ZnCl2-Enhanced Intrinsic Luminescence of Tin Chlorophosphate Glasses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Characterization
3. Results and Discussion
3.1. Spectral Properties of Binary TCP Glasses
3.2. Spectral Properties of Ternary P2O5-SnCl2-ZnCl2 Glasses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nakanishi, T.; Tanabe, S. Novel Eu2+-Activated Glass Ceramics Precipitated with Green and Red Phosphors for High-Power White LED. IEEE J. Sel. Top. Quantum Electron. 2009, 15, 1171–1176. [Google Scholar] [CrossRef]
- Yoo, H.; Kouhara, Y.; Yoon, H.C.; Park, S.J.; Oh, J.H.; Do, Y.R. Sn-P-F containing glass matrix for the fabrication of phosphor-in-glass for use in high power LEDs. RSC Adv. 2016, 6, 111640–111647. [Google Scholar] [CrossRef]
- Karadza, B.; Van Avermaet, H.; Mingabudinova, L.; Hens, Z.; Meuret, Y. Efficient, high-CRI white LEDs by combining traditional phosphors with cadmium-free InP/ZnSe red quantum dots. Photonics Res. 2022, 10, 155–165. [Google Scholar] [CrossRef]
- Masai, H.; Takahashi, Y.; Fujiwara, T.; Matsumoto, S.; Yoko, T. High Photoluminescent Property of Low-Melting Sn-Doped Phosphate Glass. Appl. Phys. Express 2010, 3, 082102. [Google Scholar] [CrossRef]
- Masai, H.; Fujiwara, T.; Matsumoto, S.; Takahashi, Y.; Iwasaki, K.; Tokuda, Y.; Yoko, T. White light emission of Mn-doped SnO-ZnO-P2O5 glass containing no rare earth cation. Opt. Lett. 2011, 36, 2868–2870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masai, H.; Tanimoto, T.; Fujiwara, T.; Matsumoto, S.; Tokuda, Y.; Yoko, T. Correlation between emission property and concentration of Sn2+ center in the SnO-ZnO-P2O5 glass. Opt. Express 2012, 20, 27319–27326. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.J.; Zhou, C.C.; Lin, J.; Wang, J. Effects on the emission discrepancy between two-dimensional Sn-based and Pb-based perovskites. Chin. Opt. Lett. 2022, 20, 021602. [Google Scholar] [CrossRef]
- Wang, Y.J.; Yu, Y.; Zou, Y.; Zhang, L.Y.; Hu, L.L.; Chen, D.P. Broadband visible luminescence in tin fluorophosphate glasses with ultra-low glass transition temperature. RSC Adv. 2018, 8, 4921–4927. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.J.; Li, Y.; Han, S.; Zhang, L.Y.; Chen, D.P. Continuously tunable broadband emission of Mn2+-doped low-melting point Sn-F-P-O glasses for warm white light-emitting diodes. J. Am. Ceram. Soc. 2018, 101, 5564–5570. [Google Scholar] [CrossRef]
- Mao, W.; Cai, M.Z.; Xie, W.Q.; Li, P.P.; Zhen, W.Y.; Xu, S.Q.; Zhang, J.J. Tunable white light in trivalent europium single doped tin fluorophosphates ultra-low melting glass. J. Alloys Compd. 2019, 805, 205–210. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, J.H.; Zhang, Y.J.; Lin, H.; Pun, E.Y.B.; Li, D.S. Phosphor-in-glass with full-visible-spectrum emission based on ultra-low melting Sn-F-P-O glass pumped by NUV LED chips. J. Alloys Compd. 2021, 864, 158671. [Google Scholar] [CrossRef]
- Jiang, S.B.; Luo, T.; Wang, J.F. Spectral properties of organic chromophores in fluorophosphate glasses. J. Non-Cryst. Solids 2000, 263, 358–363. [Google Scholar] [CrossRef]
- Wu, T.; Wang, C.; Shen, Y.; Du, Y.; Tao, Y.; Wang, P.; Chen, D. Preparation and structure of low-melting-point stannous chlorophosphate containing nitrogen glasses. J. Non-Cryst. Solids 2022, 591, 121739. [Google Scholar] [CrossRef]
- Skuja, L. Isoelectronic Series of Twofold Coordinated Si, Ge, and sn Atoms in Glassy SIO2—A Luminescence Study. J. Non-Cryst. Solids 1992, 149, 77–95. [Google Scholar] [CrossRef]
