LIDAR and Beam Steering Tailored by Neuromorphic Metasurfaces Dipped in a Tunable Surrounding Medium
Abstract
:1. Introduction
2. Discussion
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wandinger, U. Introduction to lidar. In Lidar; Springer Series in Optical Sciences; Springer: New York, NY, USA, 2005; Volume 102, pp. 1–18. [Google Scholar]
- Weitkamp, C. Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere; Springer Science & Business: New York, NY, USA, 2006; Volume 102, pp. 1–100. [Google Scholar]
- Weiss, U.; Biber, P. Plant detection and mapping for agricultural robots using a 3D LIDAR sensor. Robot. Auton. Syst. 2011, 59, 265–273. [Google Scholar] [CrossRef]
- Choi, J.; Ulbrich, S.; Lichte, B.; Maurer, M. Multi-target tracking using a 3d-lidar sensor for autonomous vehicles. In Proceedings of the 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), The Hague, The Netherlands, 6–9 October 2013; pp. 881–886. [Google Scholar]
- Infusino, M.; Ferraro, A.; De Luca, A.; Caputo, R.; Umeton, C. POLYCRYPS visible curing for spatial light modulator based holography. JOSA B 2012, 29, 3170–3176. [Google Scholar] [CrossRef]
- Battal, E.; Okyay, A.K. Metal-dielectric-metal plasmonic resonators for active beam steering in the infrared. Opt. Lett. 2013, 38, 983–985. [Google Scholar] [CrossRef] [Green Version]
- Forouzmand, A.; Mosallaei, H. Tunable two dimensional optical beam steering with reconfigurable indium tin oxide plasmonic reflectarray metasurface. J. Opt. 2016, 18, 125003. [Google Scholar] [CrossRef]
- Wang, G.; Habib, U.; Yan, Z.; Gomes, N.J.; Sui, Q.; Wang, J.B.; Zhang, L.; Wang, C. Highly efficient optical beam steering using an in-fiber diffraction grating for full duplex indoor optical wireless communication. J. Light. Technol. 2018, 36, 4618–4625. [Google Scholar] [CrossRef] [Green Version]
- Royo, S.; Ballesta-Garcia, M. An overview of lidar imaging systems for autonomous vehicles. Appl. Sci. 2019, 9, 4093. [Google Scholar] [CrossRef] [Green Version]
- McManamon, P.F. Lidar Technologies and Systems; SPIE PRESS BOOK: Bellingham, WA, USA, 2019; Volume PM300, pp. 1–28. [Google Scholar]
- He, Q.; Sun, S.; Zhou, L. Tunable/reconfigurable metasurfaces: Physics and applications. Research 2019, 2019, 849272. [Google Scholar] [CrossRef] [Green Version]
- Cui, T.; Bai, B.; Sun, H.B. Tunable metasurfaces based on active materials. Adv. Funct. Mater. 2019, 29, 1806692. [Google Scholar] [CrossRef]
- Barna, V.; Caputo, R.; De Luca, A.; Scaramuzza, N.; Strangi, G.; Versace, C.; Umeton, C.; Bartolino, R.; Price, G.N. Distributed feedback micro-laser array: Helixed liquid crystals embedded in holographically sculptured polymeric microcavities. Opt. Express 2006, 14, 2695–2705. [Google Scholar] [CrossRef]
- Zografopoulos, D.C.; Ferraro, A.; Beccherelli, R. Liquid-Crystal High-Frequency Microwave Technology: Materials and Characterization. Adv. Mater. Technol. 2019, 4, 1800447. [Google Scholar] [CrossRef]
- Rocco, D.; Carletti, L.; Caputo, R.; Finazzi, M.; Celebrano, M.; De Angelis, C. Switching the second harmonic generation by a dielectric metasurface via tunable liquid crystal. Opt. Express 2020, 28, 12037–12046. [Google Scholar] [CrossRef]
- Kudyshev, Z.A.; Kildishev, A.V.; Shalaev, V.M.; Boltasseva, A. Machine-learning-assisted metasurface design for high-efficiency thermal emitter optimization. Appl. Phys. Rev. 2020, 7, 021407. [Google Scholar] [CrossRef]
- Ma, W.; Liu, Z.; Kudyshev, Z.A.; Boltasseva, A.; Cai, W.; Liu, Y. Deep learning for the design of photonic structures. Nat. Photonics 2020, 15, 77–90. [Google Scholar] [CrossRef]
