Broadband, Continuous-Wave, Mid-Infrared Generation Based on ASE Fiber Source
Abstract
:1. Introduction
2. Experimental Setup and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pang, X.; Schatz, R.; Joharifar, M.; Udalcovs, A.; Bobrovs, V.; Zhang, L.; Yu, X.; Sun, Y.-T.; Maisons, G.; Carras, M.; et al. Direct Modulation and Free-Space Transmissions of up to 6 Gbps Multilevel Signals With a 4.65 μm Quantum Cascade Laser at Room Temperature. J. Lightwave Technol. 2022, 40, 2370–2377. [Google Scholar] [CrossRef]
- Toor, F.; Jackson, S.; Shang, X.; Arafin, S.; Yang, H. Mid-Infrared Lasers for Medical Applications: Introduction to the Feature Issue. Biomed. Opt. Express 2018, 9, 6255. [Google Scholar] [CrossRef]
- Ren, T.; Wu, C.; Yu, Y.; Dai, T.; Chen, F.; Pan, Q. Development Progress of 3–5 μm Mid-Infrared Lasers: OPO, Solid-State and Fiber Laser. Appl. Sci. 2021, 11, 11451. [Google Scholar] [CrossRef]
- Abramov, P.I.; Kuznetsov, E.V.; Skvortsov, L.A. Prospects of Using Quantum-Cascade Lasers in Optoelectronic Countermeasure Systems: Review. J. Opt. Technol. 2017, 84, 331. [Google Scholar] [CrossRef]
- Hu, C.; Chen, T.; Jiang, P.; Wu, B.; Su, J.; Shen, Y. Broadband High-Power Mid-IR Femtosecond Pulse Generation from an Ytterbium-Doped Fiber Laser Pumped Optical Parametric Amplifier. Opt. Lett. 2015, 40, 5774. [Google Scholar] [CrossRef] [PubMed]
- Ycas, G.; Giorgetta, F.R.; Baumann, E.; Coddington, I.; Herman, D.; Diddams, S.A.; Newbury, N.R. High-Coherence Mid-Infrared Dual-Comb Spectroscopy Spanning 2.6 to 5.2 μm. Nat. Photon. 2018, 12, 202–208. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Wang, W.; Li, Y.; Li, C.; Yao, J.; Wang, Z.; Liang, H. Difference-Frequency Generation of Random Fiber Lasers for Broadly Tunable Mid-Infrared Continuous-Wave Random Lasing Generation. J. Lightwave Technol. 2022, 40, 2965–2970. [Google Scholar] [CrossRef]
- Swiderski, J.; Michalska, M.; Grzes, P. Broadband and Top-Flat Mid-Infrared Supercontinuum Generation with 3.52 W Time-Averaged Power in a ZBLAN Fiber Directly Pumped by a 2 μm Mode-Locked Fiber Laser and Amplifier. Appl. Phys. B 2018, 124, 152. [Google Scholar] [CrossRef] [Green Version]
- Turner, E.J.; Evans, J.W.; Harris, T.R.; McDaniel, S.A. Double-Pass Co:CdTe Mid-Infrared Laser Amplifier. Opt. Mater. Express 2018, 8, 2948. [Google Scholar] [CrossRef]
- Lamard, L.; Balslev-Harder, D.; Peremans, A.; Petersen, J.C.; Lassen, M. Versatile Photoacoustic Spectrometer Based on a Mid-Infrared Pulsed Optical Parametric Oscillator. Appl. Opt. 2019, 58, 250. [Google Scholar] [CrossRef]
- Fjodorow, P.; Frolov, M.P.; Korostelin, Y.V.; Kozlovsky, V.I.; Schulz, C.; Leonov, S.O.; Skasyrsky, Y.K. Room-Temperature Fe:ZnSe Laser Tunable in the Spectral Range of 3.7–5.3 μm Applied for Intracavity Absorption Spectroscopy of CO2 Isotopes, CO and N2O. Opt. Express 2021, 29, 12033. [Google Scholar] [CrossRef] [PubMed]
