Analysis of In Vivo Radachlorin Accumulation through FLIM-Assisted Examination of Ex Vivo Histological Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Radachlorin Photosensitizer
2.2. Animals
2.3. Mammary Cancer Model and PS Administration
2.4. Preparation of Histological Tissue Samples
2.5. Examination of Histological Samples through FLIM
2.6. Analysis of the Fluorescence Lifetime Distributions
3. Results and Discussion
3.1. Detection of Radachlorin Distributions through the Analysis of Fluorescence Intensity in the Spectral Range of 608–683 nm
3.2. FLIM-Assisted Analysis of Fluorescence Lifetime Distributions
3.3. Analysis of Time-Resolved Signals Using Phasor Plots
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Usuda, J.; Kato, H.; Okunaka, T.; Furukawa, K.; Tsutsui, H.; Yamada, K.; Suga, Y.; Honda, H.; Nagatsuka, Y.; Ohira, T.; et al. Photodynamic Therapy (PDT) for lung cancers. J. Thorac. Oncol. 2006, 1, 489–493. [Google Scholar] [CrossRef]
- Yanovsky, R.L.; Bartenstein, D.W.; Rogers, G.S.; Isakoff, S.J.; Chen, S.T. Photodynamic Therapy for Solid Tumors: A Review of the Literature. Photodermatol. Photoimmunol. Photomed. 2019, 35, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Yakovlev, D.; Shiryaev, A.; Farrakhova, D.; Savelieva, T.; Efendiev, K.; Loshchenov, M.; Zhemerikin, G.; Amouroux, M.; Daul, C.; Blondel, W.; et al. Comparison of the Capabilities of Spectroscopic and Quantitative Video Analysis of Fluorescence for the Diagnosis and Photodynamic Therapy Control of Cholangiocellular Cancer. Photonics 2022, 9, 65. [Google Scholar] [CrossRef]
- Kalka, K.; Merk, H.; Mukhtar, H. Photodynamic therapy in dermatology. J. Am. Acad. Dermatol. 2000, 42, 389–413. [Google Scholar] [CrossRef]
- Weinreb, R.; Cotlier, E.; Schmidt-Erfurth, U.; Hasan, T. Mechanisms of action of photodynamic therapy with verteporfin for the treatment of age-related macular degeneration. Surv. Ophthalmol. 2000, 45, 195–214. [Google Scholar]
- Wei, J.; Peng, X.; Wang, S.; Xu, M.; Liu, H.; Zhong, Y.; Chen, X.; Wang, Q.; Huang, X.; Zeng, K. The Effect of 5-Aminolevulinic Acid Photodynamic Therapy in Promoting Pyroptosis of HPV-Infected Cells. Photonics 2022, 9, 408. [Google Scholar] [CrossRef]
- Wilson, B.C.; Patterson, M.S. The physics, biophysics and technology of photodynamic therapy. Phys. Med. Biol. 2008, 53, R61–R109. [Google Scholar] [CrossRef]
- Brown, S.B.; Brown, E.A.; Walker, I. The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol. 2004, 5, 497–508. [Google Scholar] [CrossRef]
- Macdonald, I.J.; Dougherty, T.J. Basic principles of photodynamic therapy. J. Porphyrines Phthalocyanines 2001, 5, 105–129. [Google Scholar] [CrossRef]
- Gupta, S.; Dwarakanath, B.S.; Muralidhar, K.; Jain, V. Cellular uptake, localization and photodynamic effects of haematoporphyrin derivative in human glioma and squamous carcinoma cell lines. J. Photochem. Photobiol. 2003, 69, 107–120. [Google Scholar] [CrossRef]