- Bayati, E.; Pestourie, R.; Colburn, S.; Lin, Z.; Johnson, S.G.; Majumdar, A. Inverse designed metalenses with extended depth of focus. ACS Photonics 2020, 7, 873–878. [Google Scholar] [CrossRef]
- Li, Y.; Xu, Y.; Jiang, M.; Li, B.; Han, T.; Chi, C.; Lin, F.; Shen, B.; Zhu, X.; Lai, L.; et al. Self-Learning Perfect Optical Chirality via a Deep Neural Network. Phys. Rev. Lett. 2019, 123, 213902. [Google Scholar] [CrossRef]
- Ashalley, E.; Acheampong, K.; Besteiro, L.V.; Yu, P.; Neogi, A.; Govorov, A.O.; Wang, Z.M. Multitask deep-learning-based design of chiral plasmonic metamaterials. Photonics Res. 2020, 8, 1213–1225. [Google Scholar] [CrossRef]
- Lee, J.; Stanley, M.; Spanias, A.; Tepedelenlioglu, C. Integrating machine learning in embedded sensor systems for Internet-of-Things applications. In Proceedings of the 2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Limassol, Cyprus, 12–14 December 2016; pp. 290–294. [Google Scholar]
- Li, C.; Cao, X.; Wu, K.; Li, X.; Chen, J. Lens-based integrated 2D beam-steering device with defocusing approach and broadband pulse operation for Lidar application. Opt. Express 2019, 27, 32970–32983. [Google Scholar] [CrossRef]
- Inoue, D.; Ichikawa, T.; Kawasaki, A.; Yamashita, T. Demonstration of a new optical scanner using silicon photonics integrated circuit. Opt. Express 2019, 27, 2499–2508. [Google Scholar] [CrossRef]
- Wulfmeyer, V.; Bauer, H.; Di Girolamo, P.; Serio, C. Comparison of active and passive water vapor remote sensing from space: An analysis based on the simulated performance of IASI and space borne differential absorption lidar. Remote Sens. Environ. 2005, 95, 211–230. [Google Scholar] [CrossRef]
- Burton, S.; Ferrare, R.A.; Hostetler, C.; Hair, J.; Kittaka, C.; Vaughan, M.; Obland, M.; Rogers, R.; Cook, A.; Harper, D.; et al. Using airborne high spectral resolution lidar data to evaluate combined active plus passive retrievals of aerosol extinction profiles. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Jansson, S.; Brydegaard, M. Passive kHz lidar for the quantification of insect activity and dispersal. Anim. Biotelem. 2018, 6, 6. [Google Scholar] [CrossRef]
- Viheriälä, J.; Aho, A.T.; Uusitalo, T.; Lyytikäinen, J.; Hallman, L.; Ryvkin, B.S.; Avrutin, E.A.; Kostamovaara, J.T.; Guina, M. High-power 1.5 μm laser diodes for LIDAR applications. In Proceedings of the 2019 IEEE High Power Diode Lasers and Systems Conference (HPD), Coventry, UK, 9–10 October 2019; pp. 9–10. [Google Scholar] [CrossRef]
- Dąbrowski, R.; Kula, P.; Herman, J. High birefringence liquid crystals. Crystals 2013, 3, 443–482. [Google Scholar] [CrossRef]
- Guo, Q.; Zhao, X.; Zhao, H.; Chigrinov, V. Reverse bistable effect in ferroelectric liquid crystal devices with ultra-fast switching at low driving voltage. Opt. Lett. 2015, 40, 2413–2416. [Google Scholar] [CrossRef] [PubMed]
- Kowerdziej, R.; Wróbel, J.; Kula, P. Ultrafast electrical switching of nanostructured metadevice with dual-frequency liquid crystal. Sci. Rep. 2019, 9, 20367. [Google Scholar] [CrossRef] [Green Version]
- Botten, I.; Craig, M.; McPhedran, R.; Adams, J.; Andrewartha, J. The dielectric lamellar diffraction grating. Opt. Acta Int. J. Opt. 1981, 28, 413–428. [Google Scholar] [CrossRef]
- Lalanne, P.; Hugonin, J.P.; Chavel, P. Optical properties of deep lamellar gratings: A coupled Bloch-mode insight. J. Light. Technol. 2006, 24, 2442–2449. [Google Scholar] [CrossRef]
- Lio, G.E.; Ferraro, A.; Giocondo, M.; Caputo, R.; De Luca, A. Color Gamut Behavior in Epsilon Near-Zero Nanocavities during Propagation of Gap Surface Plasmons. Adv. Opt. Mater. 2020, 8, 2000487. [Google Scholar] [CrossRef]