- Masai, H.; Yamada, Y.; Suzuki, Y.; Teramura, K.; Kanemitsu, Y.; Yoko, T. Narrow Energy Gap between Triplet and Singlet Excited States of Sn2+ in Borate Glass. Sci. Rep. 2013, 3, 3541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, C.; Ou, Y.; Qin, G.; Chen, G.; Baccaro, S. Optical properties of phosphate glass containing SnO2. Glass Technol. -Eur. J. Glass Sci. Technol. Part A 2010, 51, 213–215. [Google Scholar]
- Mao, W.; Xie, W.Q.; Li, P.P.; Lu, Y.; Duan, Y.M.; Xu, S.Q.; Zhang, J.J. Double relaxation emission of Sn2+ activator in tin fluorophosphate glass for device applications. Chem. Eng. J. 2020, 399, 125270. [Google Scholar] [CrossRef]
- Masai, H.; Fujiwara, T.; Matsumoto, S.; Takahashi, Y.; Iwasaki, K.; Tokuda, Y.; Yoko, T. High efficient white light emission of rare earth-free MnO-SnO-ZnO-P2O5 glass. J. Ceram. Soc. Jpn. 2011, 119, 726–730. [Google Scholar] [CrossRef] [Green Version]
- Torimoto, A.; Masai, H.; Okada, G.; Yanagida, T. X-ray induced luminescence of Sn2+-centers in zinc phosphate glasses. Radiat. Meas. 2017, 106, 175–179. [Google Scholar] [CrossRef]
- Hudgens, J.J.; Brow, R.K.; Tallant, D.R.; Martin, S.W. Raman spectroscopy study of the structure of lithium and sodium ultraphosphate glasses. J. Non-Cryst. Solids 1998, 223, 21–31. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Li, H.; Hu, L.L. Statistical structure analysis of GeO2 modified Yb3+: Phosphate glasses based on Raman and FTIR study. J. Alloys Compd. 2017, 698, 103–113. [Google Scholar] [CrossRef]
- Thuat, N.T.; An, N.M.; Nguyen, K.D.; Nguyen, T.D.; Truong, T.T. Synthesis of organo tin halide perovskites via simple aqueous acidic solution-based method. J. Sci. Adv. Mater. Devices 2018, 3, 471–477. [Google Scholar] [CrossRef]
- Moreira, E.; Henriques, J.M.; Azevedo, D.L.; Caetano, E.W.S.; Freire, V.N.; Albuquerque, E.L. Structural, optoelectronic, infrared and Raman spectra of orthorhombic SrSnO3 from DFT calculations. J. Solid State Chem. 2011, 184, 921–928. [Google Scholar] [CrossRef]
- Jain, D.; Sudarsan, V.; Vatsa, R.K.; Pillai, C.G.S. Luminescence studies on ZnO–P2O5 glasses doped with Gd2O3:Eu nanoparticles and Eu2O3. J. Lumin. 2009, 129, 439–443. [Google Scholar] [CrossRef]
- Djurisic, A.B.; Leung, Y.H.; Tam, K.H.; Ding, L.; Ge, W.K.; Chen, H.Y.; Gwo, S. Green, yellow, and orange defect emission from ZnO nanostructures: Influence of excitation wavelength. Appl. Phys. Lett. 2006, 88, 103107. [Google Scholar] [CrossRef]
Sample | Emission Peak Position (nm) | Fluorescence Decay (ns) | β/ (α + β) (%) | |
---|---|---|---|---|
α-Band | β-Band | |||
TCP50 | 435 | 504 | 2.61/20.03 | 56.4% |
TCP40 | 444 | 518 | 2.39 | 57% |
TCP35 | 452 | 520 | 2.30 | 61% |
TCP30 | 463 | 540 | 2.37 | 78% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, T.; Tao, Y.; Wang, P.; Zhao, M.; Chen, D. ZnCl2-Enhanced Intrinsic Luminescence of Tin Chlorophosphate Glasses. Photonics 2022, 9, 973. https://doi.org/10.3390/photonics9120973
Wu T, Tao Y, Wang P, Zhao M, Chen D. ZnCl2-Enhanced Intrinsic Luminescence of Tin Chlorophosphate Glasses. Photonics. 2022; 9(12):973. https://doi.org/10.3390/photonics9120973
Chicago/Turabian StyleWu, Ting, Yiting Tao, Panting Wang, Mingjun Zhao, and Danping Chen. 2022. "ZnCl2-Enhanced Intrinsic Luminescence of Tin Chlorophosphate Glasses" Photonics 9, no. 12: 973. https://doi.org/10.3390/photonics9120973
APA StyleWu, T., Tao, Y., Wang, P., Zhao, M., & Chen, D. (2022). ZnCl2-Enhanced Intrinsic Luminescence of Tin Chlorophosphate Glasses. Photonics, 9(12), 973. https://doi.org/10.3390/photonics9120973