- Dabrowska, A.; David, M.; Freitag, S.; Andrews, A.M.; Strasser, G.; Hinkov, B.; Schwaighofer, A.; Lendl, B. Broadband Laser-Based Mid-Infrared Spectroscopy Employing a Quantum Cascade Detector for Milk Protein Analysis. Sens. Actuators B Chem. 2022, 350, 130873. [Google Scholar] [CrossRef]
- Zuo, Z.; Gu, C.; Peng, D.; Zou, X.; Di, Y.; Zhou, L.; Luo, D.; Liu, Y.; Li, W. Broadband Mid-Infrared Molecular Spectroscopy Based on Passive Coherent Optical–Optical Modulated Frequency Combs. Photon. Res. 2021, 9, 1358. [Google Scholar] [CrossRef]
- Xu, L.; Li, Y.; Ju, Y. 91.1 kW, 5.3 ns Compact Mid-Infrared Optical Parametric Amplification Based on PPMgLN. Results Phys. 2019, 15, 102783. [Google Scholar] [CrossRef]
- Mirov, S.B.; Fedorov, V.V.; Martyshkin, D.; Moskalev, I.S.; Mirov, M.; Vasilyev, S. Progress in Mid-IR Lasers Based on Cr and Fe-Doped II–VI Chalcogenides. IEEE J. Select. Top. Quantum Electron. 2015, 21, 292–310. [Google Scholar] [CrossRef]
- Chen, K.; Liu, S.; Zhang, B.; Gong, Z.; Chen, Y.; Zhang, M.; Deng, H.; Guo, M.; Ma, F.; Zhu, F.; et al. Highly Sensitive Photoacoustic Multi-Gas Analyzer Combined with Mid-Infrared Broadband Source and near-Infrared Laser. Opt. Lasers Eng. 2020, 124, 105844. [Google Scholar] [CrossRef]
- Täschler, P.; Bertrand, M.; Schneider, B.; Singleton, M.; Jouy, P.; Kapsalidis, F.; Beck, M.; Faist, J. Femtosecond Pulses from a Mid-Infrared Quantum Cascade Laser. Nat. Photon. 2021, 15, 919–924. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, B.; Liu, J.; Song, Y.; Zhang, H. Recent Developments in Mid-Infrared Fiber Lasers: Status and Challenges. Opt. Laser Technol. 2020, 132, 106497. [Google Scholar] [CrossRef]
- Zhao, J.; Cheng, P.; Xu, F.; Zhou, X.; Tang, J.; Liu, Y.; Wang, G. Watt-Level Continuous-Wave Single-Frequency Mid-Infrared Optical Parametric Oscillator Based on MgO:PPLN at 3.68 μm. Appl. Sci. 2018, 8, 1345. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Yu, F.; Hassan, M.R.A.; Knight, J.C. Continuous-Wave Mid-Infrared Gas Fiber Lasers. IEEE J. Select. Topics Quantum Electron. 2018, 24, 0902308. [Google Scholar] [CrossRef]
- Xi, C.; Wang, P.; Li, X.; Liu, Z. Highly Efficient Continuous-Wave Mid-Infrared Generation Based on Intracavity Difference Frequency Mixing. High Power Laser Sci. Eng. 2019, 7, e67. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.-Y.; Wang, Y.-Z. Linearly Polarized Polarization-Maintaining Er3+-Doped Fluoride Fiber Laser in the Mid-Infrared. J. Electron. Sci. Technol. 2022, 20, 100147. [Google Scholar] [CrossRef]
- Das, R.; Kumar, S.C.; Samanta, G.K.; Ebrahim-Zadeh, M. Broadband, High-Power, Continuous-Wave, Mid-Infrared Source Using Extended Phase-Matching Bandwidth in MgO:PPLN. Opt. Lett. 2009, 34, 3836. [Google Scholar] [CrossRef] [Green Version]
