Niobium Pentoxide Films with High Laser-Induced Damage Threshold under High Temperature Environment
Abstract
:1. Introduction
2. Experimental
2.1. Preparation of Nb2O5 Films
2.2. Characterization
3. Results and Discussion
3.1. Viscosity of the Sol
3.2. Optical Properties of the Films
3.3. Microstructure of the Films
3.4. Surface Topographies of the Films
3.5. XPS Results of the Films
3.6. LIDT Results of the Films
3.7. Damage Morphologies of the Films
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chukwuike, V.; Rajalakshmi, K.; Barik, R. Surface and electrochemical corrosion analysis of niobium oxide film formed in various wet media. Appl. Surf. Sci. Adv. 2021, 4, 100079. [Google Scholar] [CrossRef]
- Richter, F.; Kupfer, H.; Schlott, P.; Gessner, T.; Kaufmann, C. Optical properties and mechanical stress in SiO2/Nb2O5 multilayers. Thin Solid Film. 2001, 389, 278–283. [Google Scholar] [CrossRef]
- Lira-Cantu, M.; Krebs, F.C. Hybrid solar cells based on MEH-PPV and thin film semiconductor oxides (TiO2, Nb2O5, ZnO, CeO2 and CeO2–TiO2): Performance improvement during long-time irradiation. Sol. Energy Mater. Sol. Cells 2006, 90, 2076–2086. [Google Scholar] [CrossRef]
- Lai, W.-C.; Beel, B.D.; Hazelbauer, G.L. Adaptational modification and ligand occupancy have opposite effects on positioning of the transmembrane signalling helix of a chemoreceptor. Mol. Microbiol. 2006, 61, 1081–1090. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zu, X.; Yuan, X.; Jiang, X. Influence of porosity on laser damage threshold of sol–gel ZrO2 and SiO2 monolayer films. Optik 2012, 123, 479–484. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, S.; Ma, P.; Wei, Y.; Zheng, Y.; Pan, F.; Liu, H.; Tang, G. Characterization of 1064nm nanosecond laser-induced damage on antireflection coatings grown by atomic layer deposition. Opt. Express 2012, 20, 854–863. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Zhao, Y.; Qiang, Y.; Zhu, Y.; Guo, L.; Shao, J. Comparison of laser-induced damage in Ta2O5 and Nb2O5 single-layer films and high reflectors. Chin. Opt. Lett. 2011, 9, 013102. [Google Scholar] [CrossRef]
- Parraud, S.; Hubert-Pfalzgraf, L.G.; Floch, H.G. Stabilization and Characterization of Nanosized Niobium and Tantalum Oxide Sols-Optical Applications for High-Power Lasers. J. Am. Ceram. Soc. 1992, 75, 2289–2292. [Google Scholar] [CrossRef]
- Cai, W.; Yang, Y.; Zhu, Y.; Li, D.; Xu, C. Preparation of high laser-induced damage threshold sol-gel Nb2O5 films with different additives. Optik 2020, 206, 164306. [Google Scholar] [CrossRef]
- Wang, K.; Li, Q.; Wang, J.; Yang, S. Thermodynamic characteristics of deep space: Hot hazard control case study in 1010-m-deep mine. Case Stud. Therm. Eng. 2021, 28, 101656. [Google Scholar] [CrossRef]
- Prasad, N.S.; Trivedi, S.; Rosemeier, J.; Diestler, M. Post-flight test results of acousto-optic modulator devices subjected to space exposure. Proc. SPIE 2014, 9226, 922609. [Google Scholar] [CrossRef]
- Hedei, P.H.M.A.; Hassan, Z.; Quah, H.J. Effects of post-deposition annealing temperature in nitrogen/oxygen/nitrogen ambient on polycrystalline gallium oxide films. Appl. Surf. Sci. 2021, 550, 149340. [Google Scholar] [CrossRef]
