Characteristics of Critical-Wavelength-Existed Fiber-Optic Mach–Zehnder Interferometers and Their Sensing Applications
Abstract
:1. Introduction
2. Theoretical Analysis of the Transmission Characteristics of the CWL-Existed in-Line MZIs
3. Characteristics of Interference Peaks/Dips in the CWL-Existed in-Line MZIs and Their Applications
3.1. Characteristics of Interference Peaks/Dips in the CWL-Existed SFS Structures
- (1)
- The interference peaks/dips lying on the different sides of the CWL shift to opposite directions under temperature, axial strain, and static pressure variations. For example, when temperature increases, there is a blueshift for peaks on the lower wavelength side of the CWL (i.e., within the region from 1500 nm to the CWL), while for peaks on the longer wavelength side of the CWL (i.e., within the region from the CWL to 1580 nm), there is a redshift. The experimental transmission spectra of the SFS structure under temperature variations are shown in Figure 4d, which agrees well with the calculation results.
- (2)
- The wavelength sensitivity of the interference peak is only related to the wavelength spacing between the measured wavelength and the CWL. The LFMF used in the SFS sensor and the sensing parameters pre-applied to the FMF section may change the wavelength separation between the peak wavelength and the CWL. Thus, the variation in wavelength separation will affect the corresponding wavelength sensitivity of the measured peaks, as shown in Figure 4a–c. The experimental results show close agreement with the simulated curves.
- (3)
- As the peak wavelength value approaches the CWL value, i.e., , the wavelength sensitivity increases significantly, as shown in Figure 4a–c, from both the theoretical and experimental points of view. However, the mathematically derived infinitely high sensitivity at the CWL has no practical meaning because at CWL from the theoretical analysis, and an infinite length of FMF is needed in experiments to minimize the wavelength spacing between the wavelength of PL, 1/PH, 1, and the CWL, which is unpractical in applications.
3.2. Characteristics of Interference Peaks/Dips in the CWL-Existed Few-Mode Microfiber in-Line MZIs
4. Characteristics of the Achromatic Fringe in CWL-Existed in-Line MZIs and Their Applications
4.1. Detection Scheme of CWL in the SFS Sensing Structure
4.2. Sensing Applications of in-Line MZIs Based on CWL Detection
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Li, X.; Chen, N.; Zhou, X.; Gong, P.; Wang, S.; Zhang, Y.; Zhao, Y. A review of specialty fiber biosensors based on interferometer configuration. J. Biophotonics 2021, 14, e202100068. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, V.; Kishor, K.; Sharma, A.C. Tapered optical fiber geometries and sensing applications based on Mach-Zehnder interferometer: A review. Opt. Fiber Technol. 2020, 58, 102302. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, H.; Lv, R.-Q.; Zhao, J. Review of optical fiber Mach–Zehnder interferometers with micro-cavity fabricated by femtosecond laser and sensing applications. Opt. Lasers Eng. 2019, 117, 7–20. [Google Scholar] [CrossRef]
- Min, R.; Liu, Z.; Pereira, L.; Yang, C.; Sui, Q.; Marques, C. Optical fiber sensing for marine environment and marine structural health monitoring: A review. Opt. Laser Technol. 2021, 140, 107082. [Google Scholar] [CrossRef]
- Wang, L.; Yj, W.; Song, S.; Li, F. Overview of fibre optic sensing technology in the field of physical ocean observation. Front. Phys. 2021, 9, 745487. [Google Scholar] [CrossRef]
- Su, J.; Dong, X.; Lu, C. Characteristics of few mode fiber under bending. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 139–145. [Google Scholar] [CrossRef]
