The Effect of 630 nm Photobiomodulation on the Anti-Inflammatory Effect of Human Gingival Fibroblasts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture and Chemicals
2.2. Light Source
2.3. Experimental Conditions and Groups
2.4. Enzyme-Linked Immunoassay for PGE2 and IL-8
2.5. Cell Viability
2.6. Detection of Intracellular ROS
2.7. Measurement of Mitochondrial Membrane Potential (mt.ΔΨ)
2.8. Temperature Measurement
2.9. Statistical Analysis
3. Results
3.1. Determination of LPS Concentration
3.2. The Effects of PBM on the Production of PGE2 and IL-8
3.3. The Effects of PBM on ROS Production
3.4. Temperature Changed
3.5. Effects of Various Concentrations of LPS on the Production of ROS and PGE2
3.6. Effects of PBM with Various Doses on Cell Viability and Mitochondrial Membrane Potential
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Seymour, G.J.; Gemmell, E. Cytokines in periodontal disease: Where to from here? Acta Odontol. Scand. 2001, 59, 167–173. [Google Scholar] [CrossRef]
- Wang, P.L.; Ohura, K. Porphyromonas gingivalis lipopolysaccharide signaling in gingival fibroblasts-CD14 and Toll-like receptors. Crit. Rev. Oral Biol. Med. 2002, 13, 132–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naruishi, K.; Takashiba, S.; Nishimura, F.; Chou, H.H.; Arai, H.; Yamada, H.; Murayama, Y. Impairment of gingival fibroblast adherence by IL-6/sIL-6R. J. Dent. Res. 2001, 80, 1421–1424. [Google Scholar] [CrossRef] [PubMed]
- Sismey-Durrant, H.J.; Hopps, R.M. Effect of lipopolysaccharide from Porphyromonas gingivalis on prostaglandin E2 and interleukin-1-beta release from rat periosteal and human gingival fibroblasts in vitro. Oral Microbiol. Immunol. 1991, 6, 378–380. [Google Scholar] [CrossRef]
- Gutiérrez-Venegas, G.; Jiménez-Estrada, M.; Maldonado, S. The effect of flavonoids on transduction mechanisms in lipopolysaccharide-treated human gingival fibroblasts. Int. Immunopharmacol. 2007, 7, 1199–1210. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Li, W.; Hu, X.; Liu, M. Irradiance plays a significant role in photobiomodulation of B16F10 melanoma cells by increasing reactive oxygen species and inhibiting mitochondrial function. Biomed. Opt. Express 2019, 11, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Amaroli, A.; Ferrando, S.; Benedicenti, S. Photobiomodulation Affects Key Cellular Pathways of all Life-Forms: Considerations on Old and New Laser Light Targets and the Calcium Issue. Photochem. Photobiol. 2019, 95, 455–459. [Google Scholar] [CrossRef] [Green Version]
- Corti, L.; Toniolo, L.; Boso, C.; Colaut, F.; Fiore, D.; Muzzio, P.C.; Koukourakis, M.I.; Mazzarotto, R.; Pignataro, M.; Loreggian, L.; et al. Long-term survival of patients treated with photodynamic therapy for carcinoma in situ and early non-small-cell lung carcinoma. Lasers Surg. Med. Off. J. Am. Soc. Laser Med. Surg. 2007, 39, 394–402. [Google Scholar] [CrossRef]
- Godoy, H.; Vaddadi, P.; Cooper, M.; Frederick, P.J.; Odunsi, K.; Lele, S. Photodynamic therapy effectively palliates gynecologic malignancies. Eur. J. Gynaecol. Oncol. 2013, 34, 300–302. [Google Scholar] [CrossRef]
- Sharma, S.K.; Kharkwal, G.B.; Sajo, M.; Huang, Y.Y.; De Taboada, L.; McCarthy, T.; Hamblin, M.R. Dose response effects of 810 nm laser light on mouse primary cortical neurons. Lasers Surg. Med. 2011, 43, 851–859. [Google Scholar] [CrossRef] [Green Version]
- Passarella, S.; Karu, T. Absorption of monochromatic and narrow band radiation in the visible and near IR by both mitochondrial and non-mitochondrial photoacceptors results in photobiomodulation. J. Photochem. Photobiol. B Biol. 2014, 140, 344–358. [Google Scholar] [CrossRef]
