High-Contrast Frontend for Petawatt-Scale Lasers Using an Optically Synchronized Picosecond Optical Parametric Chirped Pulse Amplification
Abstract
1. Introduction
2. Experimental Setup and Results
3. Discussion and Outlook
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Perry, M.D.; Pennington, D.; Stuart, B.C.; Tietbohl, G.; Brown, J.A.; Herman, S.; Golick, B.; Kartz, M.; Miller, J.; Powell, H.T.; et al. Petawatt laser pulses. Opt. Lett. 1999, 24, 160–163. [Google Scholar] [CrossRef]
- Danson, C.N.; Haefner, C.; Bromage, J.; Butcher, T.; Chanteloup, J.-C.F.; Chowdhury, E.A.; Galvanauskas, A.; Gizzi, L.A.; Hein, J.; Hillier, D.I.; et al. Petawatt and exawatt class lasers worldwide. High Power Laser Sci. Eng. 2019, 7, e54. [Google Scholar] [CrossRef]
- Dabu, R. High power femtosecond lasers at ELI-NP. AIP Conf. Proc. 2015, 1645, 219. [Google Scholar]
- Lureau, F.; Laux, S.; Casagrande, O.; Chalus, O.; Pellegrina, A.; Matras, G.; Radier, C.; Rey, G.; Ricaud, S.; Herriot, S.; et al. Latest results of 10 petawatt laser beamline for ELi nuclear physics infrastructure. Proc. SPIE 2016, 9726, 972613. [Google Scholar]
- Rus, B.; Bakule, P.; Kramer, D.; Naylon, J.; Thoma, J.; Fibrich, M.; Green, J.T.; Lagron, J.C.; Antipenkov, R.; Bartoníček, J.; et al. ELI-Beamlines: Progress in development of next generation short-pulse laser systems. Proc. SPIE 2017, 10241, 102410J. [Google Scholar]
- Kühn, S.; Dumergue, M.; Kahaly, S.; Mondal, S.; Füle, M.; Csizmadia, T.; Farkas, B.; Major, B.; Várallyay, Z.; Cormier, E.; et al. The ELI-ALPS facility: The next generation of attosecond sources. J. Phys. B At. Mol. Opt. Phys. 2017, 13, 132002. [Google Scholar] [CrossRef]
- Hernandez-Gomez, C.; Blake, S.; Chekhlov, O.; Clarke, R.; Dunne, A.; Galimberti, M.; Hancock, S.; Heathcote, R.; Holligan, P.; Lyachev, A.; et al. The vulcan 10 pw project. J. Phys. Conf. Ser. 2010, 244, 32006. [Google Scholar] [CrossRef]
- Lozhkarev, V.; Freidman, G.; Ginzburg, V.; Katin, E.; Khazanov, E.; Kirsanov, A.; Luchinin, G.; Mal’shakov, A.N.; Martyanov, M.A.; Palashov, O.V.; et al. Compact 0.56 petawatt laser system based on optical parametric chirped pulse amplification in KD* P crystals. Laser Phys. Lett. 2007, 4, 421–427. [Google Scholar] [CrossRef]
- Zou, J.P.; Le Blanc, C.; Papadopoulos, D.N.; Ch´eriaux, G.; Georges, P.; Mennerat, G.; Druon, F.; Lecherbourg, L.; Pellegrina, A.; Ramirez, P.; et al. Design and current progress of the Apollon 10 PW project. High Power Laser Sci. Eng. 2015, 3, e2. [Google Scholar] [CrossRef]
- Papadopoulos, D.N.; Zou, J.P.; Le Blanc, C.; Ch´eriaux, G.; Georges, P.; Druon, F.; Mennerat, G.; Ramirez, P.; Martin, L.; Fr´eneaux, A.; et al. The Apollon 10 PW laser: Experimental and theoretical investigation of the temporal characteristics. High Power Laser Sci. Eng. 2016, 4, e34. [Google Scholar] [CrossRef]
- Papadopoulos, D.N.; Ramirez, P.; Genevrier, K.; Ranc, L.; Lebas, N.; Pellegrina, A.; Le Blanc, C.; Monot, P.; Martin, L.; Zou, J.P.; et al. High-contrast 10 fs OPCPA-based frontend for multi-PW laser chains. Opt. Lett. 2017, 42, 3530–3533. [Google Scholar] [CrossRef]