- Tan, T.-T.; Liu, B.-J.; Wu, Z.-H.; Liu, Z.-T. Annealing Effects on Structural, Optical Properties and Laser-Induced Damage Threshold of MgF2 Thin Films. Acta Met. Sin. (Engl. Lett.) 2016, 30, 73–78. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Wang, C.; Fan, P.; Cai, X.; Liang, G.; Shao, J.; Fan, Z. Influence of substoichiometer on the laser-induced damage characters of HfO2 thin films. Appl. Surf. Sci. 2009, 255, 4646–4649. [Google Scholar] [CrossRef]
- Xu, C.; Li, D.; Fan, H.; Deng, J.; Qi, J.; Yi, P.; Qiang, Y. Effects of different post-treatment methods on optical properties, absorption and nanosecond laser-induced damage threshold of Ta2O5 films. Thin Solid Film. 2015, 580, 12–20. [Google Scholar] [CrossRef]
- Xu, C.; Jia, J.; Yang, D.; Fan, H.; Qiang, Y.; Liu, J.; Hu, G.; Li, D. Nanosecond laser-induced damage at different initial temperatures of Ta2O5 films prepared by dual ion beam sputtering. J. Appl. Phys. 2014, 116, 053102. [Google Scholar] [CrossRef]
- Zhu, Y.; Ma, M.; Zhang, P.; Cai, W.; Li, D.; Xu, C. Preparation of sol-gel ZrO2 films with high laser-induced damage threshold under high temperature. Opt. Express 2019, 27, 37568–37578. [Google Scholar] [CrossRef] [PubMed]
- Wadullah, H.M.; Mohammed, M.T.; Abdulrazzaq, T.K. Structure and characteristics of Nb2O5 nanocoating thin film for biomedical applications. Mater. Today Proc. 2022, 62, 3076–3080. [Google Scholar] [CrossRef]
- Kalygina, V.; Egorova, I.; Prudaev, I.; Tolbanov, O.; Atuchin, V. Conduction mechanism of metal-TiO2 –Si structures. Chin. J. Phys. 2017, 55, 59–63. [Google Scholar] [CrossRef]
- Fridriksson, E.; Tryggvason, T.; Arnalds, U.; Ingason, A.; Magnus, F. Growth of NbO, NbO2 and Nb2O5 thin films by reactive magnetron sputtering and post-annealing. Vacuum 2022, 202, 111179. [Google Scholar] [CrossRef]
- Atta, A.; El-Nahass, M.; Hassanien, A.; Elsabawy, K.M.; El-Raheem, M.A.; Alhuthali, A.; Alomariy, S.E.; Algamdi, M. Effect of thermal annealing on structural, optical and electrical properties of transparent Nb2O5 thin films. Mater. Today Commun. 2017, 13, 112–118. [Google Scholar] [CrossRef]
- ISO 11254-1:2000; Lasers and Laser-Related Equipment-Determination of Laser-Induced Damage Threshold of Optical Surfaces. Part 1. 1-on-1 Test. Comite Europeen de Normalisation: Brussels, Belgium, 2000.
- Zhang, P.; Lin, D.; Zhu, Y.; Cai, W.; Li, D.; Xu, C. In-situ high temperature laser-induced damage of sol-gel Ta2O5 films with different dual additives. Thin Solid Film. 2019, 693, 137723. [Google Scholar] [CrossRef]
- Lee, K.; Kim, J.; Mok, I.-S.; Na, H.; Ko, D.-H.; Sohn, H.; Lee, S.; Sinclair, R. RESET-first unipolar resistance switching behavior in annealed Nb2O5 films. Thin Solid Film. 2014, 558, 423–429. [Google Scholar] [CrossRef]
- Mudavakkat, V.; Atuchin, V.; Kruchinin, V.; Kayani, A.; Ramana, C. Structure, morphology and optical properties of nanocrystalline yttrium oxide (Y2O3) thin films. Opt. Mater. 2012, 34, 893–900. [Google Scholar] [CrossRef]
- Atuchin, V.V.; Lebedev, M.S.; Korolkov, I.V.; Kruchinin, V.N.; Maksimovskii, E.A.; Trubin, S.V. Composition-sensitive growth kinetics and dispersive optical properties of thin HfxTi1−xO2 (0 ≤ x ≤ 1) films prepared by the ALD method. J. Mater. Sci. Mater. Electron. 2018, 30, 812–823. [Google Scholar] [CrossRef]
- Atuchin, V.; Kalabin, I.; Kesler, V.; Pervukhina, N. Nb 3d and O 1s core levels and chemical bonding in niobates. J. Electron. Spectrosc. Relat. Phenom. 2005, 142, 129–134. [Google Scholar] [CrossRef]