- Ravera, S.; Colombo, E.; Pasquale, C.; Benedicenti, S.; Solimei, L.; Signore, A.; Amaroli, A. Mitochondrial Bioenergetic, Photobiomodulation and Trigeminal Branches Nerve Damage, What’s the Connection? A Review. Int. J. Mol. Sci. 2021, 22, 4347. [Google Scholar] [CrossRef]
- Amaroli, A.; Pasquale, C.; Zekiy, A.; Utyuzh, A.; Benedicenti, S.; Signore, A.; Ravera, S. Photobiomodulation and Oxidative Stress: 980 nm Diode Laser Light Regulates Mitochondrial Activity and Reactive Oxygen Species Production. Oxid. Med. Cell. Longev. 2021, 2021, 6626286. [Google Scholar] [CrossRef] [PubMed]
- Dungel, P.; Hartinger, J.; Chaudary, S.; Slezak, P.; Hofmann, A.; Hausner, T.; Strassl, M.; Wintner, E.; Redl, H.; Mittermayr, R. Low level light therapy by LED of different wavelength induces angiogenesis and improves ischemic wound healing. Lasers Surg. Med. 2014, 46, 773–780. [Google Scholar] [CrossRef]
- Wang, C.Y.; Tsai, S.C.; Yu, M.C.; Lin, Y.F.; Chen, C.C.; Chang, P.C. Light-emitting diode irradiation promotes donor site wound healing of the free gingival graft. J. Periodontol. 2015, 86, 674–681. [Google Scholar] [CrossRef]
- Choi, H.; Lim, W.; Kim, I.; Kim, J.; Ko, Y.; Kwon, H.; Kim, S.; Kabir, K.M.; Li, X.; Kim, O.; et al. Inflammatory cytokines are suppressed by light-emitting diode irradiation of P. gingivalis LPS-treated human gingival fibroblasts: Inflammatory cytokine changes by LED irradiation. Lasers Med. Sci. 2012, 27, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Chang, P.C.; Chien, L.Y.; Ye, Y.; Kao, M.J. Irradiation by light-emitting diode light as an adjunct to facilitate healing of experimental periodontitis in vivo. J. Periodontal Res. 2013, 48, 135–143. [Google Scholar] [CrossRef]
- Lim, W.; Choi, H.; Kim, J.; Kim, S.; Jeon, S.; Zheng, H.; Kim, D.; Ko, Y.; Kim, D.; Sohn, H.; et al. Anti-inflammatory effect of 635 nm irradiations on in vitro direct/indirect irradiation model. J. Oral. Pathol. Med. 2015, 44, 94–102. [Google Scholar] [CrossRef]
- Chen, Z.; Qin, H.; Lin, S.; Lu, Z.; Fan, X.; Liu, X.; Liu, M. Comparative transcriptome analysis of gene expression patterns on B16F10 melanoma cells under Photobiomodulation of different light modes. J. Photochem. Photobiol. B 2021, 216, 112127. [Google Scholar] [CrossRef] [PubMed]
- Bhattarai, G.; Poudel, S.B.; Kook, S.H.; Lee, J.C. Resveratrol prevents alveolar bone loss in an experimental rat model of periodontitis. Acta Biomater. 2016, 29, 398–408. [Google Scholar] [CrossRef]
- Johnson, A.; Kong, F.; Miao, S.; Lin, H.V.; Thomas, S.; Huang, Y.C.; Kong, Z.L. Therapeutic effects of antibiotics loaded cellulose nanofiber and κ-carrageenan oligosaccharide composite hydrogels for periodontitis treatment. Sci. Rep. 2020, 10, 18037. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.Y.; Sharma, S.K.; Carroll, J.; Hamblin, M.R. Biphasic dose response in low level light therapy-an update. Dose-Response 2011, 9, 602–618. [Google Scholar] [CrossRef] [PubMed]
- Inagaki, S.; Kuramitsu, H.K.; Sharma, A. Contact-dependent regulation of a Tannerella forsythia virulence factor, BspA, in biofilms. FEMS Microbiol. Lett. 2005, 249, 291–296. [Google Scholar] [CrossRef] [Green Version]