- Mojzisova, H.; Bonneau, S.; Vever-Bizet, C.; Brault, D. Cellular uptake and subcellular distribution of chlorin e6 as functions of pH and interactions with membranes and lipoproteins. Biochim. Biophys. Acta 2007, 1768, 2748–2756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhikhoreva, A.A.; Belashov, A.V.; Belyaeva, T.N.; Salova, A.V.; Litvinov, I.K.; Kornilova, E.S.; Semenova, I.V.; Vasyutinskii, O.S. Comparative analysis of Radachlorin accumulation, localization, and photobleaching in three cell lines by means of holographic and fluorescence microscopy. Photodiagnosis Photodyn. Ther. 2022, 39, 102973. [Google Scholar] [CrossRef] [PubMed]
- Mckechnie, T.; Jahan, A.; Tait, I.; Cuschieri, A.; Sibbett, W.; Padgett, M. An endoscopic system for the early detection of cancers of the gastrointestinal tract. Rev. Sci. Instrum. 1998, 69, 2521–2523. [Google Scholar] [CrossRef]
- Valdés, P.A.; Jacobs, V.; Harris, B.T.; Wilson, B.C.; Leblond, F.; Paulsen, K.D.; Roberts, D.W. Quantitative fluorescence using 5-aminolevulinic acid–induced protoporphyrin IX biomarker as a surgical adjunct in low-grade glioma surgery. J. Neurosurg. 2015, 123, 771–780. [Google Scholar] [CrossRef]
- Bravo, J.J.; Olson, J.D.; Davis, S.C.; Roberts, D.W.; Paulsen, K.D.; Kanick, S.C. Hyperspectral data processing improves PpIX contrast during fluorescence guided surgery of human brain tumors. Sci. Rep. 2017, 7, 9455. [Google Scholar] [CrossRef] [PubMed]
- Azari, F.; Kennedy, G.; Bernstein, E.; Hadjipanayis, C.; Vahrmeijer, A.L.; Smith, B.L.; Rosenthal, E.; Sumer, B.; Tian, J.; Henderson, E.R.; et al. Intraoperative molecular imaging clinical trials: A review of 2020 conference proceedings. J. Biomed. Opt. 2021, 26, 050901. [Google Scholar] [CrossRef] [PubMed]
- Rudys, R.; Bagdonas, S.; Kirdaite, G.; Papeckiene, J.; Rotomskis, R. Multidimensional visualization of healthy and sensitized rabbit knee tissues by means of confocal microscopy. J. Biomed. Opt. 2015, 20, 051035. [Google Scholar] [CrossRef]
- van Leeuwen–van Zaane, F.; van Driel, P.B.A.A.; Gamm, U.A.; Snoeks, T.J.A.; de Bruijn, H.S.; van der Ploeg–van den Heuvel, A.; Lowik, C.W.G.M.; Sterenborg, H.J.C.M.; Amelink, A.; Robinson, D.J. Microscopic Analysis of the Localization of Two Chlorin-Based Photosensitizers in OSC19 Tumors in the Mouse Oral Cavity. Lasers Surg. Med. 2014, 46, 224–234. [Google Scholar] [CrossRef]
- Yeh, S.C.A.; Patterson, M.S.; Hayward, J.E.; Fang, Q. Time-Resolved Fluorescence in Photodynamic Therapy. Photonics 2014, 1, 530–564. [Google Scholar] [CrossRef]
- Rueck, A.; Dolp, F.; Huelshoff, C.; Hauser, C.; Scalfi-Happ, C. Fluorescence lifetime imaging in PDT. An overview. Med. Laser Appl. 2005, 20, 125–129. [Google Scholar] [CrossRef]
- König, K.; Wabnitz, H.; Dietel, W. Variation in the fluorescence decay properties of haematoporphyrin derivative during its conversion to photoproducts. J. Photochem. Photobiol. B 1990, 8, 103–111. [Google Scholar] [CrossRef]
- Kalinina, S.; Rueck, A. FLIM and PLIM in biomedical research—An innovative way to combine autofluorescence and oxygen measurements. Photonics Lasers Med. 2016, 5, 257–266. [Google Scholar] [CrossRef]
- Okkelman, I.A.; Papkovsky, D.B.; Dmitriev, R.I. Estimation of the Mitochondrial Membrane Potential Using Fluorescence Lifetime Imaging Microscopy. Cytom. Part A 2020, 97A, 471–482. [Google Scholar] [CrossRef]
