Multi-Lane Mirror for Broadband Applications of the Betatron X-ray Source
Abstract
:1. Introduction
2. Simulation
2.1. Particle-in-Cell and X-ray Emission Simulations
2.2. Multi-Lane Mirror System
2.3. Geometrical Simulation
Design of the Mirror Mounting System
3. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gaffney, K.; Chapman, H.N. Imaging atomic structure and dynamics with ultrafast X-ray scattering. Science 2007, 316, 1444–1448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bargheer, M.; Zhavoronkov, N.; Woerner, M.; Elsaesser, T. Recent progress in ultrafast X-ray diffraction. Chemphyschem Eur. J. Chem. Phys. Phys. Chem. 2006, 7, 783–792. [Google Scholar] [CrossRef]
- Bressler, C.; Chergui, M. Molecular structural dynamics probed by ultrafast X-ray absorption spectroscopy. Annu. Rev. Phys. Chem. 2010, 61, 263–282. [Google Scholar] [CrossRef] [PubMed]
- Rousse, A.; Phuoc, K.T.; Shah, R.; Pukhov, A.; Lefebvre, E.; Malka, V.; Kiselev, S.; Burgy, F.; Rousseau, J.P.; Umstadter, D.; et al. Production of a keV X-ray beam from synchrotron radiation in relativistic laser-plasma interaction. Phys. Rev. Lett. 2004, 93, 135005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kneip, S.; McGuffey, C.; Martins, J.L.; Martins, S.; Bellei, C.; Chvykov, V.; Dollar, F.; Fonseca, R.; Huntington, C.; Kalintchenko, G.; et al. Bright spatially coherent synchrotron X-rays from a table-top source. Nat. Phys. 2010, 6, 980–983. [Google Scholar] [CrossRef] [Green Version]
- Fourmaux, S.; Corde, S.; Phuoc, K.T.; Leguay, P.; Payeur, S.; Lassonde, P.; Gnedyuk, S.; Lebrun, G.; Fourment, C.; Malka, V.; et al. Demonstration of the synchrotron-type spectrum of laser-produced Betatron radiation. New J. Phys. 2011, 13, 033017. [Google Scholar] [CrossRef]
- Tajima, T.; Dawson, J.M. Laser electron accelerator. Phys. Rev. Lett. 1979, 43, 267. [Google Scholar] [CrossRef] [Green Version]
- Svensson, J.B.; Guénot, D.; Ferri, J.; Ekerfelt, H.; González, I.G.; Persson, A.; Svendsen, K.; Veisz, L.; Lundh, O. Low-divergence femtosecond X-ray pulses from a passive plasma lens. Nat. Phys. 2021, 17, 639–645. [Google Scholar] [CrossRef]
- Fourmaux, S.; Hallin, E.; Chaulagain, U.; Weber, S.; Kieffer, J. Laser-based synchrotron X-ray radiation experimental scaling. Opt. Express 2020, 28, 3147–3158. [Google Scholar] [CrossRef]
- Kozlova, M.; Andriyash, I.; Gautier, J.; Sebban, S.; Smartsev, S.; Jourdain, N.; Chulagain, U.; Azamoum, Y.; Tafzi, A.; Goddet, J.P.; et al. Hard x rays from laser-wakefield accelerators in density tailored plasmas. Phys. Rev. X 2020, 10, 011061. [Google Scholar] [CrossRef] [Green Version]
- Lamač, M.; Chaulagain, U.; Jurkovič, M.; Nejdl, J.; Bulanov, S. Two-color nonlinear resonances in betatron oscillations of laser accelerated relativistic electrons. Phys. Rev. Res. 2021, 3, 033088. [Google Scholar] [CrossRef]
- Rus, B.; Bakule, P.; Kramer, D.; Naylon, J.; Thoma, J.; Green, J.; Antipenkov, R.; Fibrich, M.; Novák, J.; Batysta, F.; et al. ELI-Beamlines: Development of next generation short-pulse laser systems. In Research Using Extreme Light: Entering New Frontiers with Petawatt-Class Lasers II; International Society for Optics and Photonics: Bellingham, WA, USA, 2015; Volume 9515, p. 95150F. [Google Scholar]
- Chaulagain, U. ELI Gammatron Beamline: Dawn of ultrafast hard X-ray science. to be published.