- Su, J.; Dong, X.; Lu, C. Property of bent few-mode fiber and its application in displacement sensor. IEEE Photonics Technol. Lett. 2016, 28, 1387–1390. [Google Scholar] [CrossRef]
- Lu, C.; Dong, X.; Su, J. Detection of refractive index change from the critical wavelength of an etched few mode fiber. J. Lightwave Technol. 2017, 35, 2593–2597. [Google Scholar] [CrossRef]
- Lu, C.; Su, J.; Dong, X.; Sun, T.; Grattan, K.T.V. Simultaneous measurement of strain and temperature with a few-mode fiber-based sensor. J. Lightwave Technol. 2018, 36, 2796–2802. [Google Scholar] [CrossRef]
- Lu, C.; Su, J.; Dong, X.; Lu, L.; Sun, T.; Grattan, K.T.V. Studies on temperature and strain sensitivities of a few-mode critical wavelength fiber optic sensor. IEEE Sens. J. 2019, 19, 1794–1801. [Google Scholar] [CrossRef]
- Lu, C.; Dong, X.; Lu, L.; Guan, Y.; Ding, S. Label free all-fiber static pressure sensor based on Vernier effect with temperature compensation. IEEE Sens. J. 2020, 20, 4726–4731. [Google Scholar] [CrossRef]
- Su, J.; Dong, X.; Lu, C. Intensity detection scheme of sensors based on the modal interference effect of few mode fiber. Measurement 2016, 79, 182–187. [Google Scholar] [CrossRef]
- Lei, X.; Dong, X.; Lu, C. Sensitive humidity sensor based on a special dual-mode fiber. IEEE Sens. J. 2019, 19, 2587–2591. [Google Scholar] [CrossRef]
- Lei, X.; Dong, X.; Lu, C.; Sun, T.; Grattan, K.T.V. Underwater pressure and temperature sensor based on a special dual-mode optical fiber. IEEE Access 2020, 8, 146463–146471. [Google Scholar] [CrossRef]
- Salik, E.; Medrano, M.; Cohoon, G.; Miller, J.; Boyter, C.; Koh, J. SMS fiber sensor utilizing a few-mode fibere exhibits critical wavelengthbehavior. IEEE Photonics Technol. Lett. 2012, 24, 593–595. [Google Scholar] [CrossRef]
- Wu, Q.; Semenova, Y.; Wang, P.; Farrell, G. High sensitivity SMS fiber structure based refractometer—Analysis and experiment. Opt. Express 2011, 19, 7937–7944. [Google Scholar] [CrossRef]
- Zhou, J.; He, B.; Gu, X. Transmission spectrum characteristics for a single-mode-multimode-single-mode fiber filter. IEEE Photonics Technol. Lett. 2014, 26, 2185–2188. [Google Scholar] [CrossRef]
- Tripathi, S.M.; Kumar, A.; Marin, E.; Meunier, J. Critical Wavelength in the Transmission Spectrum of SMS Fiber Structure Employing GeO2-Doped Multimode Fiber. IEEE Photonics Technol. Lett. 2010, 22, 799–801. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar, A.; Tripathi, S.M. A comparison of temperature sensing characteristics of SMS structures using step and graded index multimode fibers. Opt. Commun. 2014, 312, 222–226. [Google Scholar] [CrossRef]
- Tripathi, S.M.; Kumar, A.; Varshney, R.K.; Kumar, Y.B.P.; Marin, E.; Meunier, J.P. Strain and temperature sensing characteristics of single-mode–multimode–single-mode structures. J. Lightwave Technol. 2009, 27, 2348–2356. [Google Scholar] [CrossRef]
- Gonthier, F.; Lacroix, S.; Ladouceur, F.; Black, R.J.; Bures, J. Circularly symmetric modal interferometers: Equalization wavelength and equivalent step determination for matched-cladding fibers. Fiber Integr. Opt. 1989, 8, 217–225. [Google Scholar] [CrossRef]
- Zhou, A.; Li, G.; Zhang, Y.; Wang, Y.; Guan, C.; Yang, J.; Yuan, L. Asymmetrical twin-core fiber based michelson interferometer for refractive index sensing. J. Lightwave Technol. 2011, 29, 2985–2991. [Google Scholar] [CrossRef]
- Gu, B.; Yin, M.-J.; Zhang, A.P.; Qian, J.-W.; He, S. Low-cost high-performance fiber-optic pH sensor based on thin-core fiber modal interferometer. Opt. Express 2009, 17, 22296–22302. [Google Scholar] [CrossRef] [PubMed]
- Yi, D.; Huo, Z.; Geng, Y.; Li, X.; Hong, X. PDMS-coated no-core fiber interferometer with enhanced sensitivity for temperature monitoring applications. Opt. Fiber Technol. 2020, 57, 102185. [Google Scholar] [CrossRef]