- Levchenko, S.M.; Pliss, A.; Qu, J. Fluorescence lifetime imaging of fluorescent proteins as an effective quantitative tool for noninvasive study of intracellular processes. J. Innov. Opt. Health Sci. 2018, 11, 1730009. [Google Scholar] [CrossRef]
- Datta, R.; Heaster, T.M.; Sharick, J.T.; Gillette, A.A.; Skala, M.C. Fluorescence lifetime imaging microscopy: Fundamentals and advances in instrumentation, analysis, and applications. J. Biomed. Opt. 2020, 25, 071203. [Google Scholar] [CrossRef]
- Görlitz, F.; Corcoran, D.S.; Garcia Castano, E.A.; Leitinger, B.; Neil, M.A.; Dunsby, C.; French, P.M. Mapping molecular function to biological nanostructure: Combining structured illumination microscopy with fluorescence lifetime imaging (SIM + FLIM). Photonics 2017, 4, 40. [Google Scholar] [CrossRef]
- Sahoo, G.R.; Singh, P.; Pandey, K.; Kala, C.; Pradhan, A. Improving diagnosis of cervical pre-cancer: Combination of PCA and SVM applied on fluorescence lifetime images. Photonics 2018, 5, 57. [Google Scholar] [CrossRef]
- Sun, Y.H.; Hatami, N.; Yee, M.; Phipps, J.E.; Elson, D.S.; Gorin, F.; Schrot, R.J.; Marcu, L. Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery. J. Biomed. Opt. 2010, 15, 056022. [Google Scholar]
- Wang, Z.; Zheng, Y.; Zhao, D.; Zhao, Z.; Liu, L.; Pliss, A.; Zhu, F.; Liu, J.; Qu, J.; Luan, P. Applications of fluorescence lifetime imaging in clinical medicine. J. Innov. Opt. Health Sci. 2018, 11, 1830001. [Google Scholar] [CrossRef]
- König, K. Review: Clinical in vivo multiphoton FLIM tomography. Methods Appl. Fluoresc. 2020, 8, 034002. [Google Scholar] [CrossRef]
- Ouyang, Y.; Liu, Y.; Wang, Z.M.; Liu, Z.; Wu, M. FLIM as a Promising Tool for Cancer Diagnosis and Treatment Monitoring. Nano-Micro Lett. 2021, 13, 133. [Google Scholar] [CrossRef] [PubMed]
- Kantelhardt, S.R.; Kalasauskas, D.; Konig, K.; Kim, E.; Weinigel, M.; Uchugonova, A.; Giese, A. In vivo multiphoton tomography and fluorescence lifetime imaging of human brain tumor tissue. J. Neurooncol. 2016, 127, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Rodimova, S.; Kuznetsova, D.; Bobrov, N.; Elagin, V.; Shcheslavskiy, V.; Zagainov, V.; Zagaynova, E. Mapping metabolism of liver tissue using two-photon FLIM. Biomed. Opt. Express 2020, 11, 4458–4470. [Google Scholar] [CrossRef] [PubMed]
- Lukina, M.M.; Shimolina, L.E.; Dudenkova, V.V.; Gavrina, A.I.; Zagainov, V.E.; Komarov, D.V.; Yashin, K.S.; Medyanik, I.A.; Zagaynova, E.V.; Shirmanova, M.V. Ex vivo metabolic imaging of tumor samples from patients by FLIM. Proc. SPIE 2021, 11648, 116480N. [Google Scholar]
- Ferreira, J.; Menezes, P.F.C.; Kurachi, C.; Sibata, C.; Allison, R.R.; Bagnato, V.S. Photostability of different chlorine photosensitizers. Laser Phys. Lett. 2008, 5, 156–161. [Google Scholar] [CrossRef]
- Douillard, S.; Lhommeau, I.; Olivier, D.; Patrice, T. In vitro evaluation of Radachlorin sensitizer for photodynamic therapy. J. Photochem. Photobiol. B Biol. 2010, 98, 128–137. [Google Scholar] [CrossRef]
