Comparison between Cylindrical, Trigonal, and General Symmetry Models for the Analysis of Polarization-Dependent Second Harmonic Generation Measurements Acquired from Collagen-Rich Equine Pericardium Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biological Sample
2.2. Experimental Apparatus
2.3. PSHG Models and Data Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fratzl, P. Collagen: Structure and Mechanics; Springer: Boston, MA, USA, 2008; pp. 1–506. [Google Scholar] [CrossRef]
- Brodsky, B.; Persikov, A.V. Molecular Structure of the Collagen Triple Helix. Adv. Protein Chem. 2005, 70, 301–339. [Google Scholar] [CrossRef] [PubMed]
- Hompland, T.; Erikson, A.; Lindgren, M.; Lindmo, T.; de Lange Davies, C. Second-Harmonic Generation in Collagen as a Potential Cancer Diagnostic Parameter. J. Biomed. Opt. 2008, 13, 054050. [Google Scholar] [CrossRef] [PubMed]
- Kirkpatrick, N.D.; Brewer, M.A.; Utzinger, U. Endogenous Optical Biomarkers of Ovarian Cancer Evaluated with Multiphoton Microscopy. Cancer Epidemiol. Biomark. Prev. 2007, 16, 2048–2057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campagnola, P.J.; Loew, L.M. Second-Harmonic Imaging Microscopy for Visualizing Biomolecular Arrays in Cells, Tissues and Organisms. Nat. Biotechnol. 2003, 21, 1356–1360. [Google Scholar] [CrossRef]
- Tsafas, V.; Giouroukou, K.; Kounakis, K.; Mari, M.; Fotakis, C.; Tavernarakis, N.; Filippidis, G. Monitoring Aging-Associated Structural Alterations in Caenorhabditis Elegans Striated Muscles via Polarization-Dependent Second-Harmonic Generation Measurements. J. Biophotonics 2021, 14, e202100173. [Google Scholar] [CrossRef]
- Pinsard, M.; Laverty, S.; Richard, H.; Dubuc, J.; Schanne-Klein, M.C.; Légaré, F. Maturation of the Meniscal Collagen Structure Revealed by Polarization-Resolved and Directional Second Harmonic Generation Microscopy. Sci. Rep. 2019, 9, 18448. [Google Scholar] [CrossRef] [Green Version]
- Campbell, K.R.; Chaudhary, R.; Handel, J.M.; Patankar, M.S.; Campagnola, P.J. Polarization-Resolved Second Harmonic Generation Imaging of Human Ovarian Cancer. J. Biomed. Opt. 2018, 23, 066501. [Google Scholar] [CrossRef] [Green Version]
- Ambekar, R.; Lau, T.-Y.; Walsh, M.; Bhargava, R.; Toussaint, K.C. Quantifying Collagen Structure in Breast Biopsies Using Second-Harmonic Generation Imaging. Biomed. Opt. Express 2012, 3, 2021. [Google Scholar] [CrossRef] [Green Version]
- Tilbury, K.; Campagnola, P.J. Applications of Second-Harmonic Generation Imaging Microscopy in Ovarian and Breast Cancer. Perspect. Medicin. Chem. 2015, 7, 21–32. [Google Scholar] [CrossRef] [Green Version]
- Tsafas, V.; Gavgiotaki, E.; Tzardi, M.; Tsafa, E.; Fotakis, C.; Athanassakis, I.; Filippidis, G. Polarization-Dependent Second-Harmonic Generation for Collagen-Based Differentiation of Breast Cancer Samples. J. Biophotonics 2020, 13, e202000180. [Google Scholar] [CrossRef]
- Latour, G.; Gusachenko, I.; Kowalczuk, L.; Lamarre, I.; Schanne-Klein, M.-C. In Vivo Structural Imaging of the Cornea by Polarization-Resolved Second Harmonic Microscopy. Biomed. Opt. Express 2012, 3, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quigley, A.S.; Bancelin, S.; Deska-Gauthier, D.; Légaré, F.; Kreplak, L.; Veres, S.P. In Tendons, Differing Physiological Requirements Lead to Functionally Distinct Nanostructures. Sci. Rep. 2018, 8, 4409. [Google Scholar] [CrossRef] [PubMed]
- Réfrégier, P.; Roche, M.; Brasselet, S. Precision Analysis in Polarization-Resolved Second Harmonic Generation Microscopy. Opt. Lett. 2011, 36, 2149. [Google Scholar] [CrossRef] [PubMed]
- Mercatelli, R.; Mattana, S.; Capozzoli, L.; Ratto, F.; Rossi, F.; Pini, R.; Fioretto, D.; Pavone, F.S.; Caponi, S.; Cicchi, R. Morpho-Mechanics of Human Collagen Superstructures Revealed by All-Optical Correlative Micro-Spectroscopies. Commun. Biol. 2019, 2, 117. [Google Scholar] [CrossRef] [Green Version]
- Rassoli, A.; Fatouraee, N.; Guidoin, R.; Zhang, Z. Comparison of Tensile Properties of Xenopericardium from Three Animal Species and Finite Element Analysis for Bioprosthetic Heart Valve Tissue. Artif. Organs 2020, 44, 278–287. [Google Scholar] [CrossRef]
- Mulder, G.; Lee, D.K. Use of Equine Derived Pericardium as a Biological Cover to Promote Closure of a Complicated Wound with Associated Scleroderma and Raynaud’s Disease. Wounds 2009, 21, 297–301. [Google Scholar]
- Krafft, C.; Cicchi, R.; Shaik, T.A.; Lagarto, J.L.; Baria, E.; Goktas, M.; Onoja, P.I.; Blank, K.G.; Pavone, F.S.; Popp, J. Monitoring Changes in Biochemical and Biomechanical Properties of Collagenous Tissues Using Label-Free and Nondestructive Optical Imaging Techniques. Anal. Chem. 2021, 93, 3813–3821. [Google Scholar] [CrossRef]