- Meyerhofer, D.D. OMEGA EP OPAL: A Path to a 75-PW Laser System. In Proceedings of the 56th Annual Meeting of the American Physical Society, Division of Plasma Physics, New Orleans, LA, USA, 27–31 October 2014. [Google Scholar]
- Xie, X.; Zhu, J.; Yang, Q.; Kang, J.; Zhu, H.; Guo, A.; Zhu, P.; Gao, Q. Multi Petawatt Laser Design for the SHENGUANG II Laser Facility. Proc. SPIE 2015, 9513, 95130A. [Google Scholar]
- Zhu, J.; Xie, X.; Sun, M.; Kang, J.; Yang, Q.; Guo, A.; Zhu, H.; Zhu, P.; Gao, Q.; Liang, X.; et al. Analysis and Construction Status of SG-Ⅱ 5PW Laser Facility. High Power Laser Sci. Eng. 2018, 6, e29. [Google Scholar] [CrossRef]
- Zeng, X.; Zhou, K.; Zuo, Y.; Zhu, Q.; Su, J.; Wang, X.; Wang, X.; Huang, X.; Jiang, X.; Jiang, D.; et al. Multi-petawatt laser facility fully based on optical parametric chirped-pulse amplification. Opt. Lett. 2017, 42, 2014–2017. [Google Scholar] [CrossRef]
- Chu, Y.; Gan, Z.; Liang, X.; Yu, L.; Lu, X.; Wang, C.; Wang, X.; Xu, L.; Lu, H.; Yin, D.; et al. High-energy large-aperture Ti:sapphire amplifier for 5 PW laser pulses. Opt. Lett. 2015, 40, 5011–5014. [Google Scholar] [CrossRef]
- Sun, J.H.; Lee, H.W.; Yoo, J.Y.; Yoon, J.W.; Lee, C.W.; Yang, J.M.; Son, Y.J.; Jang, Y.H.; Lee, S.K.; Nam, C.H. 4.2 PW, 20 fs Ti:sapphire laser at 0.1 Hz. Opt. Lett. 2017, 42, 2058. [Google Scholar]
- Yoon, J.W.; Jeon, C.; Shin, J.; Lee, S.K.; Lee, H.W.; Choi, I.W.; Kim, H.T.; Sung, J.H.; Nam, C.H. Achieving the laser intensity of 5.5 × 1022 W/cm2 with a wavefront-corrected multi-PW laser. Opt. Express 2019, 27, 20412–20420. [Google Scholar] [CrossRef]
- François, L.; Matras, G.; Chalus, O.; Derycke, C.; Morbieu, T.; Radier, C.; Casagrande, O.; Laux, S.; Ricaud, S.; Rey, G.; et al. High-energy hybrid femtosecond laser system demonstrating 2 × 10 PW capability. High Power Laser Sci. Eng. 2020, 8. [Google Scholar]
- Yu, L.; Xu, Y.; Liu, Y.; Li, Y.; Li, S.; Liu, Z.; Li, W.; Wu, F.; Yang, X.; Yang, Y.; et al. High-contrast front end based on cascaded XPWG and femtosecond OPA for 10-PW-level Ti: Sapphire laser. Opt. Express 2018, 26, 2625–2633. [Google Scholar] [CrossRef]
- Thaury, C.; Quéré, F.; Geindre, J.P.; Levy, A.; Ceccotti, T.; Monot, P.; Bougeard, M.; Réau, F.; d’Oliveira, P.; Audebert, P.; et al. Plasma mirrors for ultrahigh-intensity optics. Nat. Phys. 2007, 3, 424–429. [Google Scholar] [CrossRef]
- Fourmaux, S.; Payeur, S.; Buffechoux, S.; Lassonde, P.; St-Pierre, C.; Martin, F.; Kieffer, J.C. Pedestal cleaning for high laser pulse contrast ratio with a 100 TW class laser system. Opt. Express 2011, 19, 8486–8497. [Google Scholar] [CrossRef]
- Liu, J.; Okamura, K.; Kida, Y.; Kobayashi, T. Temporal contrast enhancement of femtosecond pulses by a self-diffraction process in a bulk Kerr medium. Opt. Express 2010, 18, 22245–22254. [Google Scholar] [CrossRef]
- Chvykov, V.; Rousseau, P.; Reed, S.; Kalinchenko, G.; Yanovsky, V. Generation of 1011 contrast 50 TW laser pulses. Opt. Lett. 2006, 31, 1456–1458. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Z.; Li, W.; Zhang, Q.; Han, H.; Teng, H.; Wei, Z. Contrast enhancement in a Ti:sapphire chirped-pulse amplification laser system with a noncollinear femtosecond optical-parametric amplifier. Opt. Lett. 2010, 35, 3096–3098. [Google Scholar] [CrossRef][Green Version]