- Belik, V.P.; Gadzhiev, I.M.; Petrenko, M.V.; Petrov, M.A.; Semenova, I.V.; Vasyutinskii, O.S. Visible to near IR luminescence spectrum of Radachlorin under excitation at 405 nm. Chem. Phys. Lett. 2016, 665, 127–130. [Google Scholar] [CrossRef]
- Beltukova, D.M.; Vasyutinskii, O.S.; Glazov, A.L.; Semenova, I.V.; Smolin, A.G. Photobleaching mechanisms of Radachlorin photosensitizer in aqueous solution. Opt. Spectrosc. 2017, 122, 229–234. [Google Scholar] [CrossRef]
- Belik, V.P.; Gadzhiev, I.M.; Semenova, I.V.; Vasyutinskii, O.S. Time-resolved spectral analysis of Radachlorin luminescence in water. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 178, 181–184. [Google Scholar] [CrossRef]
- Zhikhoreva, A.A.; Belashov, A.V.; Ignatov, E.S.; Gelfond, M.L.; Semenova, I.V.; Vasyutinskii, O.S. Singlet oxygen generation in aerosol jet and on biological surfaces. J. Photochem. Photobiol. B Biol. 2022, 228, 112395. [Google Scholar] [CrossRef]
- Belashov, A.V.; Zhikhoreva, A.A.; Belyaeva, T.N.; Nikolsky, N.N.; Semenova, I.V.; Kornilova, E.S.; Vasyutinskii, O.S. Quantitative assessment of changes in cellular morphology at photodynamic treatment in vitro by means of digital holographic microscopy. Biomed. Opt. Express 2019, 10, 4975–4986. [Google Scholar] [CrossRef]
- Zhikhoreva, A.A.; Belashov, A.V.; Danilova, A.B.; Avdonkina, N.A.; Baldueva, I.A.; Gelfond, M.L.; Nekhaeva, T.L.; Semenova, I.V.; Vasyutinskii, O.S. Significant difference in response of malignant tumor cells of individual patients to photodynamic treatment as revealed by digital holographic microscopy. J. Photochem. Photobiol. B Biol. 2021, 221, 112235. [Google Scholar] [CrossRef] [PubMed]
- Ji, W.; Yoo, J.w.; Bae, E.K.; Lee, J.H.; Choi, C.M. The effect of Radachlorin® PDT in advanced NSCLC: A pilot study. Photodiagnosis Photodyn. Ther. 2013, 10, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Kochneva, E.V.; Filonenko, E.V.; Vakulovskaya, E.G.; Scherbakova, E.G.; Seliverstov, O.V.; Markichev, N.A.; Reshetnickov, A.V. Photosensitizer Radachlorin®: Skin cancer PDT phase II clinical trials. Photodiagnosis Photodyn. Ther. 2010, 7, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, H.; Djavid, G.E.; Hadizadeh, M.; Jahanshiri-Moghadam, M.; Hajian, P. The efficacy of Radachlorin-mediated photodynamic therapy in human hepatocellular carcinoma cells. J. Photochem. Photobiol. B Biol. 2015, 142, 86–91. [Google Scholar] [CrossRef]
- Svyatchenko, V.A.; Nikonov, S.D.; Mayorov, A.P.; Gelfond, M.L.; Loktev, V.B. Antiviral photodynamic therapy: Inactivation and inhibition of SARS-CoV-2 in vitro using methylene blue and Radachlorin. Photodiagnosis Photodyn. Ther. 2021, 33, 102112. [Google Scholar] [CrossRef]
- Vahabi, S.; Fekrazad, R.; Ayremlou, S.; Taheri, S.; Zangeneh, N. The effect of antimicrobial photodynamic therapy with radachlorin and toluidine blue on streptococcus mutans: An in vitro study. J. Dent. (Tehran Iran) 2011, 8, 48. [Google Scholar]
- Fekrazad, R.; Bargrizan, M.; Sajadi, S.; Sajadi, S. Evaluation of the effect of photoactivated disinfection with Radachlorin® against Streptococcus mutans (an in vitro study). Photodiagnosis Photodyn. Ther. 2011, 8, 249–253. [Google Scholar] [CrossRef]
