Dual-Wavelength Continuous-Wave and Passively Q-Switched Alexandrite Laser at 736.7 nm and 752.8 nm
Abstract
:1. Introduction
2. Experimental Set-Up
3. Results and Discussion
3.1. CW Dual-Wavelength Laser at 736.7 nm and 752.8 nm
3.2. Pulsed Dual-Wavelength Laser at 736.7 nm and 752.8 nm
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, X.; Zeng, X.-T.; Shi, W.-J.; Bao, S.-F.; Yu, T.; Lin, H.-Y. Application of a novel Nd: YAG/PPMgLN laser module speckle-suppressed by multi-mode fibers in an exhibition environment. Photonics 2022, 9, 46. [Google Scholar] [CrossRef]
- Demirbas, U. Cr: Colquiriite lasers: Current status and challenges for further progress. Prog. Quantum Electron. 2019, 68, 100227. [Google Scholar] [CrossRef]
- Munk, A.; Strotkamp, M.; Jungbluth, B.; Froh, J.; Mense, T.; Mauer, A.; Höffner, J. Rugged diode-pumped Alexandrite laser as an emitter in a compact mobile lidar system for atmospheric measurements. Appl. Opt. 2021, 60, 4668–4679. [Google Scholar] [CrossRef] [PubMed]
- Ayatollahi, A.; Samadi, A.; Rajabi-Estarabadi, A.; Yadangi, S.; Nouri, K.; Firooz, A. Comparison of efficacy and safety of a novel 755-nm diode laser with conventional 755-nm alexandrite laser in reduction of axillary hairs. Lasers Med. Sci. 2020, 35, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Demirbas, U.; Kärtner, F.X. Alexandrite: An attractive thin-disk laser material alternative to Yb:YAG? J. Opt. Soc. Am. B 2020, 37, 459–472. [Google Scholar] [CrossRef]
- Song, Y.; Wang, Z.-M.; Bo, Y.; Zhang, F.-F.; Zhang, Y.-X.; Zong, N.; Peng, Q.-J. 2.55 W continuous-wave 378 nm laser by intracavity frequency doubling of a diode-pumped Alexandrite laser. Appl. Opt. 2021, 60, 5900–5905. [Google Scholar] [CrossRef] [PubMed]
- Walochnik, M.; Jungbluth, B.; Huber, H.; Ammersbach, J.; Munk, A.; Strotkamp, M.; Traub, M.; Hoffmann, D.; Poprawe, R. Diode-pumped cw Alexandrite laser with temporally stable 6.5 W in TEM00 operation with prospect of power scaling. Opt. Express 2020, 28, 15761–15769. [Google Scholar] [CrossRef] [PubMed]
- Coney, A.T.; Damzen, M.J. High-energy diode-pumped alexandrite amplifier development with applications in satellite-based lidar. J. Opt. Soc. Am. B 2021, 38, 209–219. [Google Scholar] [CrossRef]
- Moon, B.; An, Y.J.; Kim, Y.S.; Lee, J.H.; Ju, B.-K.; Jhon, Y.M. Cavity-dumped mode-locked Alexandrite laser oscillator with 100 mJ pulses stabilized by using a double trigger system. Opt. Express 2022, 30, 3516–3523. [Google Scholar] [CrossRef] [PubMed]
- Tawy, G.; Damzen, M.J. Tunable, dual wavelength and self-Q-switched Alexandrite laser using crystal birefringence control. Opt. Express 2019, 27, 17507–17520. [Google Scholar] [CrossRef] [PubMed]
- Guan, C.; Liu, Z.; Cong, Z.; Wang, S.; Nie, Y.; Zhang, L.; Zhu, Z.; Qi, Y.; Zhang, X.; Zhao, Z. Alexandrite laser on-peak pumped by a frequency doubled Raman Yb-fiber laser at 589 nm. OSA Contin. 2020, 3, 1204–1210. [Google Scholar] [CrossRef]
- Zha, F.; Chu, H.; Pan, Z.; Pan, H.; Zhao, S.; Yang, M.; Li, D. Large-scale few-layered MoS2 as a saturable absorber for Q-switching operation at 2.3 µm. Opt. Lett. 2022, 47, 3271–3274. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.H.M.; Latiff, A.A.; Arof, H.; Ahmad, H.; Harun, S.W. Femtosecond mode-locked erbium-doped fiber laser based on MoS2-PVA saturable absorber. Opt. Laser Technol. 2016, 82, 145–149. [Google Scholar] [CrossRef]
- Cong, W.; Jie, L.; Han, Z. Ultrafast pulse lasers based on two-dimensinal nanomaterials. Acta Phys. Sin. 2019, 68, 188101. [Google Scholar]
- Debnath, P.C.; Yeom, D.-I. Ultrafast fiber lasers with low-dimensional saturable absorbers: Status and prospects. Sensors 2021, 21, 3676. [Google Scholar] [CrossRef]
- Lin, H.-Y.; Guo, J.; Ning, D.-Y.; Wang, S.-W.; Tan, H.-M. LD end-pumped intracavity frequency doubled Yb:YAG laser. Opt. Commun. 2008, 281, 6065–6067. [Google Scholar] [CrossRef]