- Siddiqui, A.M.; Cirmi, G.; Brida, D.; Kärtner, F.X.; Cerullo, G. Generation of <7 fs pulses at 800 nm from ablue-pumped optical parametric amplifier at degeneracy. Opt. Lett. 2009, 34, 3592–3594. [Google Scholar]
- Huang, Y.; Zhang, C.; Xu, Y.; Li, D.; Leng, Y.; Li, R.; Xu, Z. Ultrashort pulse temporal contrast enhancement based on noncollinear optical-parametric amplification. Opt. Lett. 2011, 36, 781–783. [Google Scholar] [CrossRef]
- Chalus, O.; Pellegrina, A.; Ricaud, S.; Casagrande, O.; Derycke, C.; Soujaeff, A.; Rey, G.; Radier, C.; Matras, G.; Boudjemaa, L.; et al. High contrast broadband seeder for multi-PW laser system. Proc. SPIE 2016, 9726, 972611, Solid State Lasers XXV: Technology and Devices, (16 March 2016). [Google Scholar] [CrossRef]
- Diouf, M.; Lin, Z.; Harling, M.; Toussaint, K.C., Jr. Demonstration of speckle resistance using space–Time light sheets. Sci. Rep. 2022, 12, 1–7. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Pan, X.; Li, X.-C.; Lin, Z.-Q. Optimization of Pulse Temporal Contrast in Optical Parametric Chirped Pulse Amplification. Chin. Phys. Lett. 2009, 26, 24211. [Google Scholar]
- Indra, L.; Batysta, F.; Hříbek, P.; Novák, J.; Hubka, Z.; Green, J.T.; Antipenkov, R.; Boge, R.; Naylon, J.A.; Bakule, P.; et al. Picosecond pulse generated supercontinuum as a stable seed for OPCPA. Opt. Lett. 2017, 42, 843–846. [Google Scholar] [CrossRef]
- Lv, S.; Lu, S.; Chen, M. Suppressing self-focusing effect in high peak power Nd: YAG picosecond Laser amplifier system. Infrared Laser Eng. 2019, 48, 69–76. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, H.; Sun, M.; Li, L.; Qiu, L.; Lu, Z.; Xie, X.; Zhang, G.; Liang, X.; Zhu, P.; Zhu, X.; et al. High-Contrast Frontend for Petawatt-Scale Lasers Using an Optically Synchronized Picosecond Optical Parametric Chirped Pulse Amplification. Photonics 2022, 9, 945. https://doi.org/10.3390/photonics9120945
Xue H, Sun M, Li L, Qiu L, Lu Z, Xie X, Zhang G, Liang X, Zhu P, Zhu X, et al. High-Contrast Frontend for Petawatt-Scale Lasers Using an Optically Synchronized Picosecond Optical Parametric Chirped Pulse Amplification. Photonics. 2022; 9(12):945. https://doi.org/10.3390/photonics9120945
Chicago/Turabian StyleXue, Hao, Meizhi Sun, Linjun Li, Lijuan Qiu, Zhantao Lu, Xinglong Xie, Guoli Zhang, Xiao Liang, Ping Zhu, Xiangbing Zhu, and et al. 2022. "High-Contrast Frontend for Petawatt-Scale Lasers Using an Optically Synchronized Picosecond Optical Parametric Chirped Pulse Amplification" Photonics 9, no. 12: 945. https://doi.org/10.3390/photonics9120945
APA StyleXue, H., Sun, M., Li, L., Qiu, L., Lu, Z., Xie, X., Zhang, G., Liang, X., Zhu, P., Zhu, X., Yang, Q., Guo, A., Zhu, H., Kang, J., & Zhang, D. (2022). High-Contrast Frontend for Petawatt-Scale Lasers Using an Optically Synchronized Picosecond Optical Parametric Chirped Pulse Amplification. Photonics, 9(12), 945. https://doi.org/10.3390/photonics9120945