- Fu, E.; Tsai, M.C.; Chin, Y.T.; Tu, H.P.; Fu, M.M.; Chiang, C.Y.; Chiu, H.C. The effects of diallyl sulfide upon Porphyromonas gingivalis lipopolysaccharide stimulated proinflammatory cytokine expressions and nuclear factor-kappa B activation in human gingival fibroblasts. J. Periodontal Res. 2015, 50, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Scherz-Shouval, R.; Elazar, Z. ROS, mitochondria and the regulation of autophagy. Trends Cell Biol. 2007, 17, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Yang, X.; Wu, Z.; Wang, H.; Li, Q.; Mei, H.; You, R.; Zhang, Y. Dendrobium officinale Polysaccharide Protected CCl4-Induced Liver Fibrosis Through Intestinal Homeostasis and the LPS-TLR4-NF-κB Signaling Pathway. Front. Pharmacol. 2020, 11, 240. [Google Scholar] [CrossRef] [Green Version]
- Serrage, H.J.; Cooper, P.R.; Palin, W.M.; Horstman, P.; Hadis, M.; Milward, M.R. Photobiomodulation of oral fibroblasts stimulated with periodontal pathogens. Lasers Med. Sci. 2021. Ahead of print. [Google Scholar] [CrossRef]
- Yamaura, M.; Yao, M.; Yaroslavsky, I.; Cohen, R.; Smotrich, M.; Kochevar, I.E. Low level light effects on inflammatory cytokine production by rheumatoid arthritis synoviocytes. Lasers Surg. Med. 2009, 41, 282–290. [Google Scholar] [CrossRef]
- Whelan, H.T.; Smits, R.L.J.; Buchman, E.V.; Whelan, N.T.; Turner, S.G.; Margolis, D.A.; Cevenini, V.; Stinson, H.; Ignatius, R.; Martin, T.; et al. Effect of NASA light-emitting diode irradiation on wound healing. J. Clin. Laser Med. Surg. 2001, 19, 305–314. [Google Scholar] [CrossRef] [Green Version]
- Soares, D.M.; Ginani, F.; Henriques, Á.G.; Barboza, C.A. Effects of laser therapy on the proliferation of human periodontal ligament stem cells. Lasers Med. Sci. 2015, 30, 1171–1174. [Google Scholar] [CrossRef]
- Zaccara, I.M.; Ginani, F.; Mota-Filho, H.G.; Henriques, Á.C.; Barboza, C.A. Effect of low-level laser irradiation on proliferation and cell viability of human dental pulp stem cells. Lasers Med. Sci. 2015, 30, 2259–2264. [Google Scholar] [CrossRef] [PubMed]
- Sheeran, F.L.; Pepe, S. Energy deficiency in the failing heart: Linking increased reactive oxygen species and disruption of oxidative phosphorylation rate. Biochim. Et Biophys. Acta (BBA)-Bioenerg. 2006, 1757, 543–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zdarilová, A.; Svobodová, A.; Simánek, V.; Ulrichová, J. Prunella vulgaris extract and rosmarinic acid suppress lipopolysaccharide-induced alteration in human gingival fibroblasts. Toxicol. Vitr. 2009, 23, 386–392. [Google Scholar] [CrossRef] [PubMed]
Wavelength (nm) | 630 ± 30 | ||||
Average Irradiance (mW/cm2) | 5 | ||||
Time (s) | 200 | 600 | 1800 | 3600 | 7200 |
Dose (J/cm2) | 1 | 3 | 9 | 18 | 36 |
Conditions/Groups | with or without LPS |
---|---|
Control group | |
LPS group | (+) |
5 mW/cm2, 1 J/cm2 | (+) |
5 mW/cm2, 3 J/cm2 | (+) |
5 mW/cm2, 9 J/cm2 | (+) |
5 mW/cm2, 18 J/cm2 | (+) |
5 mW/cm2, 36 J/cm2 | (+) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Liu, X.; Qin, H.; Lu, Z.; Huang, S.; Liu, M. The Effect of 630 nm Photobiomodulation on the Anti-Inflammatory Effect of Human Gingival Fibroblasts. Photonics 2021, 8, 360. https://doi.org/10.3390/photonics8090360
Chen Z, Liu X, Qin H, Lu Z, Huang S, Liu M. The Effect of 630 nm Photobiomodulation on the Anti-Inflammatory Effect of Human Gingival Fibroblasts. Photonics. 2021; 8(9):360. https://doi.org/10.3390/photonics8090360
Chicago/Turabian StyleChen, Zeqing, Xuwen Liu, Haokuan Qin, Zhicheng Lu, Shijie Huang, and Muqing Liu. 2021. "The Effect of 630 nm Photobiomodulation on the Anti-Inflammatory Effect of Human Gingival Fibroblasts" Photonics 8, no. 9: 360. https://doi.org/10.3390/photonics8090360
APA StyleChen, Z., Liu, X., Qin, H., Lu, Z., Huang, S., & Liu, M. (2021). The Effect of 630 nm Photobiomodulation on the Anti-Inflammatory Effect of Human Gingival Fibroblasts. Photonics, 8(9), 360. https://doi.org/10.3390/photonics8090360