Assessment of Factors Causing Bias in Marketing- Related Publications
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Researched Factors
- (1)
- Failure to examine and critically assess prior literature:
- (2)
- Failure to specify the inclusion and exclusion criteria for study subjects:
- (3)
- Failure to determine and report errors in measurement methods:
- (4)
- Failure to specify the exact statistical assumptions made in the analysis and failure to perform sample size analysis before starting the study:
- (5)
- Improper Specification of the Population:
- (6)
- Sampling and Sample Frame Errors:
- (7)
- Selection Errors:
- (8)
- Non-Responsiveness:
- (9)
- Missing data, dropped subjects and use of an intention to treat analysis:
- (10)
- Problems in pointing out weaknesses of own study:
2.2. Analytic Hierarchy Process Method
- —largest eigenvector of each standardized matrix;
- n—number of independent rows in the matrix;
- νj—eigenvector of matrix.
- CI—Consistency Index;
- n—number of possible alternatives.
- CR—Consistency Ratio;
- RI—random Index.
- —aggregated evaluation of element, belonging to i row and j column;
- n—number of matrices of the pair-wise comparison of each expert.
- —Shannon alpha diversity;
- —Shannon beta diversity;
- —Shannon gamma diversity.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pannucci, C.J.; Wilkins, E.G. Identifying and Avoiding Bias in Research. Plast. Reconstr. Surg. 2011, 126, 619–625. [Google Scholar] [CrossRef] [PubMed]
- Althubaiti, A. Information bias in health research: Definition, pitfalls, and adjustment methods. J. Multidiscip. Healthc. 2016, 9, 211–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thiem, A.; Mkrtchyan, L.; Haesebrouck, T.; Sanchez, D. Algorithmic bias in social research: A meta-analysis. PLoS ONE 2020, 15, e0233625. [Google Scholar] [CrossRef] [PubMed]
- Munafo, M.R.; Nosek, B.A.; Bishop, D.V.M.; Button, K.S.; Chambers, C.D.; Percie du Sert, N. A Manifesto for Reproducible Science. Nat. Hum. Behav. 2017, 1, 21. [Google Scholar] [CrossRef] [Green Version]
- Bial, H. Guest editor’s introduction: Failing better. Theatre Top. 2018, 28, 61–62. [Google Scholar] [CrossRef] [Green Version]
- Fanelli, D. When East meets West.does bias increase? A preliminary study on South Korea, United States and other countries. In 8th International Conference on Webometrics, Informetrics and Scientometrics and 13th COLLNET Meeting; Ho-Nam, C., Hye-Sun, K., Kyung-Ran, N., Seon-Hee, L., Hye-Jin, K., Kretschmer, H., Eds.; KISTI: Seoul, Korea, 2012; pp. 47–48. [Google Scholar]
- Jamieson, L. Random and Systematic Bias in Population Oral Health Research: An introduction. Community Dent. Health 2020, 37, 83. [Google Scholar] [CrossRef]
- Russell, G.; Mandy, W.; Elliott, D.; White, R.; Pittwood, T.; Ford, T. Selection bias on intellectual ability in autism research: A cross-sectional review and meta-analysis. Mol. Autism 2019, 10, 9. [Google Scholar] [CrossRef]
- Stefl-Mabry, J.; Radlick, M.; Mersand, S.; Gulatee, Y. School Library Research: Publication Bias and the File Drawer Effect. J. Thought 2019, 53, 19–34. [Google Scholar]
- Song, F.; Parekh, S.; Hooper, L.; Loke, Y.K.; Ryder, J.; Sutton, A.J.; Hing, C.; Kwok, C.S.; Pang, C.; Harvey, I. Dissemination and publication of research findings: An updated review of related biases. Health Technol. Assess. 2010, 14, 1–12. [Google Scholar] [CrossRef]
- Chavalarias, D.; Ioannidis, J.P.A. Science mapping analysis characterizes 235 biases in biomedical research. Clin. Epidemiol. 2010, 63, 1205–1215. [Google Scholar] [CrossRef]
- Cook, G.B.; Therrien, J.W. Null Effects and Publication Bias in Special Education Research. Behav. Disord. 2017, 42, 149–158. [Google Scholar] [CrossRef]
