Photonic Bandgaps of One-Dimensional Photonic Crystals Containing Anisotropic Chiral Metamaterials
Abstract
:1. Introduction
2. Theory Analysis
3. Numerical Simulation and Applications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Joannopoulos, J.D.; Johnson, S.G.; Winn, J.N.; Meade, R.D. Molding the Flow of Light, 4th ed.; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Fink, Y.; Winn, J.N.; Fan, S.; Chen, C.; Michel, J.; Joannopoulos, J.D.; Thomas, E.L. A dielectric omnidirectional reflector. Science 1998, 282, 1679–1682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, M.; Azizi, K.; Karlsson, A.; Swillo, M.; Jaskorzynska, B. Numerical studies of mode gaps and coupling efficiency for line-defect waveguides in two-dimensional photonic crystals. Phys. Rev. B 2011, 64, 155113. [Google Scholar] [CrossRef]
- Painter, O.; Lee, R.; Scherer, A.; Yariv, A.; O’brien, J.; Dapkus, P.; Kim, I. Two-dimensional photonic band-gap defect mode laser. Science 1999, 284, 1819–1821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, X.; Jiang, P.; Ding, C.; Yang, H.; Gong, Q. Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity. Nat. Photonics 2008, 2, 185–189. [Google Scholar] [CrossRef]
- Pendry, J.B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 2000, 85, 3966. [Google Scholar] [CrossRef]
- Shelby, R.A.; Smith, D.R.; Schultz, S. Experimental verification of a negative index of refraction. Science 2001, 292, 77–79. [Google Scholar] [CrossRef] [Green Version]
- Ko, Y.H.; Razmjooei, N.; Hemmati, H.; Magnusson, R. Perfectly-reflecting guided-mode-resonant photonic lattices possesing Mie modal memory. Opt. Express 2021, 29, 26971–26982. [Google Scholar] [CrossRef]
- Razmjooei, N.; Ko, Y.H.; Simlan, F.A.; Magnusson, R. Resonant reflection by microsphere arrays with AR-quenched Mie scattering. Opt. Express 2021, 29, 19183–19192. [Google Scholar] [CrossRef]
- Li, J.; Zhou, L.; Chan, C.T.; Sheng, P. Photonic band gap from a stack of positive and negative index materials. Phys. Rev. Lett. 2003, 90, 083901. [Google Scholar] [CrossRef]
- Jiang, H.; Chen, H.; Li, H.; Zhang, Y.S.; Zhu, S. Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials. Appl. Phys. Lett. 2003, 83, 5386–5388. [Google Scholar] [CrossRef]
- Poddubny, A.; Iorsh, I.; Belov, P.; Kivshar, Y. Hyperbolic metamaterials. Nat. Photonics 2013, 7, 948–957. [Google Scholar] [CrossRef]
- Narimanov, E.E. Photonic hypercrystals. Phys. Rev. X 2014, 4, 041014. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Jiang, H.; Chen, H. Hyperbolic metamaterial: From dispersion manipulation to applications. J. Appl. Phys. 2020, 127, 071101. [Google Scholar] [CrossRef] [Green Version]
- Drachev, V.P.; Podolskiy, V.A.; Kildishev, A.V. Hyperbolic metamaterials: New physics behind a classical problem. Opt. Express 2013, 21, 15048–15064. [Google Scholar] [CrossRef]
- Lu, D.; Kan, J.J.; Fullerton, E.E.; Liu, Z. Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials. Nat. Nanotechnol. 2014, 9, 48–53. [Google Scholar] [CrossRef]
- Tumkur, T.; Zhu, G.; Black, P.; Barnakov, Y.A.; Bonner, C.E.; Noginov, M.A. Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial. Appl. Phys. Lett. 2011, 99, 1115. [Google Scholar] [CrossRef]
