Generation of Tunable Plasmonic Vortices by Varying Wavelength of Incident Light
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
OAM | orbital angular momentum |
SAM | spin angular momentum |
SPPs | surface plasmon polaritons |
PB | Pancharatnam-Berry |
References
- Yao, A.M.; Padgett, M.J. Orbital angular momentum: Origins, behavior and applications. Adv. Opt. Photonics 2011, 3, 161–204. [Google Scholar] [CrossRef] [Green Version]
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.; Woerdman, J.P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 1992, 45, 8185–8189. [Google Scholar] [CrossRef]
- Jian, C.; Chenhao, W.; Qiwen, Z. Engineering photonic angular momentum with structured light: A review. Adv. Photonics 2021, 3, 064001. [Google Scholar]
- Andrew, F. New twist to twisted light. Adv. Photonics 2022, 4, 030501. [Google Scholar]
- Bai, Y.; Lv, H.; Fu, X.; Yang, Y. Vortex beam: Generation and detection of orbital angular momentum [Invited]. Chin. Opt. Lett. 2022, 20, 012601. [Google Scholar] [CrossRef]
- Buono, W.T.; Forbes, A. Nonlinear optics with structured light. Opto-Electron. Adv. 2022, 5, 210174-1–210174-19. [Google Scholar] [CrossRef]
- Padgett, M.; Bowman, R. Tweezers with a twist. Nat. Photonics 2011, 5, 343–348. [Google Scholar] [CrossRef]
- Yang, Y.; Ren, Y.; Chen, M.; Yoshihiko, A.; Carmelo, R.G. Optical trapping with structured light: A review. Adv. Photonics 2021, 3, 034001. [Google Scholar] [CrossRef]
- Mair, A.; Vaziri, A.; Weihs, G.; Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature 2001, 412, 313–316. [Google Scholar] [CrossRef] [Green Version]
- Stav, T.; Faerman, A.; Maguid, E.; Oren, D.; Kleiner, V.; Hasman, E.; Segev, M. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials. Science 2018, 361, 1101–1104. [Google Scholar] [CrossRef]
- Wang, J.; Yang, J.Y.; Fazal, I.M.; Ahmed, N.; Yan, Y.; Huang, H.; Ren, Y.; Yue, Y.; Dolinar, S.; Tur, M.; et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics 2012, 6, 488–496. [Google Scholar] [CrossRef]
- Bozinovic, N.; Yue, Y.; Ren, Y.; Tur, M.; Kristensen, P.; Huang, H.; Willner Alan, E.; Ramachandran, S. Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers. Science 2013, 340, 1545–1548. [Google Scholar] [CrossRef]
- Shen, Z.; Hu, Z.J.; Yuan, G.H.; Min, C.J.; Fang, H.; Yuan, X.C. Visualizing orbital angular momentum of plasmonic vortices. Opt. Lett. 2012, 37, 4627–4629. [Google Scholar] [CrossRef]
- Al-Awfi, S. Formation of a Plasmonic Surface Optical Vortex by Evanescent Bessel Light. Plasmonics 2012, 8, 529–536. [Google Scholar] [CrossRef]
- Zhang, Y.; Min, C.; Dou, X.; Wang, X.; Urbach, H.P.; Somekh, M.G.; Yuan, X. Plasmonic tweezers: For nanoscale optical trapping and beyond. Light. Sci. Appl. 2021, 10, 59. [Google Scholar] [CrossRef]
- Ni, J.; Huang, C.; Zhou, L.M.; Gu, M.; Song, Q.; Kivshar, Y.; Qiu, C.W. Multidimensional phase singularities in nanophotonics. Science 2021, 374, eabj0039. [Google Scholar] [CrossRef]
- Bai, Y.; Yan, J.; Lv, H.; Yang, Y. Plasmonic vortices: A review. J. Opt. 2022, 24, 084004. [Google Scholar] [CrossRef]
- Kim, H.; Park, J.; Cho, S.W.; Lee, S.Y.; Kang, M.; Lee, B. Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens. Nano Lett. 2010, 10, 529–536. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, L.; Liu, Y.; Xie, D.; Jin, Z.; Li, J.; Hu, G.; Qiu, C.W. Deuterogenic Plasmonic Vortices. Nano Lett. 2020, 20, 6774–6779. [Google Scholar] [CrossRef]
