Product of Two Laguerre–Gaussian Beams
Abstract
:1. Introduction
2. Theoretical Background
3. Numerical Simulation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Kogelnik, H.; Li, T. Laser beams and resonators. Appl. Opt. 1966, 5, 1550–1567. [Google Scholar] [CrossRef] [PubMed]
- Zauderer, E. Complex argument Hermite-Gaussian and Laguerre-Gaussian beams. J. Opt. Soc. Am. A 1986, 3, 465–469. [Google Scholar] [CrossRef] [Green Version]
- Wünsche, A. Generalized Gaussian beam solutions of paraxial optics and their connection to a hidden symmetry. J. Opt. Soc. Am. A 1989, 6, 1320–1329. [Google Scholar] [CrossRef]
- Abramochkin, E.; Volostnikov, V. Beam transformations and nontransformed beams. Opt. Commun. 1991, 83, 123–135. [Google Scholar] [CrossRef]
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.C.; Woerdman, J.P. Orbital angular momentum of light and the transformation of Laguerre– Gaussian laser modes. Phys. Rev. A 1992, 45, 8185–8189. [Google Scholar] [CrossRef] [PubMed]
- Abramochkin, E.G.; Volostnikov, V.G. Generalized Gaussian beams. J. Opt. A Pure Appl. Opt. 2004, 6, S157–S161. [Google Scholar] [CrossRef]
- Abramochkin, E.; Razueva, E.; Volostnikov, V. General astigmatic transform of Hermite–Laguerre–Gaussian beams. J. Opt. Soc. Am. A 2010, 27, 2506–2513. [Google Scholar] [CrossRef]
- Zhou, G.; Ru, G. Orbital Angular Momentum Density of an Elegant Laguerre-Gaussian Beam. Prog. Electromagn. Res. 2013, 141, 751–768. [Google Scholar] [CrossRef] [Green Version]
- Kotlyar, V.V.; Khonina, S.N.; Almazov, A.A.; Soifer, V.A.; Jefimovs, K.; Turunen, J. Elliptic Laguerre-Gaussian beams. J. Opt. Soc. Am. A 2006, 23, 43–56. [Google Scholar] [CrossRef]
- Mendoza-Hernández, J.; Arroyo-Carrasco, M.L.; Iturbe-Castillo, M.D.; Chávez-Cerda, S. Laguerre–Gauss beams versus Bessel beams showdown: Peer comparison. Opt. Lett. 2015, 40, 3739–3742. [Google Scholar] [CrossRef]
- Wang, M.; Ma, Y.; Sheng, Q.; He, X.; Liu, J.; Shi, W.; Yao, J.; Omatsu, T. Laguerre-Gaussian beam generation via enhanced intracavity spherical aberration. Opt. Express 2021, 29, 27783–27790. [Google Scholar] [CrossRef] [PubMed]
- Rafayelyan, M.; Brasselet, E. Laguerre–Gaussian modal q-plates. Opt. Lett. 2017, 42, 1966–1969. [Google Scholar] [CrossRef] [PubMed]
- Mao, H.; Ren, Y.-H.; Yu, Y.; Yu, Z.; Sun, X.; Zhang, S.; Wong, K.K.Y. Broadband meta-converters for multiple Laguerre-Gaussian modes. Photon. Res. 2021, 9, 1689–1698. [Google Scholar] [CrossRef]
- Liang, G.; Wang, Q. Controllable conversion between Hermite Gaussian and Laguerre Gaussian modes due to cross phase. Opt. Express 2019, 27, 10684–10691. [Google Scholar] [CrossRef] [PubMed]
- Longman, A.; Fedosejevs, R. Optimal Laguerre–Gaussian modes for high-intensity optical vortices. J. Opt. Soc. Am. A 2020, 37, 841–848. [Google Scholar] [CrossRef]
- Dong, M.; Lu, X.-Y.; Zhao, C.; Cai, Y.; Yang, Y. Measuring topological charge of partially coherent elegant Laguerre-Gaussian beam. Opt. Express 2018, 26, 33035–33043. [Google Scholar] [CrossRef]
- Kovalev, A.A.; Kotlyar, V.V.; Porfirev, A.P. Asymmetric Laguerre-Gaussian beams. Phys. Rev. A 2016, 93, 063858. [Google Scholar] [CrossRef]
- Hsieh, Y.H.; Lai, Y.H.; Hsieh, M.X.; Huang, K.F.; Chen, Y.F. Generating high-power asymmetrical Laguerre-Gaussian modes and exploring topological charges distribution. Opt. Express 2018, 26, 31738–31749. [Google Scholar] [CrossRef]
- Ghaderi Goran Abad, M.; Mahmoudi, M. Laguerre-Gaussian modes generated vector beam via nonlinear magneto-optical rotation. Sci. Rep. 2021, 11, 5972. [Google Scholar] [CrossRef]
- Huang, S.; Miao, Z.; He, C.; Pang, F.; Li, Y.; Wang, T. Composite vortex beams by coaxial superposition of Laguerre-Gaussian beams. Opt. Lasers Eng. 2016, 78, 132–139. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, L.; Wang, F.; Zhao, C.; Cai, Y. Elliptical Laguerre-Gaussian correlated Schell-model beam. Opt. Express 2014, 22, 13975–13987. [Google Scholar] [CrossRef] [PubMed]