- Chen, W.L.; Li, T.H.; Su, P.J.; Chou, C.K.; Fwu, P.T.; Lin, S.J.; Kim, D.; So, P.T.C.; Dong, C.Y. Second Harmonic Generation χ Tensor Microscopy for Tissue Imaging. Appl. Phys. Lett. 2009, 94, 183902. [Google Scholar] [CrossRef]
- Chu, S.W.; Chen, S.Y.; Chern, G.W.; Tsai, T.H.; Chen, Y.C.; Lin, B.L.; Sun, C.K. Studies of χ(2)/χ(3) Tensors in Submicron-Scaled Bio-Tissues by Polarization Harmonics Optical Microscopy. Biophys. J. 2004, 86, 3914–3922. [Google Scholar] [CrossRef] [Green Version]
- Amat-Roldan, I.; Psilodimitrakopoulos, S.; Loza-Alvarez, P.; Artigas, D. Fast Image Analysis in Polarization SHG Microscopy. Opt. Express 2010, 18, 17209. [Google Scholar] [CrossRef]
- Duboisset, J.; Aït-Belkacem, D.; Roche, M.; Rigneault, H.; Brasselet, S. Generic Model of the Molecular Orientational Distribution Probed by Polarization-Resolved Second-Harmonic Generation. Phys. Rev. A 2012, 85, 043829. [Google Scholar] [CrossRef] [Green Version]
- Dow, X.Y.; DeWalt, E.L.; Newman, J.A.; Dettmar, C.M.; Simpson, G.J. Unified Theory for Polarization Analysis in Second Harmonic and Sum Frequency Microscopy. Biophys. J. 2016, 111, 1553–1568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ducourthial, G.; Affagard, J.S.; Schmeltz, M.; Solinas, X.; Lopez-Poncelas, M.; Bonod-Bidaud, C.; Rubio-Amador, R.; Ruggiero, F.; Allain, J.M.; Beaurepaire, E.; et al. Monitoring Dynamic Collagen Reorganization during Skin Stretching with Fast Polarization-Resolved Second Harmonic Generation Imaging. J. Biophotonics 2019, 12, e201800336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kröger, M.; Schleusener, J.; Jung, S.; Darvin, M.E. Characterization of Collagen i Fiber Thickness, Density, and Orientation in the Human Skin in Vivo Using Second- Harmonic Generation Imaging. Photonics 2021, 8, 404. [Google Scholar] [CrossRef]
- Hoover, E.E.; Squier, J.A. Advances in Multiphoton Microscopy Technology. Nat. Photonics 2013, 7, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Gavgiotaki, E.; Filippidis, G.; Tsafas, V.; Bovasianos, S.; Kenanakis, G.; Georgoulias, V.; Tzardi, M.; Agelaki, S.; Athanassakis, I. Third Harmonic Generation Microscopy Distinguishes Malignant Cell Grade in Human Breast Tissue Biopsies. Sci. Rep. 2020, 10, 11055. [Google Scholar] [CrossRef]
- Deniset-Besseau, A.; Duboisset, J.; Benichou, E.; Hache, F.; Brevet, P.F.; Schanne-Klein, M.-C. Measurement of the Second-Order Hyperpolarizability of the Collagen Triple Helix and Determination of Its Physical Origin. J. Phys. Chem. B 2009, 113, 13437–13445. [Google Scholar] [CrossRef]
- Tiaho, F.; Recher, G.; Rouède, D. Estimation of Helical Angles of Myosin and Collagen by Second Harmonic Generation Imaging Microscopy. Opt. Express 2007, 15, 12286. [Google Scholar] [CrossRef] [Green Version]
- Teulon, C.; Gusachenko, I.; Latour, G.; Schanne-Klein, M.-C. Theoretical, Numerical and Experimental Study of Geometrical Parameters That Affect Anisotropy Measurements in Polarization-Resolved SHG Microscopy. Opt. Express 2015, 27, 9313. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mari, M.; Tsafas, V.; Staraki, D.; Fotakis, C.; Filippidis, G. Comparison between Cylindrical, Trigonal, and General Symmetry Models for the Analysis of Polarization-Dependent Second Harmonic Generation Measurements Acquired from Collagen-Rich Equine Pericardium Samples. Photonics 2022, 9, 254. https://doi.org/10.3390/photonics9040254
Mari M, Tsafas V, Staraki D, Fotakis C, Filippidis G. Comparison between Cylindrical, Trigonal, and General Symmetry Models for the Analysis of Polarization-Dependent Second Harmonic Generation Measurements Acquired from Collagen-Rich Equine Pericardium Samples. Photonics. 2022; 9(4):254. https://doi.org/10.3390/photonics9040254
Chicago/Turabian StyleMari, Meropi, Vassilis Tsafas, Despina Staraki, Costas Fotakis, and George Filippidis. 2022. "Comparison between Cylindrical, Trigonal, and General Symmetry Models for the Analysis of Polarization-Dependent Second Harmonic Generation Measurements Acquired from Collagen-Rich Equine Pericardium Samples" Photonics 9, no. 4: 254. https://doi.org/10.3390/photonics9040254
APA StyleMari, M., Tsafas, V., Staraki, D., Fotakis, C., & Filippidis, G. (2022). Comparison between Cylindrical, Trigonal, and General Symmetry Models for the Analysis of Polarization-Dependent Second Harmonic Generation Measurements Acquired from Collagen-Rich Equine Pericardium Samples. Photonics, 9(4), 254. https://doi.org/10.3390/photonics9040254