- Panchenko, A.V.; Popovich, I.G.; Trashkov, A.P.; Egormin, P.A.; Yurova, M.N.; Tyndyk, M.L.; Gubareva, E.A.; Artyukin, I.N.; Vasiliev, A.G.; Khaitsev, N.V.; et al. Biomarkers of aging, life span and spontaneous carcinogenesis in the wild type and HER-2 transgenic FVB/N female mice. Biogerontology 2016, 17, 317–324. [Google Scholar] [CrossRef]
- Stukov, A.N.; Osipov, M.A.; Semiglazova, T.Y.; Filatova, L.V.; Alexandrov, V.A.; Bespalov, V.G.; Semenov, A.L.; Tyndyk, M.L.; Yurova, M.N.; Panchenko, A.V.; et al. Enchancement of Toremifene Anti-Tumor Action by Metformin and Unusual Side Effect of Toremifene in Male Transgenic Mice with HER2-Positive Breast Tumor. Drug Res. 2019, 69, 683–687. [Google Scholar] [CrossRef]
- Kruglov, S.S.; Gelfond, M.L.; Tyndyk, M.L.; Maydin, M.A.; Grishacheva, T.G.; Basina, R.M.; Gubareva, E.A.; Plakhov, E.A.; Kireeva, G.S.; Panchenko, A.V. Methodological Aspects of photodynamic therapy of Ehrlich solid carcinoma in BALB/C mouse strain with various tumor localization. Sib. J. Oncol. 2020, 19, 82–92. [Google Scholar] [CrossRef]
- Digman, M.A.; Caiolfa, V.R.; Zamai, M.; Gratton, E. The phasor approach to fluorescence lifetime imaging analysis. Biophys. J. 2008, 94, L14–L16. [Google Scholar] [CrossRef] [PubMed]
- Ladokhin, A.S.; Brand, L. Evidence for an Excited-State Reaction Contributing to NADH Fluorescence. J. Fluores. 1995, 5, 99–106. [Google Scholar] [CrossRef]
- Gorbunova, I.A.; Sasin, M.E.; Semenov, A.A.; Smolin, A.G.; Beltukov, Y.M.; Golyshev, D.P.; Vasyutinskii, O.S. Two-Photon Excited Fluorescence Dynamics in Enzyme-Bound NADH: The Heterogeneity of Fluorescence Decay Times and Anisotropic Relaxation. J. Phys. Chem. B 2021, 125, 9692–9707. [Google Scholar] [CrossRef] [PubMed]
- Chorvat, D.; Chorvatova, A. Spectrally resolved time-correlated single photon counting: A novel approach for characterization of endogenous fluorescence in isolated cardiac myocytes. Eur. Biophys. J. 2006, 36, 73–83. [Google Scholar] [CrossRef]
- Belashov, A.V.; Zhikhoreva, A.A.; Belyaeva, T.N.; Litvinov, I.K.; Salova, A.V.; Kornilova, E.S.; Semenova, I.V.; Vasyutinskii, O.S. Dependence of Radachlorin fluorescence lifetime on solution pH and localization in HeLa cells. In Proceedings of the 2022 International Conference Laser Optics (ICLO), Saint Petersburg, Russia, 20–24 June 2022; p. 1. [Google Scholar]
- Padilla-Parra, S.; Auduge, N.; Coppey-Moisan, M.; Tramier, M. Non fitting based FRET–FLIM analysis approaches applied to quantify protein–protein interactions in live cells. Biophys. Rev. 2011, 3, 63–70. [Google Scholar] [CrossRef]
- Ranjit, S.; Malacrida, L.; Jameson, D.M.; Gratton, E. Fit-free analysis of fluorescence lifetime imaging data using the phasor approach. Nat. Protoc. 2018, 13, 1979–2004. [Google Scholar] [CrossRef]
- Torrado, B.; Malacrida, L.; Ranjit, S. Linear Combination Properties of the Phasor Space in Fluorescence Imaging. Sensors 2022, 22, 999. [Google Scholar] [CrossRef]
- Malacrida, L.; Ranjit, S.; Jameson, D.M.; Gratton, E. The phasor plot: A universal circle to advance fluorescence lifetime analysis and interpretation. Annu. Rev. Biophys. 2021, 50, 575–593. [Google Scholar] [CrossRef]