- Zhong, W.; Yang, Z.; Belic, M.; Zhong, W. Two-dimensional asymmetric Laguerre-Gaussian diffraction-free beams. Phys. Lett. A 2022, 423, 127818. [Google Scholar] [CrossRef]
- Zhong, W.; Zhong, W.; Belic, M.; Zhang, Z. Controllable two-dimensional diffraction-free polygon beams. Phys. Lett. A 2022, 432, 128009. [Google Scholar] [CrossRef]
- Zhong, W.; Yi, L. Two-dimensional Laguerre-Gaussian soliton family in strongly nonlocal nonlinear media. Phys. Rev. A 2007, 75, 061801. [Google Scholar] [CrossRef]
- Zhong, W. Two-dimensional Laguerre-Gaussian asymmetric soliton family in strong nonlocal media. Chin. Phys. Lett. 2008, 25, 2074–2077. [Google Scholar]
- Zhong, W.; Belic, M. Three-dimensional optical vortex and necklace solitons in highly nonlocal nonlinear media. Phys. Rev. A 2009, 79, 023804. [Google Scholar] [CrossRef]
- Pang, K.; Liu, C.; Xie, G.; Ren, Y.; Zhao, Z.; Zhang, R.; Cao, Y.; Zhao, J.; Song, H.; Song, H.; et al. Demonstration of a 10 Mbit/s quantum communication link by encoding data on two Laguerre–Gaussian modes with different radial indices. Opt. Lett. 2018, 43, 5639–5642. [Google Scholar] [CrossRef]
- Doster, T.; Watnik, A.T. Laguerre–Gauss and Bessel–Gauss beams propagation through turbulence: Analysis of channel efficiency. Appl. Opt. 2016, 55, 10239–10246. [Google Scholar] [CrossRef]
- Zeng, J.; Liu, X.; Zhao, C.; Wang, F.; Gbur, G.; Cai, Y. Spiral spectrum of a Laguerre-Gaussian beam propagating in anisotropic non-Kolmogorov turbulent atmosphere along horizontal path. Opt. Express 2019, 27, 25342–25356. [Google Scholar] [CrossRef]
- Cox, M.A.; Maqondo, L.; Kara, R.; Milione, G.; Cheng, L.; Forbes, A. The Resilience of Hermite– and Laguerre–Gaussian Modes in Turbulence. J. Lightwave Technol. 2019, 37, 3911–3917. [Google Scholar] [CrossRef] [Green Version]
- Otsu, T.; Ando, T.; Takiguchi, Y.; Ohtake, Y.; Toyoda, H.; Itoh, H. Direct evidence for three-dimensional off-axis trapping with single Laguerre-Gaussian beam. Sci. Rep. 2014, 4, 4579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peshkov, A.A.; Seipt, D.; Surzhykov, A.; Fritzsche, S. Photoexcitation of atoms by Laguerre-Gaussian beams. Phys. Rev. A 2017, 96, 023407. [Google Scholar] [CrossRef]
- Courtial, J.; Dholakia, K.; Allen, L.; Padgett, M.J. Second-harmonic generation and the conservation of orbital angular momentum with high-order Laguerre-Gaussian modes. Phys. Rev. A 1997, 56, 4193. [Google Scholar] [CrossRef]
- Wu, H.; Mao, L.; Yang, Y.; Rosales-Guzman, C.; Gao, W.; Shi, B.; Zhu, Z. Radial modal transformations of Laguerre-Gauss modes during parametric up-conversion: Towards the full-field selection rule of spatial modes. Phys. Rev. A 2020, 101, 063805. [Google Scholar] [CrossRef]
- Prudnikov, A.P.; Bychkov, Y.; Marychev, O.I. Integrals and Series: Volume 2: Special Functions; “Nauka” Publisher: Moscow, Russia, 1983. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotlyar, V.V.; Abramochkin, E.G.; Kovalev, A.A.; Savelyeva, A.A. Product of Two Laguerre–Gaussian Beams. Photonics 2022, 9, 496. https://doi.org/10.3390/photonics9070496
Kotlyar VV, Abramochkin EG, Kovalev AA, Savelyeva AA. Product of Two Laguerre–Gaussian Beams. Photonics. 2022; 9(7):496. https://doi.org/10.3390/photonics9070496
Chicago/Turabian StyleKotlyar, Victor V., Eugeny G. Abramochkin, Alexey A. Kovalev, and Alexandra A. Savelyeva. 2022. "Product of Two Laguerre–Gaussian Beams" Photonics 9, no. 7: 496. https://doi.org/10.3390/photonics9070496
APA StyleKotlyar, V. V., Abramochkin, E. G., Kovalev, A. A., & Savelyeva, A. A. (2022). Product of Two Laguerre–Gaussian Beams. Photonics, 9(7), 496. https://doi.org/10.3390/photonics9070496