- Wong, W.C.; Chan, C.C.; Chen, L.H.; Li, T.; Lee, K.X.; Leong, K.C. Polyvinyl alcohol coated photonic crystal optical fiber sensor for humidity measurement. Sens. Actuators B Chem. 2012, 174, 563–569. [Google Scholar] [CrossRef]
- Lacroix, S.; Gonthier, F.; Black, R.J.; Bures, J. Tapered-fiber interferometric wavelength response: The achromatic fringe. Opt. Lett. 1988, 13, 395–397. [Google Scholar] [CrossRef]
- Luo, H.; Sun, Q.; Li, X.; Yan, Z.; Li, Y.; Liu, D.; Zhang, L. Refractive index sensitivity characteristics near the dispersion turning point of the multimode microfiber-based Mach–Zehnder interferometer. Opt. Lett. 2015, 40, 5042–5045. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.M.Y.; Li, K.; Zhang, N.; Zheng, Y.; Zhang, T.; Qi, M.; Shum, P.; Wei, L. Highly sensitive gas refractometers based on optical microfiber modal interferometers operating at dispersion turning point. Opt. Express 2018, 26, 29148–29158. [Google Scholar] [CrossRef]
- Sun, L.P.; Huang, T.; Yuan, Z.; Lin, W.; Xiao, P.; Yang, M.; Ma, J.; Ran, Y.; Jin, L.; Li, J.; et al. Ultra-high sensitivity of dual dispersion turning point taper-based Mach-Zehnder interferometer. Opt. Express 2019, 27, 23103–23111. [Google Scholar] [CrossRef]
- Xia, F.; Zhao, Y.; Zheng, H.K.; Li, L.K.; Tong, R.J. Ultra-sensitive seawater temperature sensor using an FBG-cascaded microfiber MZI operating at dispersion turning point. Opt. Laser Technol. 2020, 132, 106458. [Google Scholar] [CrossRef]
- Sun, B.; Wang, Y. High-sensitivity detection of IgG operating near the dispersion turning point in tapered two-mode fibers. Micromachines 2020, 11, 270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, F.; Zhao, Y.; Peng, Y. In-line microfiber MZI operating at two sides of the dispersion turning point for ultrasensitive RI and temperature measurement. Sens. Actuators A Phys. 2020, 301, 111754. [Google Scholar] [CrossRef]
- Yang, L.; Wang, J.; Wang, S.; Liao, Y.; Li, Y. A new method to improve the sensitivity of nitrate concentration measurement in seawater based on dispersion turning point. Optik 2020, 205, 164202. [Google Scholar] [CrossRef]
- Zhou, W.; Wei, Y.; Wang, Y.; Li, K.; Yu, H.; Wu, Y. Ultrasensitive interferometers based on zigzag-shaped tapered optical microfibers operating at the dispersion turning point. Opt. Express 2021, 29, 36926–36935. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Fan, J.; Luo, B.; Zou, X.; Wu, D.; Zou, X.; Shi, S.; Guo, Y.; Zhao, M. Highly sensitive vibration sensor based on the dispersion turning point microfiber Mach-Zehnder interferometer. Opt. Express 2021, 29, 32983–32995. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Chang, W.; Luo, Y.; Ni, W.; Zheng, Y.; Wei, L.; Xu, Z.; Lian, Z.; Zhang, Y.a.; Huang, Y.; et al. Ultrasensitive broadband refractometer based on single stress-applying fiber at dispersion turning point. J. Lightwave Technol. 2021, 39, 2528–2535. [Google Scholar] [CrossRef]
- Mascotte, E.H.; Hernandez, J.M.S.; Chavez, R.I.M.; Vazquez, D.J.; Guzman, A.C.; Ayala, J.M.E.; Chavez, A.D.G.; Laguna, R.R. A core-offset Mach Zehnder interferometer based on a non-zero dispersion-shifted fiber and its torsion sensing application. Sensors 2016, 16, 856. [Google Scholar] [CrossRef] [Green Version]
- Ahsani, V.; Ahmed, F.; Jun, M.B.G.; Bradley, C. Tapered fiber-optic Mach-Zehnder interferometer for ultra-high sensitivity measurement of refractive index. Sensors 2019, 19, 1652. [Google Scholar] [CrossRef] [Green Version]
- Gong, H.; Chan, C.C.; Zhang, Y.; Wong, W.; Dong, X. Temperature sensor based on modal interference in hollow-core photonic bandgap fiber with collapse splicing. IEEE Sens. J. 2012, 12, 1421–1424. [Google Scholar] [CrossRef]
