Mid-Infrared Frequency Modulation Spectroscopy of NO Detection in a Hollow-Core Antiresonant Fiber
Abstract
:1. Introduction
2. Experimental Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Farooq, A.; Alquaity, A.B.; Raza, M.; Nasir, E.F.; Yao, S.; Ren, W. Laser sensors for energy systems and process industries: Perspectives and directions. Prog. Energy Combust. Sci. 2022, 91, 100997. [Google Scholar] [CrossRef]
- Rieker, G.B.; Jeffries, J.B.; Hanson, R.K. Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments. Appl. Opt. 2009, 48, 5546–5560. [Google Scholar] [CrossRef] [PubMed]
- Supplee, J.M.; Whittaker, E.A.; Lenth, W. Theoretical description of frequency modulation and wavelength modulation spectroscopy. Appl. Opt. 1994, 33, 6294–6302. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Jia, S.; Wang, Y.; Tang, Z. Recent Developments in Modulation Spectroscopy for Methane Detection Based on Tunable Diode Laser. Appl. Sci. 2019, 9, 2816. [Google Scholar] [CrossRef] [Green Version]
- Silver, J.A. Frequency-modulation spectroscopy for trace species detection: Theory and comparison among experimental methods: Errata. Appl. Opt. 1992, 31, 4927. [Google Scholar] [CrossRef]
- Bjorklund, G.C. Frequency-modulation spectroscopy: A new method for measuring weak absorptions and dispersions. Opt. Lett. 1980, 5, 15–17. [Google Scholar] [CrossRef]
- Zhang, W.; Martin, M.J.; Benko, C.; Hall, J.L.; Ye, J.; Hagemann, C.; Legero, T.; Sterr, U.; Riehle, F.; Cole, G.D.; et al. Reduction of residual amplitude modulation to 1 × 10−6 for frequency modulation and laser stabilization. Opt. Lett. 2014, 39, 1980–1983. [Google Scholar] [CrossRef]
- Tai, Z.; Yan, L.; Zhang, Y.; Zhang, L.; Jiang, H.; Zhang, S. An electro-optic modulator with ultra-low residual amplitude modulation. Opt. Lett. 2016, 41, 5584–5587. [Google Scholar] [CrossRef]
- Li, C.; Shao, L.; Meng, H.; Wei, J.; Qiu, X.; He, Q.; Ma, W.; Deng, L.; Chen, Y. High-speed multi-pass tunable diode laser absorption spectrometer based on frequency-modulation spectroscopy. Opt. Express 2018, 26, 29330–29339. [Google Scholar] [CrossRef]
- Chen, J.; Du, Z.; Sun, T.; Li, J.; Ma, Y. Self-corrected frequency modulation spectroscopy immune to phase random and light intensity fluctuation. Opt. Express 2019, 27, 30700–30709. [Google Scholar] [CrossRef]
- Gagliardi, G.; Borri, S.; Tamassia, F.; Capasso, F.; Gmachl, C.; Sivco, D.L.; Baillargeon, J.N.; Hutchinson, A.L.; Cho, A.Y. A frequency-modulated quantum-cascade laser for spectroscopy of CH4and N2O isotopomers. Isot. Environ. Health Stud. 2005, 41, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Stuhr, M.; Faßheber, N.; Friedrichs, G. Single-tone mid-infrared frequency modulation spectroscopy for sensitive detection of transient species. Opt. Express 2019, 27, 26499–26512. [Google Scholar] [CrossRef] [PubMed]
- Maddaloni, P.; Malara, P.; Gagliardi, G.; De Natale, P. Two-tone frequency modulation spectroscopy for ambient-air trace gas detection using a portable difference-frequency source around 3 μm. Appl. Phys. A 2006, 85, 219–222. [Google Scholar] [CrossRef]
- Hinkov, B.; Hayden, J.; Szedlak, R.; Pilat, F.; Martin-Mateos, P.; Jerez, B.; Aecdo, P.; Strasser, G.; Lendl, B. High Frequency Modulation Characteristics of Mid-Infrared Ring Quantum Cascade Lasers. In Proceedings of the 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany, 23–27 June 2019. [Google Scholar] [CrossRef]
- Borri, S.; Bartalini, S.; De Natale, P.; Inguscio, M.; Gmachl, C.; Capasso, F.; Sivco, D.; Cho, A. Frequency modulation spectroscopy by means of quantum-cascade lasers. Appl. Phys. A 2006, 85, 223–229. [Google Scholar] [CrossRef]
- Eichholz, R.; Richter, H.; Wienold, M.; Schrottke, L.; Hey, R.; Grahn, H.T.; Hübers, H.-W. Frequency modulation spectroscopy with a THz quantum-cascade laser. Opt. Express 2013, 21, 32199–32206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldenstein, C.S.; Mathews, G.C. Simulation technique enabling calibration-free frequency-modulation spectroscopy measurements of gas conditions and lineshapes with modulation frequencies spanning kHz to GHz. Appl. Opt. 2020, 59, 1491–1500. [Google Scholar] [CrossRef]
