Inverse Design for Coating Parameters in Nano-Film Growth Based on Deep Learning Neural Network and Particle Swarm Optimization Algorithm
Abstract
:1. Introduction
2. Research Methods
3. Results and Discussion
4. Experiment Case
4.1. The Anti-Reflection (AR) Coating Case
4.2. Bragg Case
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Froemming, N.S.; Henkelman, G. Optimizing core-shell nanoparticle catalysts with a genetic algorithm. J. Chem. Phys. 2009, 131, 234103. [Google Scholar] [CrossRef]
- Piche, S.W. Steepest Descent Algorithms for Neural-Network Controllers and Filters. IEEE Trans. Neural Netw. 1994, 5, 198–212. [Google Scholar] [CrossRef]
- Ahmad, N.A. A Globally Convergent Stochastic Pairwise Conjugate Gradient-Based Algorithm for Adaptive Filtering. IEEE Signal Proc. Lett. 2008, 15, 914–917. [Google Scholar] [CrossRef]
- Malkiel, I.; Mrejen, M.; Nagler, A.; Arieli, U.; Wolf, L.; Suchowski, H. Plasmonic nanostructure design and characterization via Deep Learning. Light Sci. Appl. 2018, 7, 60. [Google Scholar] [CrossRef]
- Chen, Y.S.; Zhu, J.F.; Xie, Y.N.; Feng, N.X.; Liu, Q.H. Smart inverse design of graphene-based photonic metamaterials by an adaptive artificial neural network. Nanoscale 2019, 11, 9749–9755. [Google Scholar] [CrossRef]
- Elsawy, M.M.R.; Lanteri, S.; Duvigneau, R.; Briere, G.; Mohamed, M.S.; Genevet, P. Global optimization of metasurface designs using statistical learning methods. Sci. Rep. 2019, 9, 17918. [Google Scholar] [CrossRef]
- Du, Q.; Zhang, Q.; Liu, G.H. Deep learning: An efficient method for plasmonic design of geometric nanoparticles. Nanotechnology 2021, 32, 505607. [Google Scholar] [CrossRef]
- Guo, X.H.; Xu, X.P.; Li, Y.; Huang, W.P. Extendable neural network and flexible extendable neural network in nanophotonics. Opt. Commun. 2022, 508, 127671. [Google Scholar] [CrossRef]
- Baxter, J.; Lesina, A.C.; Guay, J.M.; Weck, A.; Berini, P.; Ramunno, L. Plasmonic colours predicted by deep learning. Sci. Rep. 2019, 9, 8074. [Google Scholar] [CrossRef] [Green Version]
- Asano, T.; Noda, S. Iterative optimization of photonic crystal nanocavity designs by using deep neural networks. Nanophotonics 2019, 8, 2243–2256. [Google Scholar] [CrossRef]
- Chugh, S.; Gulistan, A.; Ghosh, S.; Rahman, B.M.A. Machine learning approach for computing optical properties of a photonic crystal fiber. Opt. Express 2019, 27, 36414–36425. [Google Scholar] [CrossRef] [Green Version]
- Makarenko, M.; Burguete-Lopez, A.; Getman, F.; Fratalocchi, A. Generalized Maxwell projections for multi-mode network Photonics. Sci. Rep. 2020, 10, 9038. [Google Scholar] [CrossRef] [PubMed]
- Ding, F.; Bozhevolnyi, S.I. A Review of Unidirectional Surface Plasmon Polariton Metacouplers. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 4600611. [Google Scholar] [CrossRef] [Green Version]
- Gu, G.H.; Noh, J.; Kim, I.; Jung, Y. Machine learning for renewable energy materials. J. Mater. Chem. A 2019, 7, 17096–17117. [Google Scholar] [CrossRef]
- Pun, G.P.P.; Batra, R.; Ramprasad, R.; Mishin, Y. Physically informed artificial neural networks for atomistic modeling of materials. Nat. Commun. 2019, 10, 2339. [Google Scholar] [CrossRef]