- Lu, D.; Liu, Z. Hyperlenses and metalenses for far-field super-resolution imaging. Nat. Commun. 2012, 3, 1–9. [Google Scholar] [CrossRef]
- Guo, Z.; Jiang, H.; Zhu, K.; Sun, Y.; Li, Y.; Chen, H. Focusing and super-resolution with partial cloaking based on linear-crossing metamaterials. Phys. Rev. Appl. 2018, 10, 064048. [Google Scholar] [CrossRef]
- Sreekanth, K.V.; Mahalakshmi, P.; Han, S.; Mani Rajan, M.S.; Choudhury, P.K.; Singh, R. Enhancing the angular sensitivity of plasmonic sensors using hyperbolic metamaterials. Adv. Opt. Mater. 2016, 4, 1767–1772. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Wu, F.; Xue, C.; Guo, Z.; Jiang, H.; Sun, Y.; Li, Y.; Chen, H. Wide-angle ultrasensitive biosensors based on edge states in heterostructures containing hyperbolic metamaterials. Opt. Express 2019, 27, 24835–24846. [Google Scholar] [CrossRef]
- Yin, X.; Zhu, H.; Guo, H.; Deng, M.; Xu, T.; Gong, Z.; Li, X.; Hang, Z.; Wu, C.; Li, H.; et al. Hyperbolic metamaterial devices for wavefront manipulation. Laser Photonics Rev. 2019, 13, 1800081. [Google Scholar]
- Gao, W.; Fang, F.; Liu, Y.; Zhang, S. Chiral surface waves supported by biaxial hyperbolic metamaterials. Light Sci. Appl. 2015, 4, e328. [Google Scholar] [CrossRef] [Green Version]
- Caldwell, J.D.; Kretinin, A.V.; Chen, Y.; Giannini, V.; Fogler, M.M.; Francescato, Y.; Ellis, C.T.; Tischler, J.G.; Woods, C.R.; Giles, A.J.; et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat. Commun. 2014, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Hu, G.; Ou, Q.; Si, G.; Wu, Y.; Wu, J.; Dai, Z.; Krasnok, A.; Mazor, Y.; Zhang, Q.; Bao, Q.; et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature 2020, 582, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Geim, A.K.; Grigorieva, I.V. Van der Waals heterostructures. Nature 2013, 499, 419–425. [Google Scholar] [CrossRef]
- Dorrell, W.; Pirie, H.; Gardezi, S.M.; Drucker, N.C.; Hoffman, J.E. Van der Waals metamaterials. Phys. Rev. B 2020, 101, 121103. [Google Scholar] [CrossRef] [Green Version]
- Xue, C.; Ding, Y.; Jiang, H.; Li, Y.; Wang, Z.; Zhang, Y.; Chen, H. Dispersionless gaps and cavity modes in photonic crystals containing hyperbolic metamaterials. Phys. Rev. B 2016, 93, 125310. [Google Scholar] [CrossRef]
- Wu, F.; Lu, G.; Xue, C.; Jiang, H.; Guo, Z.; Zheng, M.; Chen, C.; Du, G.; Chen, H. Experimental demonstration of angle-independent gaps in one-dimensional photonic crystals containing layered hyperbolic metamaterials and dielectrics at visible wavelengths. Appl. Phys. Lett. 2018, 112, 041902. [Google Scholar] [CrossRef]
- Wu, F.; Guo, Z.; Wu, J.; Jiang, H.; Du, G. Band gap engineering and applications in compound periodic structure containing hyperbolic metamaterials. Acta Phys. Sin. 2020, 69, 154205. [Google Scholar] [CrossRef]
- Wu, F.; Wu, X.; Xiao, S.; Liu, G.; Li, H. Broadband wide-angle multilayer absorber based on a broadband omnidirectional optical Tamm state. Opt. Express 2021, 29, 23976–23987. [Google Scholar] [CrossRef]
