Characteristic Study of Non-Line-of-Sight Scattering Ultraviolet Communication System at Small Elevation Angle
Abstract
:1. Introduction
2. Non-Line-of-Sight UV Single-Scattering Model
2.1. Classical Single Scattering Model
2.2. Isosceles Single-Scattering Model
3. Simulation Analysis
4. Experiment Analysis
4.1. Experimental Conditions
4.2. Experimental Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, Z.; Sadler, B.M. Ultraviolet Communications: Potential and State-Of-The-Art. IEEE Commun. Mag. 2008, 46, 67–73. [Google Scholar] [CrossRef]
- Vavoulas, A.; Sandalidis, H.G.; Chatzidiamantis, N.D.; Xu, Z.; Karagiannidis, G.K. A Survey on Ultraviolet C-Band (UV-C) Communications. IEEE Commun. Surv. Tutor. 2019, 21, 2111–2133. [Google Scholar] [CrossRef]
- Reilly, D.M.; Warde, C. Temporal characteristics of single-scatter radiation. J. Opt. Soc. Am. 1979, 69, 464–470. [Google Scholar] [CrossRef]
- Luettgen, M.R.; Shapiro, J.H.; Reilly, D.M. Non-line-of-sight single-scatter propagation model. J. Opt. Soc. Am. A 1991, 8, 1964–1972. [Google Scholar] [CrossRef]
- Elshimy, M.A.; Hranilovic, S. Non-line-of-sight single-scatter propagation model for noncoplanar geometries. J. Opt. Soc. Am. A 2011, 28, 420–428. [Google Scholar] [CrossRef]
- Wang, L.; Xu, Z.; Sadler, B.M. An approximate closed-form link loss model for non-line-of-sight ultraviolet communication in noncoplanar geometry. Opt. Lett. 2011, 36, 1224–1226. [Google Scholar] [CrossRef]
- Zuo, Y.; Xiao, H.; Wu, J.; Li, Y.; Lin, J. A single-scatter path loss model for non-line-of-sight ultraviolet channels. Opt. Express 2012, 20, 10359–10369. [Google Scholar] [CrossRef]
- Zuo, Y.; Xiao, H.; Wu, J.; Li, W.; Lin, J. Closed-form path loss model of non-line-of-sight ultraviolet single-scatter propagation. Opt. Lett. 2013, 38, 2116–2118. [Google Scholar] [CrossRef]
- Wang, L.; Xu, Z.; Sadler, B.M. Non-line-of-sight ultraviolet link loss in noncoplanar geometry. Opt. Lett. 2010, 35, 1263–1265. [Google Scholar] [CrossRef]
- Ding, H.; Chen, G.; Majumdar, A.; Sadler, B.; Xu, Z. Modeling of non-line-of-sight ultraviolet scattering channels for communication. IEEE J. Sel. Areas Commun. 2009, 27, 1535–1544. [Google Scholar] [CrossRef]
- Drost, R.J.; Moore, T.J.; Sadler, B.M. UV communications channel modeling incorporating multiple scattering interactions. J. Opt. Soc. Am. A 2011, 28, 686–695. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Jia, H.; Zhang, H.; Wang, X.; Chang, S.; Yang, J. Vectorized polarization-sensitive model of non-line-of-sight multiple-scatter propagation. J. Opt. Soc. Am. A 2011, 28, 2082–2085. [Google Scholar] [CrossRef] [PubMed]
- Bos, J.P.; Hammel, S.; van Eijk, A.M.; Rodriguez, R.; Wang, A.; Chen, G.; Carrasco, R.; Marchan, S.C.; Reeves, A.D.; Torres, E.; et al. Modeling and experiment verification of non-line-of-sight ultraviolet overwater communication channel. In Proceedings of the Laser Communication and Propagation through the Atmosphere and Oceans VII, San Diego, CA, USA, 20–22 August 2018. [Google Scholar]
- Song, P.; Zhou, X.; Song, F.; Su, C.; Wang, A. Performance analysis of UV multiple-scatter communication system with height difference. Appl. Opt. 2017, 56, 8908–8916. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Zhang, M.; Li, Z.; Popov, S.; Leeson, M.; Xu, T. High-Dimensional Feature Based Non-Coherent Detection for Multi-Intensity Modulated Ultraviolet Communications. J. Lightwave Technol. 2022, 40, 1879–1887. [Google Scholar] [CrossRef]