- Spektor, G.; Prinz, E.; Hartelt, M.; Mahro, A.K.; Aeschlimann, M.; Orenstein, M. Orbital angular momentum multiplication in plasmonic vortex cavities. Sci. Adv. 2021, 7, eabg5571. [Google Scholar] [CrossRef]
- Chen, C.F.; Ku, C.T.; Tai, Y.H.; Wei, P.K.; Lin, H.N.; Huang, C.B. Creating Optical Near-Field Orbital Angular Momentum in a Gold Metasurface. Nano Lett. 2015, 15, 2746–2750. [Google Scholar] [CrossRef]
- Prinz, E.; Spektor, G.; Hartelt, M.; Mahro, A.K.; Aeschlimann, M.; Orenstein, M. Functional Meta Lenses for Compound Plasmonic Vortex Field Generation and Control. Nano Lett. 2021, 21, 3941–3946. [Google Scholar] [CrossRef]
- Zang, X.; Li, Z.; Zhu, Y.; Xu, J.; Xie, J.; Chen, L.; Balakin, A.V.; Shkurinov, A.P.; Zhu, Y.; Zhuang, S. Geometric metasurface for multiplexing terahertz plasmonic vortices. Appl. Phys. Lett. 2020, 117, 171106. [Google Scholar] [CrossRef]
- Lin, J.; Mueller, J.P.B.; Wang, Q.; Yuan, G.; Antoniou, N.; Yuan, X.C.; Capasso, F. Polarization-Controlled Tunable Directional Coupling of Surface Plasmon Polaritons. Science 2013, 340, 331–334. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.W.; Park, J.; Lee, S.Y.; Kim, H.; Lee, B. Coupling of spin and angular momentum of light in plasmonic vortex. Opt. Express 2012, 20, 10083–10094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Zeng, X.; Ma, L.; Zhang, R.; Zhan, Z.; Chen, C.; Ren, X.; He, C.; Liu, C.; Cheng, C. Manipulation for Superposition of Orbital Angular Momentum States in Surface Plasmon Polaritons. Adv. Opt. Mater. 2019, 7, 1900372. [Google Scholar] [CrossRef]
- Jin, Z.; Janoschka, D.; Deng, J.; Ge, L.; Dreher, P.; Frank, B.; Hu, G.; Ni, J.; Yang, Y.; Li, J.; et al. Phyllotaxis-inspired nanosieves with multiplexed orbital angular momentum. eLight 2021, 1, 5. [Google Scholar] [CrossRef]
- Zhou, H.; Dong, J.; Zhou, Y.; Zhang, J.; Liu, M.; Zhang, X. Designing Appointed and Multiple Focuses With Plasmonic Vortex Lenses. IEEE Photonics J. 2015, 7, 1–7. [Google Scholar] [CrossRef]
- Moon, S.W.; Jeong, H.D.; Lee, S.; Lee, B.; Ryu, Y.S.; Lee, S.Y. Compensation of spin-orbit interaction using the geometric phase of distributed nanoslits for polarization-independent plasmonic vortex generation. Opt. Express 2019, 27, 19119–19129. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Xie, Z.; Si, G.; Yang, A.; Li, C.; Lin, J.; Li, G.; Wang, H.; Yuan, X. On-Chip Photonic Spin Hall Lens. ACS Photonics 2019, 6, 1840–1847. [Google Scholar] [CrossRef]
- Ohno, T.; Miyanishi, S. Study of surface plasmon chirality induced by Archimedes’ spiral grooves. Optics Express 2006, 14, 6285–6290. [Google Scholar] [CrossRef] [PubMed]
- Tan, Q.; Guo, Q.; Liu, H.; Huang, X.; Zhang, S. Controlling the plasmonic orbital angular momentum by combining the geometric and dynamic phases. Nanoscale 2017, 9, 4944–4949. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, Y.; Zhang, Q.; Yang, Y. Generation of Tunable Plasmonic Vortices by Varying Wavelength of Incident Light. Photonics 2022, 9, 809. https://doi.org/10.3390/photonics9110809
Bai Y, Zhang Q, Yang Y. Generation of Tunable Plasmonic Vortices by Varying Wavelength of Incident Light. Photonics. 2022; 9(11):809. https://doi.org/10.3390/photonics9110809
Chicago/Turabian StyleBai, Yihua, Qing Zhang, and Yuanjie Yang. 2022. "Generation of Tunable Plasmonic Vortices by Varying Wavelength of Incident Light" Photonics 9, no. 11: 809. https://doi.org/10.3390/photonics9110809
APA StyleBai, Y., Zhang, Q., & Yang, Y. (2022). Generation of Tunable Plasmonic Vortices by Varying Wavelength of Incident Light. Photonics, 9(11), 809. https://doi.org/10.3390/photonics9110809