- Wu, F.; Lu, G.; Guo, Z.; Jiang, H.; Xue, C.; Zheng, M.; Chen, C.; Du, G.; Chen, H. Redshift gaps in one-dimensional photonic crystals containing hyperbolic metamaterials. Phys. Rev. Appl. 2018, 10, 064022. [Google Scholar] [CrossRef]
- Pendry, J.B. A chiral route to negative refraction. Science 2004, 306, 1353–1355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.; Li, H.; Wei, Z.; Yu, X.; Chan, C.T. Theory and experimental realization of negative refraction in a metallic helix array. Phys. Rev. Lett. 2010, 105, 247401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Du, W.; Zhang, Q.; Ávalos-Ovando, O.; Wu, J.; Xu, Q.; Liu, N.; Okamoto, H.; Govorov, A.O.; Xiong, Q.; et al. Multidimensional nanoscopic chiroptics. Nat. Rev. Phys. 2021, 4, 113–124. [Google Scholar] [CrossRef]
- Zhu, A.Y.; Chen, W.T.; Zaidi, A.; Huang, Y.W.; Khorasaninejad, M.; Sanjeev, V.; Qiu, C.W.; Capasso, F. Giant intrinsic chiro-optical activity in planar dielectric nanostructures. Light Sci. Appl. 2018, 7, 17158. [Google Scholar] [CrossRef]
- Singh, R.; Plum, E.; Zhang, W.; Zheludev, N.I. Highly tunable optical activity in planar achiral terahertz metamaterials. Opt. Express 2010, 18, 13425–13430. [Google Scholar] [CrossRef]
- Wang, Z.; Jia, H.; Yao, K.; Cai, W.; Chen, H.; Liu, Y. Circular dichroism metamirrors with near-perfect extinction. ACS Photon. 2016, 3, 2096–2101. [Google Scholar] [CrossRef]
- Decker, M.; Klein, M.; Wegener, M.; Linden, S. Circular dichroism of planar chiral magnetic metamaterials. Opt. Lett. 2007, 32, 856–858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Xu, X.; Su, X.; Zhao, S.; Wu, C.; Sun, Y.; Li, Y.; Wu, F.; Guo, Z.; Jiang, H.; et al. Observation of giant extrinsic chirality empowered by quasi-bound states in the continuum. Phys. Rev. Appl. 2021, 16, 064018. [Google Scholar] [CrossRef]
- Hao, C.; Xu, L.; Kuang, H.; Xu, C. Artificial chiral probes and bioapplications. Adv. Mater. 2020, 32, 1802075. [Google Scholar] [CrossRef] [PubMed]
- Manoccio, M.; Esposito, M.; Primiceri, E.; Leo, A.; Tasco, V.; Cuscuna, M.; Zuev, D.; Sun, Y.; Maruccio, G.; Romano, A.; et al. Femtomolar Biodetection by a Compact Core-Shell 3D Chiral Metamaterial. Nano Lett. 2021, 21, 6179–6187. [Google Scholar] [CrossRef] [PubMed]
- Bakır, M.; Karaaslan, M.; Unal, E.; Karadag, F.; Alkurt, F.Ö.; Altıntaş, O.; Dalgac, S.; Sabah, C. Microfluidic and Fuel Adulteration Sensing by Using Chiral Metamaterial Sensor. J. Electrochem. Soc. 2018, 165, B475. [Google Scholar] [CrossRef]
- Warning, L.A.; Miandashti, A.R.; McCarthy, L.A.; Zhang, Q.; Landes, C.F.; Link, S. Nanophotonic Approaches for Chirality Sensing. ACS Nano 2021, 15, 15538–15566. [Google Scholar] [CrossRef]
- Ma, W.; Cheng, F.; Liu, Y. Deep-Learning-Enabled On-Demand Design of Chiral Metamaterials. ACS Nano 2018, 12, 6326. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Huang, X.; Li, M.; Dong, J. Chirality selective metamaterial absorber with dual bands. Opt. Express 2019, 27, 25983–25993. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Li, J. Complete band gaps in one-dimensional photonic crystals with negative refraction arising from strong chirality. Phys. Rev. B 2014, 89, 115420. [Google Scholar] [CrossRef]