- Cao, T.; Gao, X.; Wu, T.; Pan, C.; Song, J. Reflection-Assisted Non-Line-of-Sight Ultraviolet Communications. J. Lightwave Technol. 2022, 40, 1953–1961. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, H.; Cheng, J. Effects of haze particles and fog droplets on NLOS ultraviolet communication channels. Opt. Express 2015, 23, 23259–23269. [Google Scholar] [CrossRef]
- Aung, T.Y.; Arya, S.; Chung, Y.H. Performance dependence of non-line-of-sight ultraviolet communications on atmospheric parameters of the ultraviolet channel. Opt. Commun. 2019, 443, 7–11. [Google Scholar] [CrossRef]
- Xu, Z.; Ding, H.; Sadler, B.M.; Chen, G. Analytical performance study of solar blind non-line-of-sight ultraviolet short-range communication links. Opt. Lett. 2008, 33, 1860–1862. [Google Scholar] [CrossRef]
- van Eijk, A.M.J.; Gupta, A.; Noshad, M.; Brandt-Pearce, M.; Davis, C.C.; Hammel, S.M.; Majumdar, A.K. NLOS UV channel modeling using numerical integration and an approximate closed-form path loss model. In Proceedings of the Laser Communication and Propagation through the Atmosphere and Oceans, San Diego, CA, USA, 13–15 August 2012. [Google Scholar]
- Ke, X.Z. Theory of Ultraviolet Self-Organizing Network; Science Press: Beijing, China, 2011. [Google Scholar]
- Song, P.; Liu, C.; Zhao, T.; Guo, H.; Chen, J. Research on pulse response characteristics of wireless ultraviolet communication in mobile scene. Opt. Express 2019, 27, 10670–10683. [Google Scholar] [CrossRef]
- Ding, H.; Chen, G.; Xu, Z.; Sadler, B.M. Channel modelling and performance of non-line-of-sight ultraviolet scattering communications. IET Commun. 2012, 6, 514–524. [Google Scholar] [CrossRef]
- Chen, G.; Xu, Z.; Ding, H.; Sadler, B.M. Path loss modeling and performance trade-off study for short-range non-line-of-sight ultraviolet communications. Opt. Express 2009, 17, 3929–3940. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Wang, H.; Liu, M.; Hu, H.; Mao, Z. Applicability of non-line-of-sight ultraviolet single-scatter approximation model. Photonic Netw. Commun. 2015, 31, 147–154. [Google Scholar] [CrossRef]
- Zachor, A.S. Aureole radiance field about a source in a scattering–absorbing medium. Appl. Opt. 1978, 17, 1911–1922. [Google Scholar] [CrossRef] [PubMed]
- Bucholtz, A. Rayleigh-scattering calculations for the terrestrial atmosphere. Appl. Opt. 1995, 34, 2765–2773. [Google Scholar] [CrossRef]
Symbol | Physical Explanation | Value |
---|---|---|
Planck’s constant | ·s | |
speed of light | m/s | |
wavelength | 265 nm | |
transmitted power | 400 mW | |
receiving area | 2 cm2 | |
Tx full beam angle | ||
Rx field of view | ||
Off-axis angle of the transmitter | ||
The off-axis angle of the receiver | ||
r | Communication distance | 100 m and 400 m |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, A.; Wang, Y.; Zhang, J.; Zhao, Y.; Sun, N.; Liu, J. Characteristic Study of Non-Line-of-Sight Scattering Ultraviolet Communication System at Small Elevation Angle. Photonics 2022, 9, 363. https://doi.org/10.3390/photonics9050363
Du A, Wang Y, Zhang J, Zhao Y, Sun N, Liu J. Characteristic Study of Non-Line-of-Sight Scattering Ultraviolet Communication System at Small Elevation Angle. Photonics. 2022; 9(5):363. https://doi.org/10.3390/photonics9050363
Chicago/Turabian StyleDu, Axin, Yuehui Wang, Jing Zhang, Yingkai Zhao, Ning Sun, and Jianguo Liu. 2022. "Characteristic Study of Non-Line-of-Sight Scattering Ultraviolet Communication System at Small Elevation Angle" Photonics 9, no. 5: 363. https://doi.org/10.3390/photonics9050363
APA StyleDu, A., Wang, Y., Zhang, J., Zhao, Y., Sun, N., & Liu, J. (2022). Characteristic Study of Non-Line-of-Sight Scattering Ultraviolet Communication System at Small Elevation Angle. Photonics, 9(5), 363. https://doi.org/10.3390/photonics9050363