Wavefront Correction in Vacuum of SULF-1PW Laser Beamline
Abstract
:1. Introduction
2. Experimental Setup
3. Experimental Results
3.1. Without Wavefront Correction
3.2. Wavefront Correction in Air
3.3. Wavefront Correction in Vacuum
3.4. Wavefront Stability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Strickland, D.; Mourou, G. Compression of amplified chirped optical pulses. Opt. Commun. 1985, 55, 219–221. [Google Scholar] [CrossRef]
- Dubietis, A.; Jonušauskas, G.; Piskarskas, A. Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal. Opt. Commun. 1992, 88, 437–440. [Google Scholar] [CrossRef]
- Laso Garcia, A.; Höppner, H.; Pelka, A.; Bähtz, C.; Brambrink, E.; Di Dio Cafiso, S.; Dreyer, J.; Göde, S.; Hassan, M.; Kluge, T.; et al. ReLaX: The Helmholtz International Beamline for Extreme Fields high-intensity short-pulse laser driver for relativistic laser–matter interaction and strong-field science using the high energy density instrument at the European X-ray free electron laser facility. High Power Laser Sci. Eng. 2021, 9, e59. [Google Scholar]
- Zhang, H.; Zhao, J.; Hu, Y.; Li, Q.; Lu, Y.; Cao, Y.; Zou, D.; Sheng, Z.; Pegoraro, F.; McKenna, P.; et al. Efficient bright γ-ray vortex emission from a laser-illuminated light-fan-in-channel target. High Power Laser Sci. Eng. 2021, 9, e43. [Google Scholar] [CrossRef]
- Cinquegrana, P.; Demidovich, A.; Kurdi, G.; Nikolov, I.; Sigalotti, P.; Susnjar, P.; Danailov, M. The seed laser system of the FERMI free-electron laser: Design, performance and near future upgrades. High Power Laser Sci. Eng. 2021, 9, e61. [Google Scholar] [CrossRef]
- Emma, C.; Van Tilborg, J.; Assmann, R.; Barber, S.; Cianchi, A.; Corde, S.; Couprie, M.E.; D’Arcy, R.; Ferrario, M.; Habib, A.F.; et al. Free electron lasers driven by plasma accelerators: Status and near-term prospects. High Power Laser Sci. Eng. 2021, 9, e57. [Google Scholar] [CrossRef]
- Gonsalves, A.J.; Nakamura, K.; Daniels, J.; Benedetti, C.; Pieronek, C.; de Raadt, T.C.H.; Steinke, S.; Bin, J.H.; Bulanov, S.S.; van Tilborg, J.; et al. Petawatt laser guiding and electron beam acceleration to 8GeV in a laser-heated capillary discharge waveguide. Phys. Rev. Lett. 2019, 122, 084801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Feng, K.; Ke, L.; Yu, C.; Xu, Y.; Qi, R.; Chen, Y.; Qin, Z.; Zhang, Z.; Fang, M.; et al. Free-electron lasing at 27 nanometres based on a laser wakefield accelerator. Nature 2020, 595, 516. [Google Scholar] [CrossRef]
- Wang, X.; Zgadzaj, R.; Fazel, N.; Li, Z.; Yi, S.A.; Zhang, X.; Henderson, W.; Chang, Y.Y.; Korzekwa, R.; Tsai, H.E.; et al. Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV. Nat. Commun. 2013, 4, 1988. [Google Scholar] [CrossRef] [Green Version]
- Esarey, E.; Schroeder, C.B.; Leemans, W.P. Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 2009, 81, 1229. [Google Scholar] [CrossRef]
- Miranda, M.; Kotur, M.; Rudawski, P.; Guo, C.; Harth, A.; L’Huillier, A.; Arnold, C.L. Spatiotemporal characterization of ultrashort laser pulses using spatially resolved Fourier transform spectrometry. Opt. Lett. 2014, 39, 5142–5145. [Google Scholar] [CrossRef] [PubMed]
- Isono, F.; van Tilborg, J.; Barber, S.K.; Natal, J.; Berger, C.; Tsai, H.E.; Ostermayr, T.; Gonsalves, A.; Geddes, C.; Esarey, E. High-power non-perturbative laser delivery diagnostics at the final focus of 100-TW-class laser pulses. High Power Laser Sci. Eng. 2021, 9, e25. [Google Scholar] [CrossRef]
- Borneis, S.; Laštovička, T.; Sokol, M.; Jeong, T.-M.; Condamine, F.; Renner, O.; Tikhonchuk, V.; Bohlin, H.; Fajstavr, A.; Hernandez, J.-C.; et al. Design, installation and commissioning of the ELI-Beamlines high-power, high-repetition rate HAPLS laser beam transport system to P3. High Power Laser Sci. Eng. 2021, 9, e30. [Google Scholar] [CrossRef]
- Rajaeipour, P.; Banerjee, K.; Dorn, A.; Zappe, H.; Ataman, C. Cascading optofluidic phase modulators for performance enhancement in refractive adaptive optics. Adv. Photonics 2020, 2, 066005. [Google Scholar] [CrossRef]