- Martincek, I.; Pudis, D.; Kacik, D.; Schuster, K. Investigation of intermodal interference of LP01 and LP11 modes in the liquid-core optical fiber for temperature measurements. Optik 2011, 122, 707–710. [Google Scholar] [CrossRef]
- Hlubina, P.; Kadulova, M.; Ciprian, D.; Mergo, P. Temperature sensing using the spectral interference of polarization modes in a highly birefringent fiber. Opt. Lasers Eng. 2015, 70, 51–56. [Google Scholar] [CrossRef]
- Hlubina, P.; Olszewski, J.; Martynkien, T.; Mergo, P.; Makara, M.; Poturaj, K.; Urbanczyk, W. Spectral-domain measurement of strain sensitivity of a two-mode birefringent side-hole fiber. Sensors 2012, 12, 12070–12081. [Google Scholar] [CrossRef]
- Wei, C.; Lin, G.; Dong, X.; Tao, S. A tunable polarization-independent comb filter based on high-order mode fiber. J. Opt. 2013, 15, 055403. [Google Scholar] [CrossRef]
- Vengsarkar, A.M.; Walker, K.L. Article Comprising a Dispersion-Compensating Optical Waveguide. U.S. Patent 5,448,674, 5 September 1995. [Google Scholar]
- Kumar, A.; Goel, N.K.; Varshney, R.K. Studies on a few-mode fiber-optic strain sensor based on LP01-LP02 mode interference. J. Lightwave Technol. 2001, 19, 358. [Google Scholar] [CrossRef]
- Hocker, G. Fiber-optic sensing of pressure and temperature. Appl. Opt. 1979, 18, 1445–1448. [Google Scholar] [CrossRef]
- Shu, X.; Zhang, L.; Bennion, I. Sensitivity characteristics near the dispersion turning points of long-period fiber gratings in B/Ge codoped fiber. Opt. Lett. 2001, 26, 1755–1757. [Google Scholar] [CrossRef]
- Tan, Y.; Sun, L.P.; Jin, L.; Li, J.; Guan, B.O. Microfiber Mach-Zehnder interferometer based on long period grating for sensing applications. Opt. Express 2013, 21, 154–164. [Google Scholar] [CrossRef]
Structure | Sensor Application | Maximum Sensitivity | Refs. |
---|---|---|---|
Few-mode fiber | Curvature | −0.745 nm/m−1 | [6] |
Few-mode fiber | Axial Strain | [10] | |
Few-mode fiber | Temperature | [10] | |
Cascaded few-mode fiber | temperature | [11] | |
Cascaded few-mode fiber | Static pressure | 4.072 nm/MPa | [11] |
Refractive index around 1 | −69,984.3 nm/RIU | [28] | |
Refractive index around 1 | 95,836 nm/RIU | [29] | |
Sodium nitrate in seawater | 5.98 pm/ppm | [33] | |
Z-shaped few-mode microfiber | Refractive index around 1.333 | 1.46 × 105 nm/RIU | [34] |
Few-mode microfiber coated with PDMS | Temperature | 38 | [30] |
Few-mode microfiber tapered by a ring-core two-mode fiber | Refractive index around 1.333 | 128,055.7 nm/RIU | [31] |
Few-mode microfiber tapered by a single stress-applying fiber | Refractive index around 1.3212 | 30,563 nm/RIU | [36] |
Axial strain | [35] | ||
Acceleration | 764 mV/g | [35] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, C.; Dong, X.; Wu, C. Characteristics of Critical-Wavelength-Existed Fiber-Optic Mach–Zehnder Interferometers and Their Sensing Applications. Photonics 2022, 9, 378. https://doi.org/10.3390/photonics9060378
Lu C, Dong X, Wu C. Characteristics of Critical-Wavelength-Existed Fiber-Optic Mach–Zehnder Interferometers and Their Sensing Applications. Photonics. 2022; 9(6):378. https://doi.org/10.3390/photonics9060378
Chicago/Turabian StyleLu, Chenxu, Xiaopeng Dong, and Chi Wu. 2022. "Characteristics of Critical-Wavelength-Existed Fiber-Optic Mach–Zehnder Interferometers and Their Sensing Applications" Photonics 9, no. 6: 378. https://doi.org/10.3390/photonics9060378
APA StyleLu, C., Dong, X., & Wu, C. (2022). Characteristics of Critical-Wavelength-Existed Fiber-Optic Mach–Zehnder Interferometers and Their Sensing Applications. Photonics, 9(6), 378. https://doi.org/10.3390/photonics9060378