- Maccaferri, N.; Isoniemi, T.; Hinczewski, M.; Iarossi, M.; Strangi, G.; De Angelis, F. Designer Bloch plasmon polariton dispersion in grating-coupled hyperbolic metamaterials. APL Photonics 2020, 5, 076109. [Google Scholar] [CrossRef]
- Jiang, J.; Fan, J.A. Global optimization of dielectric metasurfaces using a physics-driven neural network. Nano Lett. 2019, 19, 5366–5372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, J.; Fan, J.A. Simulator-based training of generative neural networks for the inverse design of metasurfaces. Nanophotonics 2019, 9. [Google Scholar] [CrossRef]
- Sell, D.; Yang, J.; Doshay, S.; Yang, R.; Fan, J.A. Large-angle, multifunctional metagratings based on freeform multimode geometries. Nano Lett. 2017, 17, 3752–3757. [Google Scholar] [CrossRef]
- Tabian, I.; Fu, H.; Sharif Khodaei, Z. A convolutional neural network for impact detection and characterization of complex composite structures. Sensors 2019, 19, 4933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeung, C.; Tsai, J.M.; King, B.; Kawagoe, Y.; Ho, D.; Knight, M.W.; Raman, A.P. Elucidating the Behavior of Nanophotonic Structures through Explainable Machine Learning Algorithms. ACS Photonics 2020, 7, 2309–2318. [Google Scholar] [CrossRef]
- Wu, Z.; Zhou, M.; Khoram, E.; Liu, B.; Yu, Z. Neuromorphic metasurface. Photonics Res. 2020, 8, 46–50. [Google Scholar] [CrossRef]
- Piggott, A.Y.; Lu, J.; Lagoudakis, K.G.; Petykiewicz, J.; Babinec, T.M.; Vučković, J. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nat. Photonics 2015, 9, 374–377. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.; Pick, A.; Lončar, M.; Rodriguez, A.W. Enhanced spontaneous emission at third-order Dirac exceptional points in inverse-designed photonic crystals. Phys. Rev. Lett. 2016, 117, 107402. [Google Scholar] [CrossRef] [Green Version]
- Fu, S.M.; Zhong, Y.K.; Ju, N.P.; Tu, M.H.; Chen, B.R.; Lin, A. Broadband polarization-insensitive metamaterial perfect absorbers using topology optimization. IEEE Photonics J. 2016, 8, 1–11. [Google Scholar] [CrossRef]
- Sheng, X.; Johnson, S.G.; Michel, J.; Kimerling, L.C. Optimization-based design of surface textures for thin-film Si solar cells. Opt. Express 2011, 19, A841–A850. [Google Scholar] [CrossRef]
- Xiao, T.P.; Cifci, O.S.; Bhargava, S.; Chen, H.; Gissibl, T.; Zhou, W.; Giessen, H.; Toussaint, K.C., Jr.; Yablonovitch, E.; Braun, P.V. Diffractive spectral-splitting optical element designed by adjoint-based electromagnetic optimization and fabricated by femtosecond 3D direct laser writing. ACS Photonics 2016, 3, 886–894. [Google Scholar] [CrossRef]
- Hugonin, J.P.; Lalanne, P. Reticolo software for grating analysis. arXiv 2005, arXiv:2101.00901. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lio, G.E.; Ferraro, A. LIDAR and Beam Steering Tailored by Neuromorphic Metasurfaces Dipped in a Tunable Surrounding Medium. Photonics 2021, 8, 65. https://doi.org/10.3390/photonics8030065
Lio GE, Ferraro A. LIDAR and Beam Steering Tailored by Neuromorphic Metasurfaces Dipped in a Tunable Surrounding Medium. Photonics. 2021; 8(3):65. https://doi.org/10.3390/photonics8030065
Chicago/Turabian StyleLio, Giuseppe Emanuele, and Antonio Ferraro. 2021. "LIDAR and Beam Steering Tailored by Neuromorphic Metasurfaces Dipped in a Tunable Surrounding Medium" Photonics 8, no. 3: 65. https://doi.org/10.3390/photonics8030065
APA StyleLio, G. E., & Ferraro, A. (2021). LIDAR and Beam Steering Tailored by Neuromorphic Metasurfaces Dipped in a Tunable Surrounding Medium. Photonics, 8(3), 65. https://doi.org/10.3390/photonics8030065