- So, S.; Mun, J.; Rho, J. Simultaneous Inverse Design of Materials and Structures via Deep Learning: Demonstration of Dipole Resonance Engineering Using Core-Shell Nanoparticles. ACS Appl. Mater. Interfaces 2019, 11, 24264–24268. [Google Scholar] [CrossRef]
- Raju, L.; Lee, K.T.; Liu, Z.C.; Zhu, D.Y.; Zhu, M.L.; Poutrina, E.; Urbas, A.; Cai, W.S. Maximized Frequency Doubling through the Inverse Design of Nonlinear Metamaterials. ACS Nano 2022, 16, 3926–3933. [Google Scholar] [CrossRef]
- An, S.S.; Zheng, B.W.; Julian, M.; Williams, C.; Tang, H.; Gu, T.; Zhang, H.L.; Kim, H.J.; Hu, J.J. Deep neural network enabled active metasurface embedded design. Nanophotonics 2022. [Google Scholar] [CrossRef]
- Dai, P.; Sun, K.; Yan, X.Z.; Muskens, O.L.; de Groot, C.H.; Zhu, X.P.; Hu, Y.Q.; Duan, H.G.; Huang, R.M. Inverse design of structural color: Finding multiple solutions via conditional generative adversarial networks. Nanophotonics 2022, 11, 3057–3069. [Google Scholar] [CrossRef]
- Qiu, C.K.; Wu, X.; Luo, Z.; Yang, H.D.; Huang, B. Fast inverse design of nanophotonics using differential evolution back-propagation. Opt. Commun. 2022, 514, 128155. [Google Scholar] [CrossRef]
- Xu, X.P.; Sun, C.L.; Li, Y.; Zhao, J.; Han, J.L.; Huang, W.P. An improved tandem neural network for the inverse design of nanophotonics devices. Opt. Commun. 2021, 481, 126513. [Google Scholar] [CrossRef]
- Liu, D.J.; Tan, Y.X.; Khoram, E.; Yu, Z.F. Training Deep Neural Networks for the Inverse Design of Nanophotonic Structures. ACS Photonics 2018, 5, 1365–1369. [Google Scholar] [CrossRef] [Green Version]
- Mortazavifar, S.L.; Salehi, M.R.; Shahraki, M.; Abiri, E. Ultra-thin broadband solar absorber based on stadium-shaped silicon nanowire arrays. Front. Optoelectron. 2022, 15, 6. [Google Scholar] [CrossRef]
- Xing, X.J.; Guo, J.W.; Nan, L.L.; Gu, Q.Y.; Zhang, X.P.; Yan, D.M. Efficient MSPSO Sampling for Object Detection and 6-D Pose Estimation in 3-D Scenes. IEEE Trans. Ind. Electron. 2022, 69, 10281–10291. [Google Scholar] [CrossRef]
- Ma, Z.H.; Feng, P.; Li, Y. Inverse design of semiconductor laser parameters based on deep learning and particle swarm optimization method. Proc. SPIE 2019, 11209, 112092X. [Google Scholar] [CrossRef]
- Ma, Z.H.; Li, Y. Parameter extraction and inverse design of semiconductor lasers based on the deep learning and particle swarm optimization method. Opt. Express 2020, 28, 21971–21981. [Google Scholar] [CrossRef] [PubMed]
- Ong, J.R.; Chu, H.S.; Chen, V.H.J.; Zhu, A.Y.T.; Genevet, P. Freestanding dielectric nanohole array metasurface for mid-infrared wavelength applications. Opt. Lett. 2017, 42, 2639–2642. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Alcalde, A.K.; Salas-Montiel, R.; Mohamad, H.; Morand, A.; Blaize, S.; Macias, D. Optimization of all-dielectric structures for color generation. Appl. Opt. 2018, 57, 3959–3967. [Google Scholar] [CrossRef]
- Barreda, A.; Albella, P.; Moreno, F.; Gonzalez, F. Broadband Unidirectional forward Scattering with High Refractive Index Nanostructures: Application in Solar Cells. Molecules 2021, 26, 4421. [Google Scholar] [CrossRef]
