Retinal Optical Quality of Multifocal Refractive and Monofocal Intraocular Lenses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. The Osiris Pyramidal Aberrometry System
2.3. IOLs Studied
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cedrone, C.; Culasso, F.; Cesareo, M.; Mancino, R.; Ricci, F.; Cupo, G.; Cerulli, L. Prevalence and incidence of age-related cataract in a population sample from Priverno, Italy. Ophthalmic Epidemiol. 1999, 6, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Nam, G.E.; Han, K.; Ha, S.G.; Han, B.-D.; Kim, D.H.; Kim, Y.-H.; Cho, K.H.; Park, Y.G.; Ko, B.-J. Relationship between socioeconomic and lifestyle factors and cataracts in Koreans: The Korea National Health and Nutrition Examination Survey 2008–2011. Eye 2015, 29, 913–920. [Google Scholar] [CrossRef] [Green Version]
- Alio, J.L.; Arias, A.; D’Oria, F.; Toto, F.; Del Barrio, J.A.; Duarte-Toledo, R.; Artal, P. Light scattering in intraocular lenses explanted 15 to 40 years after surgery. Biomed. Opt. Express 2021, 12, 3485–3494. [Google Scholar] [CrossRef]
- Mello, G.R.; Rocha, K.M.; Santhiago, M.R.; Smadja, D.; Krueger, R.R. Applications of wavefront technology. J. Cataract. Refract. Surg. 2012, 38, 1671–1683. [Google Scholar] [CrossRef]
- Alio, J.; Pikkel, J. Multifocal Intraocular Lenses: Neuroadaptation. In Multifocal Intraocular Lenses—The Art and the Practice, 1st ed.; Alio, J., Pikkel, J., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2014; pp. 47–52. [Google Scholar]
- Alio, J.L.; D’Oria, F.; Toto, F.; Balgos, J.; Palazon, A.; Versaci, F.; del Barrio, J.L.A. Retinal image quality with multifocal, EDoF, and accommodative intraocular lenses as studied by pyramidal aberrometry. Eye Vis. 2021, 8, 37. [Google Scholar] [CrossRef] [PubMed]
- Plaza-Puche, A.B.; Salerno, L.C.; Versaci, F.; Romero, D.; Alio, J.L. Clinical evaluation of the repeatability of ocular aberrometry obtained with a new pyramid wavefront sensor. Eur. J. Ophthalmol. 2018, 29, 585–592. [Google Scholar] [CrossRef]
- Chamot, S.R.; Dainty, C.; Esposito, S. Adaptive optics for ophthalmic applications using a pyramid wavefront sensor. Opt. Express 2006, 14, 518–526. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.K.; Jaskulski, M.; Ramasubramanian, V.; Meyer, D.; Reed, O.; Rickert, M.E.; Bradley, A.; Kollbaum, P.S. Validation of a Clinical Aberrometer Using Pyramidal Wavefront Sensing. Optom. Vis. Sci. 2019, 96, 733–744. [Google Scholar] [CrossRef] [PubMed]
- Plaza-Puche, A.B.; Alió, J.L.; MacRae, S.; Zheleznyak, L.; Sala, E.; Yoon, G. Correlating Optical Bench Performance With Clinical Defocus Curves in Varifocal and Trifocal Intraocular Lenses. J. Refract. Surg. 2015, 31, 300–307. [Google Scholar] [CrossRef]
- Chang, D.H.; Rocha, K.M. Intraocular lens optics and aberrations. Curr. Opin. Ophthalmol. 2016, 27, 298–303. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Haung, X.; Lan, C.; Tan, Q.; Wen, B.; Lin, J.; Tian, J. Comprehensive Evaluation of Retinal Image Quality in Comparing Different Aspheric to Spherical Intraocular Lens Implants. Curr. Eye Res. 2019, 44, 1098–1103. [Google Scholar] [CrossRef] [PubMed]
- Ramón, M.L.; Piñero, D.P.; Pérez-Cambrodí, R.J. Correlation of Visual Performance With Quality of Life and Intraocular Aberrometric Profile in Patients Implanted With Rotationally Asymmetric Multifocal IOLs. J. Refract. Surg. 2012, 28, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Alió, J.L.; Piñero, D.P.; Plaza-Puche, A.B.; Chan, M.J.R. Visual outcomes and optical performance of a monofocal intraocular lens and a new-generation multifocal intraocular lens. J. Cataract. Refract. Surg. 2011, 37, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Alfonso, J.F.; Puchades, C.; Fernández-Vega, L.; Montés-Micó, R.; Valcárcel, B.; Ferrer-Blasco, T. Visual acuity comparison of 2 models of bifocal aspheric intraocular lenses. J. Cataract. Refract. Surg. 2009, 35, 672–676. [Google Scholar] [CrossRef] [PubMed]