- Gruse, J.N.; Streeter, M.; Thornton, C.; Armstrong, C.; Baird, C.; Bourgeois, N.; Cipiccia, S.; Finlay, O.; Gregory, C.; Katzir, Y.; et al. Application of compact laser-driven accelerator X-ray sources for industrial imaging. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2020, 983, 164369. [Google Scholar] [CrossRef]
- Chaulagain, U.; Bohacek, K.; Kozlova, M.; Nejdl, J.; Krus, M.; Horny, V.; Mahieu, B.; Ta-Phuoc, K. X-ray phase contrast imaging of biological samples using a betatron X-ray source generated in a laser wakefield accelerator. In Laser Acceleration of Electrons, Protons, and Ions IV; International Society for Optics and Photonics: Bellingham, WA, USA, 2017; Volume 10240, p. 1024014. [Google Scholar]
- Kettle, B.; Gerstmayr, E.; Streeter, M.; Albert, F.; Baggott, R.; Bourgeois, N.; Cole, J.; Dann, S.; Falk, K.; González, I.G.; et al. Single-shot multi-keV x-ray absorption spectroscopy using an ultrashort laser-wakefield accelerator source. Phys. Rev. Lett. 2019, 123, 254801. [Google Scholar] [CrossRef] [Green Version]
- Arber, T.; Bennett, K.; Brady, C.; Lawrence-Douglas, A.; Ramsay, M.; Sircombe, N.; Gillies, P.; Evans, R.; Schmitz, H.; Bell, A.; et al. Contemporary particle-in-cell approach to laser-plasma modelling. Plasma Phys. Control. Fusion 2015, 57, 113001. [Google Scholar] [CrossRef]
- Jackson, J.D. Classical Electrodynamics, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1999. [Google Scholar]
- Windt, D.L. IMD—Software for modeling the optical properties of multilayer films. Comput. Phys. 1998, 12, 360–370. [Google Scholar] [CrossRef] [Green Version]
- Riveros, R.E.; Biskach, M.P.; Allgood, K.D.; Kearney, J.D.; Hlinka, M.; Numata, A.; Zhang, W.W. Fabrication of monocrystalline silicon X-ray mirrors. In Optics for EUV, X-ray, and Gamma-ray Astronomy IX; O’Dell, S.L., Pareschi, G., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2019; Volume 11119, pp. 47–54. [Google Scholar] [CrossRef]
- Rio, M.S.D.; Rebuffi, L. OASYS: A software for beamline simulations and synchrotron virtual experiments. AIP Conf. Proc. 2019, 2054, 060081. [Google Scholar]
- Freund, A.K.; de Bergevin, F.; Marot, G.; Riekel, C.; Susini, J.; Zhang, L.; Ziegler, E. X-ray mirrors for the European Synchrotron Radiation Facility. Opt. Eng. 1990, 29, 928–941. [Google Scholar]
- Bennett, H.E.; Khounsary, A.M. Comparison of technology for high-power laser mirrors and synchrotron radiation mirrors. In High Heat Flux Engineering II; Khounsary, A.M., Ed.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 1993; Volume 1997, pp. 257–275. [Google Scholar] [CrossRef]
- Ta Phuoc, K.; Fitour, R.; Tafzi, A.; Garl, T.; Artemiev, N.; Shah, R.; Albert, F.; Boschetto, D.; Rousse, A.; Kim, D.; et al. Demonstration of the ultrafast nature of laser produced betatron radiation. Phys. Plasmas 2007, 14, 080701. [Google Scholar] [CrossRef]
- Mo, M.; Fourmaux, S.; Ali, A.; Lassonde, P.; Kieffer, J.C.; Fedosejevs, R. Characterization of laser wakefield generated betatron X-ray radiation using grazing incidence mirror reflection. Eur. Phys. J. D 2014, 68, 301. [Google Scholar] [CrossRef]
- Mo, M.; Chen, Z.; Fourmaux, S.; Saraf, A.; Otani, K.; Kieffer, J.; Tsui, Y.; Ng, A.; Fedosejevs, R. Laser wakefield generated x-ray probe for femtosecond time-resolved measurements of ionization states of warm dense aluminum. Rev. Sci. Instrum. 2013, 84, 123106. [Google Scholar] [CrossRef]
- Zeraouli, G.; Gatti, G.; Longman, A.; Pérez-Hernández, J.; Arana, D.; Batani, D.; Jakubowska, K.; Volpe, L.; Roso, L.; Fedosejevs, R. Development of an adjustable Kirkpatrick-Baez microscope for laser driven X-ray sources. Rev. Sci. Instrum. 2019, 90, 063704. [Google Scholar] [CrossRef] [PubMed]
Lane | Transmission | Layer Thickness | Number of | Energy Band (in keV) |
---|---|---|---|---|
Efficiency (srad) | Ir/Cr (nm) | Periods | with Reflectivity > 0.6 | |
1 | 9.6 × 10 | 40/10 | 1 | 1–15 |
2 | 6.1 × 10 | 5/5 | 5 | 15–18 |
3 | 6.8 × 10 | 3.7/3.7 | 10 | 18–23 |
Parameters | First Mirror | Second Mirror |
---|---|---|
Semi-major axes (cm) | 291 | 291 |
Semi-minor axes (cm) | 0.815 | 0.958 |
Source mirror distance (cm) | 50 | 72 |
Mirror to focus distance (cm) | 532 | 510 |
Grazing incidence (mrad) | 5 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raclavský, M.; Khakurel, K.P.; Chaulagain, U.; Lamač, M.; Nejdl, J. Multi-Lane Mirror for Broadband Applications of the Betatron X-ray Source. Photonics 2021, 8, 579. https://doi.org/10.3390/photonics8120579
Raclavský M, Khakurel KP, Chaulagain U, Lamač M, Nejdl J. Multi-Lane Mirror for Broadband Applications of the Betatron X-ray Source. Photonics. 2021; 8(12):579. https://doi.org/10.3390/photonics8120579
Chicago/Turabian StyleRaclavský, Marek, Krishna P. Khakurel, Uddhab Chaulagain, Marcel Lamač, and Jaroslav Nejdl. 2021. "Multi-Lane Mirror for Broadband Applications of the Betatron X-ray Source" Photonics 8, no. 12: 579. https://doi.org/10.3390/photonics8120579
APA StyleRaclavský, M., Khakurel, K. P., Chaulagain, U., Lamač, M., & Nejdl, J. (2021). Multi-Lane Mirror for Broadband Applications of the Betatron X-ray Source. Photonics, 8(12), 579. https://doi.org/10.3390/photonics8120579