- Krishnamoorthy, H.N.; Jacob, Z.; Narimanov, E.; Kretzschmar, I.; Menon, V.M. Topological transitions in metamaterials. Science 2012, 336, 205–209. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.; Lawrence, M.; Yang, B.; Liu, F.; Fang, F.; Beri, B.; Li, J.; Zhuang, S. Topological photonic phase in chiral heperbolic metamaterials. Phys. Rev. Lett. 2015, 114, 037402. [Google Scholar] [CrossRef]
- Cheng, Q.; Cui, T.J. Negative refractions in uniaxially anisotropic chiral media. Phys. Rev. B 2006, 73, 113104. [Google Scholar] [CrossRef]
- Kapitanova, P.V.; Ginzburg, P.; Rodríguez-Fortuño, F.J.; Filonov, D.S.; Voroshilov, P.M.; Belov, P.A.; Poddubny, A.N.; Kivshar, Y.S.; Wurtz, G.A.; Zayats, A.V. Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes. Nat. Commun. 2014, 5, 1–8. [Google Scholar] [CrossRef]
- Xia, J.; Chen, Y.; Xiang, Y. Enhanced spin Hall effect due to the redshift gaps of photonic hypercrystals. Opt. Express 2021, 29, 12160–12168. [Google Scholar] [CrossRef] [PubMed]
- Lindell, I.V.; Sihvola, A.H.; Tretyakov, S.A.; Viitanen, A.J. Electromagnetic Waves in Chiral and Bi-Isotropic Media; Artech House: Norwood, MA, USA, 1994. [Google Scholar]
- Xiao, M.; Lin, Q.; Fan, S. Hyperbolic Weyl point in reciprocal chiral metamaterials. Phys. Rev. Lett. 2016, 117, 057401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Wu, B.; Kong, J.; Grzegorcyzk, T.M. Retrieval of the effective constitutive parameters of bianisotropic metamaterials. Phys. Rev. E 2005, 71, 046610. [Google Scholar] [CrossRef] [PubMed]
- Aspnes, D.E.; Studna, A.A.; Kinsbron, E. Dielectric properties of heavily doped crystalline and amorphous silicon from 1.5 to 6.0 eV. Phys. Rev. B 1984, 29, 768. [Google Scholar] [CrossRef]
- Xiang, Y.; Dai, X.; Wen, S. Omnidirectional gaps of one-dimensional photonic crystals containing indefinite metamaterials. J. Opt. Soc. Am. B 2007, 24, 2033–2039. [Google Scholar] [CrossRef]
- Xiang, Y.; Jiang, X.; You, Q.; Guo, J.; Dai, X. Enhanced spin Hall effect of reflected light with guided-wave surface plasmon resonance. Photonics Rev. 2017, 5, 467–472. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Q.; Wu, J.; Guo, Z.; Xu, X.; Xu, K.; Sun, Y.; Li, Y.; Jiang, H.; Chen, H. Photonic Bandgaps of One-Dimensional Photonic Crystals Containing Anisotropic Chiral Metamaterials. Photonics 2022, 9, 411. https://doi.org/10.3390/photonics9060411
Wei Q, Wu J, Guo Z, Xu X, Xu K, Sun Y, Li Y, Jiang H, Chen H. Photonic Bandgaps of One-Dimensional Photonic Crystals Containing Anisotropic Chiral Metamaterials. Photonics. 2022; 9(6):411. https://doi.org/10.3390/photonics9060411
Chicago/Turabian StyleWei, Qian, Jiaju Wu, Zhiwei Guo, Xiaotian Xu, Ke Xu, Yong Sun, Yunhui Li, Haitao Jiang, and Hong Chen. 2022. "Photonic Bandgaps of One-Dimensional Photonic Crystals Containing Anisotropic Chiral Metamaterials" Photonics 9, no. 6: 411. https://doi.org/10.3390/photonics9060411
APA StyleWei, Q., Wu, J., Guo, Z., Xu, X., Xu, K., Sun, Y., Li, Y., Jiang, H., & Chen, H. (2022). Photonic Bandgaps of One-Dimensional Photonic Crystals Containing Anisotropic Chiral Metamaterials. Photonics, 9(6), 411. https://doi.org/10.3390/photonics9060411