- Manko, V.A.; Manko, A.A.; Sukach, G.A. Method of calculation of multilayer optical filters using thin films. In Proceedings of the 2006 International Workshop on Laser and Fiber-Optical Networks Modeling, Kharkiv, Ukraine, 29 June–1 July 2006; pp. 452–454. [Google Scholar]
- Peurifoy, J.; Shen, Y.C.; Jing, L.; Yang, Y.; Cano-Renteria, F.; DeLacy, B.G.; Joannopoulos, J.D.; Tegmark, M.; Soljacic, M. Nanophotonic particle simulation and inverse design using artificial neural networks. Sci. Adv. 2018, 4, eaar4206. [Google Scholar] [CrossRef] [Green Version]
- Lenaerts, J.; Pinson, H.; Ginis, V. Artificial neural networks for inverse design of resonant nanophotonic components with oscillatory loss landscapes. Nanophotonics 2021, 10, 385–392. [Google Scholar] [CrossRef]
- Trelea, I.C. The particle swarm optimization algorithm: Convergence analysis and parameter selection. Inf. Process. Lett. 2003, 85, 317–325. [Google Scholar] [CrossRef]
Parameters | D1 (nm) | D2 (nm) | D3 (nm) | D4 (nm) | D5 (nm) |
---|---|---|---|---|---|
Original | 189.22 | 185.79 | 388.76 | 247.13 | 41.48 |
Mean (RE) | 188.92 (0.16%) | 185.87 (0.04%) | 388.86 (0.03%) | 248.71 (0.64%) | 40.05 (3.45%) |
STD | 0.33 | 0.22 | 0.45 | 1.63 | 1.38 |
Min. | 187.88 | 185.27 | 388.07 | 246.12 | 36.42 |
Max. | 189.90 | 186.35 | 390.16 | 253.42 | 42.19 |
Parameters | D1 (nm) | D2 (nm) | D3 (nm) | D4 (nm) | D5 (nm) |
---|---|---|---|---|---|
Original | 189.22 | 185.79 | 388.76 | 247.13 | 41.48 |
S1 | 187.07 | 182.88 | 441.05 | 278.13 | 36.78 |
S2 | 232.96 | 203.52 | 428.88 | 264.52 | 11.22 |
S3 | 183.02 | 184.97 | 419.23 | 266.13 | 33.76 |
S4 | 276.47 | 219.01 | 426.10 | 272.36 | 20.65 |
Parameters | D1 (nm) | D2 (nm) | D3 (nm) | D4 (nm) | D5 (nm) |
---|---|---|---|---|---|
Original | 255.88 | 24.33 | 28.85 | 74.90 | 98.58 |
S1 | 258.41 | 15.62 | 28.32 | 100.86 | 90.62 |
S2 | 284.86 | 23.91 | 26.59 | 77.28 | 99.63 |
S3 | 264.31 | 19.41 | 45.08 | 48.84 | 111.64 |
S4 | 227.79 | 18.58 | 34.12 | 93.87 | 94.20 |
Parameters | D1 (nm) | D2 (nm) |
---|---|---|
Original | 179.57 | 126.43 |
S1 | 182.13 | 125.80 |
S2 | 175.31 | 130.64 |
PSO range | 142.57~202.57 | 96.43~156.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, X.; Lu, J.; Li, Y.; Li, J.; Huang, W. Inverse Design for Coating Parameters in Nano-Film Growth Based on Deep Learning Neural Network and Particle Swarm Optimization Algorithm. Photonics 2022, 9, 513. https://doi.org/10.3390/photonics9080513
Guo X, Lu J, Li Y, Li J, Huang W. Inverse Design for Coating Parameters in Nano-Film Growth Based on Deep Learning Neural Network and Particle Swarm Optimization Algorithm. Photonics. 2022; 9(8):513. https://doi.org/10.3390/photonics9080513
Chicago/Turabian StyleGuo, Xiaohan, Jinsu Lu, Yu Li, Jianhong Li, and Weiping Huang. 2022. "Inverse Design for Coating Parameters in Nano-Film Growth Based on Deep Learning Neural Network and Particle Swarm Optimization Algorithm" Photonics 9, no. 8: 513. https://doi.org/10.3390/photonics9080513
APA StyleGuo, X., Lu, J., Li, Y., Li, J., & Huang, W. (2022). Inverse Design for Coating Parameters in Nano-Film Growth Based on Deep Learning Neural Network and Particle Swarm Optimization Algorithm. Photonics, 9(8), 513. https://doi.org/10.3390/photonics9080513