- Parali, U.; Sheng, X.; Minassian, A.; Tawy, G.; Sathian, J.; Thomas, G.M.; Damzen, M.J. Diode-pumped Alexandrite laser with passive SESAM Q-switching and wavelength tunability. Opt. Commun. 2018, 410, 970–976. [Google Scholar] [CrossRef] [Green Version]
- Munk, A.; Jungbluth, B.; Strotkamp, M.; Hoffmann, H.-D.; Poprawe, R.; Höffner, J.; Lübken, F.-J. Diode-pumped alexandrite ring laser in single-longitudinal mode operation for atmospheric lidar measurements. Opt. Express 2018, 26, 14928–14935. [Google Scholar] [CrossRef]
- Munk, A.; Strotkamp, M.; Walochnik, M.; Jungbluth, B.; Traub, M.; Hoffmann, H.-D.; Poprawe, R.; Höffner, J.; Lübken, F.-J. Diode-pumped Q-switched Alexandrite laser in single longitudinal mode operation with Watt-level output power. Opt. Lett. 2018, 43, 5492–5495. [Google Scholar] [CrossRef]
- Lin, H.; Zhu, W.; Xiong, F.; Cai, L. MoS2-based passively Q-switched diode-pumped Nd:YAG laser at 946 nm. Opt. Laser Technol. 2017, 91, 36–39. [Google Scholar] [CrossRef]
- Dou, X.; Yang, J.; Zhu, M.; Xu, H.; Han, W.; Zhong, D.; Teng, B.; Liu, J. Watt-level passively Q-switched Yb:LuPO4 miniature crystal laser with few-layer MoS2 saturable absorber. Opt. Express 2018, 26, 14232–14240. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Wang, L.; Dong, L.; Han, W.; Liu, J. Efficient operation of an Yb:YAl3(BO3)4 laser passively Q-switched with 2D MoS2 saturable absorber. J. Russ. Laser Res. 2021, 42, 87–94. [Google Scholar] [CrossRef]
- Ahmad, H.; Soltani, S.; Thambiratnam, K. Q-switched erbium-doped fiber laser with molybdenum disulfide (MoS2) nanoparticles on D-shaped fiber as saturable absorber. J. Nonlinear Opt. Phys. 2019, 28, 1950026. [Google Scholar] [CrossRef]
- Li, L.; Yang, X.; Zhou, L.; Xie, W.; Xu, C.; Wang, Y.; Shen, Y.; Lv, Z.; Duan, X.; Lu, Y. High beam quality passively Q-switched operation of a slab Tm:YLF laser with a MoS2 saturable absorber mirror. Opt. Laser Technol. 2019, 112, 39–42. [Google Scholar] [CrossRef]
- Luan, C.; Zhang, X.; Yang, K.; Zhao, J.; Zhao, S.; Li, T.; Qiao, W.; Chu, H.; Qiao, J.; Wang, J.; et al. High peak power passively Q-switched 2 μm laser with MoS2 saturable absorber. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 66–70. [Google Scholar] [CrossRef]
Gain Medium | Wavelength (nm) | Pulse Width | Repetition Rate (KHz) | Peak Power (W) | Reference |
---|---|---|---|---|---|
alexandrite | 736.7, 752.8 | 154 ns | 249 | 10.6 | Here |
Nd:YAG | 946 | 208 ns | 609 | 1.23 | [20] |
Yb:LuPO4 | 1010.5 | 61 ns | 870 | 28.8 | [21] |
1020.8 | 83 ns | 429 | 57.8 | ||
Yb:YAB | 1039.6 | 99 ns | 858 | 26.3 | [22] |
Er-fiber | 1559.42 | 1.93 μs | 73.96 | 1.55 | [23] |
Tm:YLF | 1905.9 | 3.1 μs | 76 | 27.5 | [24] |
Tm,Ho:YAP | 2129 | 435 ns | 55 | 11.3 | [25] |
Tm:YAP | 2275 | 316 ns | 228 | 5.53 | [12] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, H.; Bao, S.; Liu, X.; Song, S.; Wen, Z.; Sun, D. Dual-Wavelength Continuous-Wave and Passively Q-Switched Alexandrite Laser at 736.7 nm and 752.8 nm. Photonics 2022, 9, 769. https://doi.org/10.3390/photonics9100769
Lin H, Bao S, Liu X, Song S, Wen Z, Sun D. Dual-Wavelength Continuous-Wave and Passively Q-Switched Alexandrite Laser at 736.7 nm and 752.8 nm. Photonics. 2022; 9(10):769. https://doi.org/10.3390/photonics9100769
Chicago/Turabian StyleLin, Hongyi, Shangfeng Bao, Xiao Liu, Shuo Song, Zhiwei Wen, and Dong Sun. 2022. "Dual-Wavelength Continuous-Wave and Passively Q-Switched Alexandrite Laser at 736.7 nm and 752.8 nm" Photonics 9, no. 10: 769. https://doi.org/10.3390/photonics9100769
APA StyleLin, H., Bao, S., Liu, X., Song, S., Wen, Z., & Sun, D. (2022). Dual-Wavelength Continuous-Wave and Passively Q-Switched Alexandrite Laser at 736.7 nm and 752.8 nm. Photonics, 9(10), 769. https://doi.org/10.3390/photonics9100769