- Lureau, F.; Matras, G.; Chalus, O.; Derycke, C.; Morbieu, T.; Radier, C.; Casagrande, O.; Laux, S.; Ricaud, S.; Rey, G.; et al. High-energy hybrid femtosecond laser system demonstrating 2 × 10 PW capability. High Power Laser Sci. Eng. 2020, 8, e43. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, X.; Dai, W.; Yang, Y.; Deng, X.; Chen, L.; Xie, X.; Hu, D.; Jing, F.; Yang, Z.; et al. 1178 J, 527 nm near diffraction limited laser based on a complete closed-loop adaptive optics controlled off-axis multi-pass amplification laser system. High Power Laser Sci. Eng. 2021, 9, e22. [Google Scholar] [CrossRef]
- Sung, J.H.; Lee, H.W.; Yoo, J.Y.; Yoon, J.W.; Lee, C.W.; Yang, J.M.; Son, Y.J.; Jang, Y.H.; Lee, S.K.; Nam, C.H. 4.2 PW, 20 fs Ti:sapphire laser at 0.1 Hz. Opt. Lett. 2017, 42, 2058–2061. [Google Scholar] [CrossRef]
- Baumhacker, H.; Pretzler, G.; Witte, K.J.; Hegelich, M.; Kaluza, M.; Karsch, S.; Kudryashov, A.; Samarkin, V.; Roukossouev, A. Correction of strong phase and amplitude modulations by two deformable mirrors in a multistaged Ti:sapphire laser. Opt. Lett. 2002, 27, 1570–1572. [Google Scholar] [CrossRef]
- Guo, Z.; Yu, L.; Wang, J.; Wang, C.; Liu, Y.; Gan, Z.; Li, W.; Leng, Y.; Liang, X.; Li, R. Improvement of the focusing ability by double deformable mirrors for 10-PW-level Ti:sapphire chirped pulse amplification laser system. Opt. Express 2018, 26, 341982. [Google Scholar] [CrossRef]
- Yoon, J.W.; Jeon, C.; Shin, J.; Lee, S.K.; Lee, H.W.; Choi, I.W.; Kim, H.T.; Sung, J.H.; Nam, C.H. Achieving the laser intensity of 5.5 × 1022 W/cm2 with a wavefront-corrected multi-PW laser. Opt. Express 2019, 27, 20412–20420. [Google Scholar] [CrossRef]
- Yoon, J.W.; Kim, Y.G.; Choi, I.W.; Sung, J.H.; Lee, H.W.; Lee, S.K.; Nam, C.H. Realization of laser intensity over 1023 W/cm2. Optica 2021, 8, 630–635. [Google Scholar] [CrossRef]
- Chen, M.; Jin, X.; Li, S.; Xu, Z. Compensation of turbulence-induced wavefront aberration with convolutional neural networks for FSO systems. Chin. Opt. Lett. 2021, 19, 110601. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, F.; Hu, J.; Yang, X.; Gui, J.; Liu, X.; Wang, C.; Liu, Y.; Lu, X.; Xu, Y.; et al. The 1 PW/0.1 Hz laser beamline in SULF facility. High Power Laser Sci. Eng. 2020, 8, e4. [Google Scholar] [CrossRef] [Green Version]
- Gan, Z.; Yu, L.; Wang, C.; Liu, Y.; Xu, Y.; Li, W.; Li, S.; Yu, L.; Wang, X.; Liu, X.; et al. The Shanghai superintense ultrafast laser facility (SULF) project. In Progress in Ultrafast Intense Laser Science XVI; Springer International Publishing: Cham, Switzerland, 2021; p. 199. [Google Scholar]
- Planchon, T.A.; Rousseau, J.P.; Burgy, F.; Cheriaux, G.; Chambaret, J.P. Adaptive wavefront correction on a 100-TW/10-Hz chirped pulse amplification laser and effect of residual wavefront on beam propagation. Opt. Commun. 2005, 252, 222–228. [Google Scholar] [CrossRef]
- Planchon, T.A.; Mercère, P.; Cheriaux, G.; Chambaret, J.P. Off-axis aberration compensation of focusing with spherical mirrors using deformable mirrors. Opt. Commun. 2003, 216, 25–31. [Google Scholar] [CrossRef]
- Kahaly, S.; Monchocé, S.; Gallet, V.; Gobert, O.; Réau, F.; Tcherbakoff, O.; D’Oliveira, P.; Martin, P.; Quéré, F. Investigation of amplitude spatio-temporal couplings at the focus of a 100 TW-25 fs laser. Appl. Phys. Lett. 2014, 104, 054103. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Tsubakimoto, K.; Yoshida, H.; Nakata, Y.; Miyanaga, N. Degradation of femtosecond petawatt laser beams: Spatio-temporal/spectral coupling induced by wavefront errors of compression gratings. Appl. Phys. Express 2017, 10, 102702. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, F.; Li, E.; Xu, Y.; Qian, J.; Zhu, J.; Hu, J.; Zhao, Y.; Bai, P.; Zhang, Z.; Leng, Y.; et al. Wavefront Correction in Vacuum of SULF-1PW Laser Beamline. Photonics 2022, 9, 872. https://doi.org/10.3390/photonics9110872
Wu F, Li E, Xu Y, Qian J, Zhu J, Hu J, Zhao Y, Bai P, Zhang Z, Leng Y, et al. Wavefront Correction in Vacuum of SULF-1PW Laser Beamline. Photonics. 2022; 9(11):872. https://doi.org/10.3390/photonics9110872
Chicago/Turabian StyleWu, Fenxiang, Ende Li, Yi Xu, Jiayi Qian, Jiacheng Zhu, Jiabing Hu, Yang Zhao, Peile Bai, Zongxin Zhang, Yuxin Leng, and et al. 2022. "Wavefront Correction in Vacuum of SULF-1PW Laser Beamline" Photonics 9, no. 11: 872. https://doi.org/10.3390/photonics9110872
APA StyleWu, F., Li, E., Xu, Y., Qian, J., Zhu, J., Hu, J., Zhao, Y., Bai, P., Zhang, Z., Leng, Y., & Yang, Z. (2022). Wavefront Correction in Vacuum of SULF-1PW Laser Beamline. Photonics, 9(11), 872. https://doi.org/10.3390/photonics9110872