- Royo, M.; Jiménez, Á.; Piñero, D.P. Clinical outcomes of cataract surgery with implantation of a continuous transitional focus intraocular lens. J. Cataract. Refract. Surg. 2020, 46, 567–572. [Google Scholar] [CrossRef]
- Mesa, R.R.; Monteiro, T. Continuous Transitional Focus (CTF): A New Concept in Ophthalmic Surgery. Ophthalmol. Ther. 2018, 7, 223–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Group | Mean ± SD or n(%) |
---|---|
Age, years | |
AcrySof SA60AT | 70.4 ± 7.1 |
LENTIS Mplus LS-313 MF30 | 61.9 ± 7.8 |
LENTIS Mplus LS-313 MF15 | 60.9 ± 9.2 |
Precizon Presbyopic | 61.4 ± 11.9 |
Gender, female | |
AcrySof SA60AT | 9(75.0) |
LENTIS Mplus LS-313 MF30 | 9(42.9) |
LENTIS Mplus LS-313 MF15 | 14(53.8) |
Precizon Presbyopic | 6(60.0) |
IOL power, diopter | |
AcrySof SA60AT | 20.4 ± 4.3 |
LENTIS Mplus LS-313 MF30 | 22.1 ± 3.8 |
LENTIS Mplus LS-313 MF15 | 22.5 ± 3.8 |
Precizon Presbyopic | 21.4 ± 2.7 |
Variable | AcrySof SA60AT p-Value x ± s | LENTIS Mplus 30 p-Value x ± s | LENTIS Mplus 15 p-Value x ± s | Precizon Presbyopic p-Value x ± s | p-Value (Groups) |
---|---|---|---|---|---|
Total RMS (µm): | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
3 mm | 0.43 ± 0.19 | 0.49 ± 0.18 | 0.46 ± 0.15 | 0.53 ± 0.17 | <0.001 |
4 mm | 0.66 ± 0.17 | 0.83 ± 0.21 | 0.83 ± 0.28 | 0.78 ± 0.22 | <0.001 |
LOA RMS (µm): | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
3 mm | 0.39 ± 0.20 | 0.38 ± 0.16 | 0.39 ± 0.16 | 0.47 ± 0.16 | <0.001 |
4 mm | 0.62 ± 0.20 | 0.64 ± 0.25 | 0.71 ± 0.32 | 0.64 ± 0.21 | <0.001 |
HOA RMS (µm): | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
3 mm | 0.16 ± 0.05 | 0.30 ± 0.13 | 0.21 ± 0.07 | 0.25 ± 0.08 | <0.001 |
4 mm | 0.26 ± 0.08 | 0.50 ± 0.12 | 0.40 ± 0.13 | 0.44 ± 0.13 | <0.001 |
PSF Strehl Ratio (µm): | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
3 mm | 0.25 ± 0.08 | 0.23 ± 0.07 | 0.23 ± 0.07 | 0.22 ± 0.07 | <0.001 |
4 mm | 0.18 ± 0.05 | 0.16 ± 0.05 | 0.15 ± 0.04 | 0.15 ± 0.04 | <0.001 |
PSFw2 Strehl Ratio (µm): | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
3 mm | 0.41 ± 0.11 | 0.27 ± 0.08 | 0.35 ± 0.10 | 0.27 ± 0.07 | <0.001 |
4 mm | 0.28 ± 0.07 | 0.18 ± 0.06 | 0.21 ± 0.06 | 0.17 ± 0.04 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Oria, F.; Nowrouzi, A.; Alio del Barrio, J.L.; Versaci, F.; Alio, J.L. Retinal Optical Quality of Multifocal Refractive and Monofocal Intraocular Lenses. Photonics 2021, 8, 559. https://doi.org/10.3390/photonics8120559
D’Oria F, Nowrouzi A, Alio del Barrio JL, Versaci F, Alio JL. Retinal Optical Quality of Multifocal Refractive and Monofocal Intraocular Lenses. Photonics. 2021; 8(12):559. https://doi.org/10.3390/photonics8120559
Chicago/Turabian StyleD’Oria, Francesco, Ali Nowrouzi, Jorge L. Alio del Barrio, Francesco Versaci, and Jorge L. Alio. 2021. "Retinal Optical Quality of Multifocal Refractive and Monofocal Intraocular Lenses" Photonics 8, no. 12: 559. https://doi.org/10.3390/photonics8120559
APA StyleD’Oria, F., Nowrouzi, A., Alio del Barrio, J. L., Versaci, F., & Alio, J. L. (2021). Retinal Optical Quality of Multifocal Refractive and Monofocal Intraocular Lenses. Photonics, 8(12), 559. https://doi.org/10.3390/photonics8120559