration of mid-wavelength infrared nBn photodetectors based on type-II InAs/InAs1−xSbx superlattice grown by metal-organic chemical vapor deposition. Appl. Phys. Lett. 2019, 115, 061102. [Google Scholar] [CrossRef]
- Chevallier, R.; Dehzangi, A.; Haddadii, A.; Razeghi, M. Type-II superlattice-based extended short-wavelength infrared focal plane array with an AlAsSb/GaSb superlattice etch-stop layer to allow near-visible light detection. Opt. Lett. 2017, 42, 4299. [Google Scholar] [CrossRef]
- Dehzangi, A.; McClintock, R.; Haddadi, A.; Wu, D.; Chevallier, R.; Razeghi, M. Type-II superlattices base visible/extended short–wavelength infrared photodetectors with a bandstructure-engineered photo-generated carrier extractor. Sci. Rep. 2019, 9, 5003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Device. | QE 150K | QE 77K |
---|---|---|
mesa | 39.2% | 24.4% |
Planar | 32.6% | 21.5% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dehzangi, A.; Wu, D.; McClintock, R.; Li, J.; Jaud, A.; Razeghi, M. Demonstration of Planar Type-II Superlattice-Based Photodetectors Using Silicon Ion-Implantation. Photonics 2020, 7, 68. https://doi.org/10.3390/photonics7030068
Dehzangi A, Wu D, McClintock R, Li J, Jaud A, Razeghi M. Demonstration of Planar Type-II Superlattice-Based Photodetectors Using Silicon Ion-Implantation. Photonics. 2020; 7(3):68. https://doi.org/10.3390/photonics7030068
Chicago/Turabian StyleDehzangi, Arash, Donghai Wu, Ryan McClintock, Jiakai Li, Alexander Jaud, and Manijeh Razeghi. 2020. "Demonstration of Planar Type-II Superlattice-Based Photodetectors Using Silicon Ion-Implantation" Photonics 7, no. 3: 68. https://doi.org/10.3390/photonics7030068
APA StyleDehzangi, A., Wu, D., McClintock, R., Li, J., Jaud, A., & Razeghi, M. (2020). Demonstration of Planar Type-II Superlattice-Based Photodetectors Using Silicon Ion-Implantation. Photonics, 7(3), 68. https://doi.org/10.3390/photonics7030068