- Peng, C.; Chen, G.; Tang, J.; Wang, L.; Wen, Z.; Zhou, H.; Martini, R. High-Speed Mid-Infrared Frequency Modulation Spectroscopy Based on Quantum Cascade Laser. IEEE Photon- Technol. Lett. 2016, 28, 1727–1730. [Google Scholar] [CrossRef]
- Stuhr, M.; Hesse, S.; Friedrichs, G. Quantitative and Sensitive Mid-Infrared Frequency Modulation Detection of HCN behind Shock Waves. Fuels 2021, 2, 437–447. [Google Scholar] [CrossRef]
- Yao, C.; Xiao, L.; Gao, S.; Wang, Y.; Wang, P.; Kan, R.; Jin, W.; Ren, W. Sub-ppm CO detection in a sub-meter-long hollow-core negative curvature fiber using absorption spectroscopy at 2.3 μm. Sens. Actuators B Chem. 2019, 303, 127238. [Google Scholar] [CrossRef]
- Zhao, P.; Zhao, Y.; Bao, H.; Ho, H.L.; Jin, W.; Fan, S.; Gao, S.; Wang, Y.; Wang, P. Mode-phase-difference photothermal spectroscopy for gas detection with an anti-resonant hollow-core optical fiber. Nat. Commun. 2020, 11, 847. [Google Scholar] [CrossRef] [Green Version]
- Krzempek, K.; Jaworski, P.; Kozioł, P.; Belardi, W. Antiresonant hollow core fiber-assisted photothermal spectroscopy of nitric oxide at 5.26 μm with parts-per-billion sensitivity. Sensors Actuators B Chem. 2021, 345, 130374. [Google Scholar] [CrossRef]
- Hu, M.; Ventura, A.; Hayashi, J.G.; Poletti, F.; Yao, S.; Ren, W. Trace gas detection in a hollow-core antiresonant fiber with heterodyne phase-sensitive dispersion spectroscopy. Sensors Actuators B Chem. 2022, 363, 131774. [Google Scholar] [CrossRef]
- Jaworski, P.; Dudzik, G.; Sazio, P.J.; Belardi, W.; Krzempek, K. Laser-Based Nitric Oxide Detection at 5.26 Μm Using Antiresonant Hollow-Core Fiber. In Proceedings of the Optical Fiber Communication Conference, Washington, DC, USA, 6–11 June 2021; Volume 1, pp. 5–7. [Google Scholar]
- Jaworski, P.; Yu, F.; Bojęś, P.; Wu, D.; Kozioł, P.; Dudzik, G.; Abramski, K.; Liao, M.; Krzempek, K. Antiresonant Hollow-Core Fiber for Multiple Gas Detection in the Mid-IR. In Proceedings of the CLEO: Science and Innovations 2020, Washington, DC, USA, 10–15 May 2020. [Google Scholar] [CrossRef]
- Jaworski, P.; Kozioł, P.; Krzempek, K.; Wu, D.; Yu, F.; Bojęś, P.; Dudzik, G.; Liao, M.; Abramski, K.; Knight, J. Antiresonant Hollow-Core Fiber-Based Dual Gas Sensor for Detection of Methane and Carbon Dioxide in the Near- and Mid-Infrared Regions. Sensors 2020, 20, 3813. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.; Hu, M.; Ventura, A.; Hayashi, J.G.; Poletti, F.; Ren, W. Tellurite Hollow-Core Antiresonant Fiber-Coupled Quantum Cascade Laser Absorption Spectroscopy. J. Light. Technol. 2021, 39, 5662–5668. [Google Scholar] [CrossRef]
- Yang, T.; Tian, C.; Chen, G.; Martini, R. Non-resonant optical modulation of quantum cascade laser and its application potential in infrared spectroscopy. In Novel In-Plane Semiconductor Lasers XIII; SPIE: Bellingham, WA, USA, 2014; pp. 214–223. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, M.; Ventura, A.; Hayashi, J.G.; Poletti, F.; Ren, W. Mid-Infrared Frequency Modulation Spectroscopy of NO Detection in a Hollow-Core Antiresonant Fiber. Photonics 2022, 9, 935. https://doi.org/10.3390/photonics9120935
Hu M, Ventura A, Hayashi JG, Poletti F, Ren W. Mid-Infrared Frequency Modulation Spectroscopy of NO Detection in a Hollow-Core Antiresonant Fiber. Photonics. 2022; 9(12):935. https://doi.org/10.3390/photonics9120935
Chicago/Turabian StyleHu, Mengyuan, Andrea Ventura, Juliano Grigoleto Hayashi, Francesco Poletti, and Wei Ren. 2022. "Mid-Infrared Frequency Modulation Spectroscopy of NO Detection in a Hollow-Core Antiresonant Fiber" Photonics 9, no. 12: 935. https://doi.org/10.3390/photonics9120935
APA StyleHu, M., Ventura, A., Hayashi, J. G., Poletti, F., & Ren, W. (2022). Mid-Infrared Frequency Modulation Spectroscopy of NO Detection in a Hollow-Core Antiresonant Fiber. Photonics, 9(12), 935. https://doi.org/10.3390/photonics9120935