- Storteboom, J.; Lee, C.J.; Nieuwenhuis, A.F.; Lindsay, I.D.; Boller, K.-J. Incoherently Pumped Continuous Wave Optical Parametric Oscillator Broadened by Non-Collinear Phasematching. Opt. Express 2011, 19, 21786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shang, Y.; Xu, J.; Wang, P.; Li, X.; Zhou, P.; Xu, X. Ultra-Stable High-Power Mid-Infrared Optical Parametric Oscillator Pumped by a Super-Fluorescent Fiber Source. Opt. Express 2016, 24, 21684. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Cheng, X.; Li, X.; Xu, X.; Han, K.; Chen, J. Dual-Wavelength Mid-Infrared Generation Using Intracavity Stimulated Raman Scattering of PPLN. IEEE Photonics J. 2018, 10, 1504408. [Google Scholar] [CrossRef]
- Feng, J.; Cheng, X.; Li, X.; Wang, P.; Hua, W.; Han, K. Highly Efficient Mid-Infrared Generation from Low-Power Single-Frequency Fiber Laser Using Phase-Matched Intracavity Difference Frequency Mixing. Appl. Sci. 2020, 10, 7454. [Google Scholar] [CrossRef]
- Paul, O.; Quosig, A.; Bauer, T.; Nittmann, M.; Bartschke, J.; Anstett, G.; L’huillier, J.A. Temperature-Dependent Sellmeier Equation in the MIR for the Extraordinary Refractive Index of 5% MgO Doped Congruent LiNbO3. Appl. Phys. B 2006, 86, 111–115. [Google Scholar] [CrossRef]
- Yanagawa, T.; Kanbara, H.; Tadanaga, O.; Asobe, M.; Suzuki, H.; Yumoto, J. Broadband Difference Frequency Generation around Phase-Match Singularity. Appl. Phys. Lett. 2005, 86, 161106. [Google Scholar] [CrossRef]
Year | Authors | Generation Technique | Central Wavelength | Spectral FWHM | Mid-Infrared Output Parameter |
---|---|---|---|---|---|
2018 | Jiaqun Zhao et al. [19] | OPO | 3.68 μm | Narrow bandwidth | Mid-infrared laser power: 1.1 W Pump-idler conversion efficiency:11% |
2018 | Mengrong Xu et al. [20] | Gas fiber lasers | 3.1 μm | Narrow bandwidth | Mid-infrared laser power: 1.1 W Slope efficiency: 33% |
2019 | Cheng Xi et al. [21] | Nonlinear frequency conversion | 3.78 μm | Narrow bandwidth | Mid-infrared laser power: 3.43 W Pump-idler conversion efficiency:15% |
2022 | Hong Yu Luo et al. [22] | Er3+-doped fluoride fiber laser | 3.5 μm | Narrow bandwidth | Mid-infrared laser power: 307 mW Slope efficiency: 11.7% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Li, X.; Wang, P.; Hua, W.; Wang, Z.; Han, K. Broadband, Continuous-Wave, Mid-Infrared Generation Based on ASE Fiber Source. Photonics 2022, 9, 724. https://doi.org/10.3390/photonics9100724
Wang K, Li X, Wang P, Hua W, Wang Z, Han K. Broadband, Continuous-Wave, Mid-Infrared Generation Based on ASE Fiber Source. Photonics. 2022; 9(10):724. https://doi.org/10.3390/photonics9100724
Chicago/Turabian StyleWang, Kaifeng, Xiao Li, Peng Wang, Weihong Hua, Zefeng Wang, and Kai Han. 2022. "Broadband, Continuous-Wave, Mid-Infrared Generation Based on ASE Fiber Source" Photonics 9, no. 10: 724. https://doi.org/10.3390/photonics9100724
APA StyleWang, K., Li, X., Wang, P., Hua, W., Wang, Z., & Han, K. (2022). Broadband, Continuous-Wave, Mid-Infrared Generation Based on ASE Fiber Source. Photonics, 9(10), 724. https://doi.org/10.3390/photonics9100724