- García-Plazaola, J.I.; Fernández-Marín, B.; Duke, S.O.; Hernández, A.; López-Arbeloa, F.; Becerril, J.M. Autofluorescence: Biological functions and technical applications. Plant Sci. 2015, 236, 136–145. [Google Scholar] [CrossRef]
- Croce, A.C.; Bottiroli, G. Autofluorescence spectroscopy and imaging: A tool for biomedical research and diagnosis. Eur. J. Histochem. 2014, 58, 2461. [Google Scholar] [CrossRef] [PubMed]
- Shcheslavskiy, V.I.; Shirmanova, M.V.; Dudenkova, V.V.; Lukyanov, K.A.; Gavrina, A.I.; Shumilova, A.V.; Zagaynova, E.V.; Becker, W. Fluorescence time-resolved macroimaging. Opt. Lett. 2018, 43, 3152–3155. [Google Scholar] [CrossRef] [PubMed]
- Lukina, M.; Yashin, K.; Kiseleva, E.E.; Alekseeva, A.; Dudenkova, V.; Zagaynova, E.V.; Bederina, E.; Medyanic, I.; Becker, W.; Mishra, D.; et al. Label-free macroscopic fluorescence lifetime imaging of brain tumors. Front. Oncol. 2021, 11, 1781. [Google Scholar] [CrossRef] [PubMed]
- Requejo-Isidro, J.; McGinty, J.; Munro, I.; Elson, D.S.; Galletly, N.P.; Lever, M.J.; Neil, M.A.A.; Stamp, G.W.H.; French, P.M.W.; Kellett, P.A.; et al. High-speed wide-field time-gated endoscopic fluorescence-lifetime imaging. Opt. Lett. 2004, 29, 2249–2251. [Google Scholar] [CrossRef] [Green Version]
- Lukina, M.; Orlova, A.; Shirmanova, M.; Shirokov, D.; Pavlikov, A.; Neubauer, A.; Studier, H.; Becker, W.; Zagaynova, E.; Yoshihara, T.; et al. Interrogation of metabolic and oxygen states of tumors with fiber-based luminescence lifetime spectroscopy. Opt. Lett. 2017, 42, 731–734. [Google Scholar] [CrossRef]
Sample | Single-Exponential Fit | Double-Exponential Fit | |||||
---|---|---|---|---|---|---|---|
, ns | , % | , % | , ns | , ns | |||
photosens. tumor tissue | 3.9 ± 0.3 | 2.1 ± 0.4 | 55.0 ± 6.6 | 45.0 ± 6.6 | 1.0 ± 0.2 | 5.0 ± 0.3 | 1.3 ± 0.2 |
photosens. testicular tissue | 4.1 ± 0.2 | 2.3 ± 0.5 | 52.5 ± 5.8 | 47.5 ± 5.8 | 1.4 ± 0.4 | 5.3 ± 0.3 | 1.5 ± 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belashov, A.V.; Zhikhoreva, A.A.; Kruglov, S.S.; Panchenko, A.V.; Semenova, I.V.; Vasyutinskii, O.S. Analysis of In Vivo Radachlorin Accumulation through FLIM-Assisted Examination of Ex Vivo Histological Samples. Photonics 2022, 9, 711. https://doi.org/10.3390/photonics9100711
Belashov AV, Zhikhoreva AA, Kruglov SS, Panchenko AV, Semenova IV, Vasyutinskii OS. Analysis of In Vivo Radachlorin Accumulation through FLIM-Assisted Examination of Ex Vivo Histological Samples. Photonics. 2022; 9(10):711. https://doi.org/10.3390/photonics9100711
Chicago/Turabian StyleBelashov, Andrey V., Anna A. Zhikhoreva, Stepan S. Kruglov, Andrey V. Panchenko, Irina V. Semenova, and Oleg S. Vasyutinskii. 2022. "Analysis of In Vivo Radachlorin Accumulation through FLIM-Assisted Examination of Ex Vivo Histological Samples" Photonics 9, no. 10: 711. https://doi.org/10.3390/photonics9100711
APA StyleBelashov, A. V., Zhikhoreva, A. A., Kruglov, S. S., Panchenko, A. V., Semenova, I. V., & Vasyutinskii, O. S. (2022). Analysis of In Vivo Radachlorin Accumulation through FLIM-Assisted Examination of Ex Vivo Histological Samples. Photonics, 9(10), 711. https://doi.org/10.3390/photonics9100711