- Xu, C.; Yi, P.; Fan, H.; Qi, J.; Qiang, Y.; Liu, J.; Tao, C.; Li, D. Correlations between the oxygen deficiency and the laser damage resistance of different oxide films. Appl. Surf. Sci. 2014, 289, 141–144. [Google Scholar] [CrossRef]
- Papernov, S.; Schmid, A.W. Two mechanisms of crater formation in ultraviolet-pulsed-laser irradiated SiO2 thin films with artificial defects. J. Appl. Phys. 2005, 97, 114906. [Google Scholar] [CrossRef]
- Porteus, J.O.; Seitel, S.C. Absolute onset of optical surface damage using distributed defect ensembles. Appl. Opt. 1984, 23, 3796–3805. [Google Scholar] [CrossRef]
- Barber, P.W.; Hill, S.C. Light Scattering by Particles: Computational Methods; World Scientific: London, UK, 1990. [Google Scholar]
- Goldenberg, H.; Tranter, C.J. Heat flow in an infinite medium heated by a sphere. Br. J. Appl. Phys. 1952, 3, 296–298. [Google Scholar] [CrossRef]
- Tritt, T.M. Thermal Conductivity: Theory, Properties, and Applications; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2004. [Google Scholar]
- Çetinörgü, E. A new method to experimentally determine the thermal expansion coefficient, Poisson’s ratio and Young’s modulus of thin films. J. Mater. Sci. 2009, 44, 2167–2170. [Google Scholar] [CrossRef]
- Music, D.; Geyer, R.W.; Keuter, P. Thermomechanical response of thermoelectrics. Appl. Phys. Lett. 2016, 109, 223903. [Google Scholar] [CrossRef]
Samples | Elementary Composition (%) | Atom Ratio | |||
---|---|---|---|---|---|
Nb 3d | O 1s | C 1s | Ototal/Nb | ONb-O/Nb | |
As-deposited | 7.40 | 41.38 | 51.22 | 5.59 | 2.51 |
523 K annealing | 12.24 | 42.14 | 45.62 | 3.44 | 2.02 |
Materials | (W/cm/K) | (g/cm3) | (J/g/K) | (at 1064 nm) | (K−1) |
---|---|---|---|---|---|
Nb2O5-293 K | 1.00 × 10−2 | 4.6 | 0.496 | 2.171 | 4.8 × 10−6 |
Nb2O5-373 K | 7.86 × 10−3 | ~4.6 | 0.544 | ~2.171 | ~4.8 × 10−6 |
Nb2O5-423 K | 6.93 × 10−3 | ~4.6 | 0.568 | ~2.171 | ~4.8 × 10−6 |
Nb2O5-473 K | 6.19 × 10−3 | ~4.6 | 0.584 | ~2.171 | ~4.8 × 10−6 |
Nb2O5-523 K | 5.60 × 10−3 | ~4.6 | 0.597 | ~2.171 | ~4.8 × 10−6 |
NbO2-293 K | 3.30 × 10−2 | 5.9 | 0.458 | 2.020 | 7 × 10−6 |
NbO2-373 K | 2.59 × 10−2 | ~5.9 | 0.507 | ~2.020 | ~7 × 10−6 |
NbO2-423 K | 2.29 × 10−2 | ~5.9 | 0.532 | ~2.020 | ~7 × 10−6 |
NbO2-473 K | 2.04 × 10−2 | ~5.9 | 0.552 | ~2.020 | ~7 × 10−6 |
NbO2-523 K | 1.85 × 10−2 | ~5.9 | 0.570 | ~2.020 | ~7 × 10−6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Zhang, M.; Han, S.; Xu, L.; Li, D.; Feng, P.; Xu, C. Niobium Pentoxide Films with High Laser-Induced Damage Threshold under High Temperature Environment. Photonics 2022, 9, 832. https://doi.org/10.3390/photonics9110832
Gao Y, Zhang M, Han S, Xu L, Li D, Feng P, Xu C. Niobium Pentoxide Films with High Laser-Induced Damage Threshold under High Temperature Environment. Photonics. 2022; 9(11):832. https://doi.org/10.3390/photonics9110832
Chicago/Turabian StyleGao, Yi, Miao Zhang, Sun Han, Leihua Xu, Dawei Li, Peizhong Feng, and Cheng Xu. 2022. "Niobium Pentoxide Films with High Laser-Induced Damage Threshold under High Temperature Environment" Photonics 9, no. 11: 832. https://doi.org/10.3390/photonics9110832
APA StyleGao, Y., Zhang, M., Han, S., Xu, L., Li, D., Feng, P., & Xu, C. (2022). Niobium Pentoxide Films with High Laser-Induced Damage Threshold under High Temperature Environment. Photonics, 9(11), 832. https://doi.org/10.3390/photonics9110832