- Button, S.K.; Bal, L.; Clark, A.; Shipley, T. Preventing the ends from justifying the means: Withholding results to address publication bias in peer-review. BMC Psychol. 2016, 4, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vella, F. Estimating models with sample selection bias: A survey. J. Hum. Resour. 1998, 33, 127–169. [Google Scholar] [CrossRef] [Green Version]
- Ayorinde, A.A.; Williams, I.; Mannion, R.; Song, F.; Skrybant, M.; Lilford, J.R.; Chen, F.Y. Assessment of publication bias and outcome reporting bias in systematic reviews of health services and delivery research: A meta-epidemiological study. PLoS ONE 2020, 15, e0227580. [Google Scholar] [CrossRef] [Green Version]
- Reio, T.G., Jr. Survey Nonresponse Bias in Social Science Research. New Horiz. Adult Educ. Hum. Resour. Dev. 2007, 21, 48–51. [Google Scholar] [CrossRef]
- Mulimani, P. Publication bias towards Western populations harms humanity. Nat. Hum. Behav. 2019, 3, 1026–1027. [Google Scholar] [CrossRef]
- Heidweiller-Schreurs, V. Publication bias may exist among prognostic accuracy studies of middle cerebral artery Doppler ultrasound. J. Clin. Epidemiol. 2019, 116, 1–8. [Google Scholar] [CrossRef]
- Shi, L.; Lin, L. The trim-and-fill method for publication bias: Practical guidelines and recommendations based on a large database of meta-analyses. Medicine 2019, 98, 23. [Google Scholar] [CrossRef]
- DeVito, N.J.; Goldacre, B. Catalogue of bias: Publication bias. BMJ Evid. Based Med. 2019, 24, 53–54. [Google Scholar] [CrossRef] [Green Version]
- Danks, D.; London, A.J. Algorithmic Bias in Autonomous Systems. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, Melbourne, Australia, 19–25 August 2017; pp. 4691–4697. [Google Scholar]
- van Aert, R.C.M.; Wicherts, I.M.; van Assen, M.A.L.M. Publication bias examined in meta-analyses from psychology and medicine: A meta-meta-analysis. PLoS ONE 2019, 14, e0215052. [Google Scholar] [CrossRef] [Green Version]
- Lozano-Blasco, R.; Cortés-Pascual, A.; Latorre-Martinez, P.M. Being a cybervictim and a cyberbully—The duality of cyberbullying: A meta-analysis. Comput. Hum. Behav. 2020, 111. [Google Scholar] [CrossRef]
- Stefl-Mabry, J.; Radlick, M.S. School library research in the real world—What does it really take? In Proceedings of the International Association of School Librarians Conference Proceedings, Long Beach, CA, USA, 8 August 2017. [Google Scholar]
- Iwasaki, I.; Ma, X.; Mizobata, S. Corporate ownership and managerial turnover in China and Eastern Europe: A comparative meta-analysis. J. Econ. Bus. 2020. [Google Scholar] [CrossRef]
- Nelson, A.J. The power of stereotyping and confirmation bias to overwhelm accurate assessment: The case of economics, gender, and risk aversion. J. Econ. Methodol. 2014, 21, 211–231. [Google Scholar] [CrossRef]
- Linm, L. Bias caused by sampling error in meta-analysis with small sample sizes. PLoS ONE 2018, 13, e0204056. [Google Scholar] [CrossRef] [Green Version]
- Fanelli, D.; Ioannidis, J.P.A. US studies may overestimate effect sizes in softer research. Proc. Natl. Acad. Sci. USA 2013, 110, 15031–15036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groves, I.; Robert, M. Nonresponse Rates and Nonresponse Error in Household Surveys. Public Opin. Q. 2006, 70, 646–675. [Google Scholar] [CrossRef]
- Dehkordi, A. Effect of Bias in Contrast Agent Concentration Measurement on Estimated Pharmacokinetic Parameters in Brain Dynamic Contrast-Enhanced Magnetic Resonance Imaging Studies. Iran. J. Med Phys. 2020, 17, 142–152. [Google Scholar]
- Shu, D.; Yi, G.Y. Causal inference with measurement error in outcomes: Bias analysis and estimation methods. Stat. Methods Int. Med. Res. 2019, 28, 2049–2068. [Google Scholar] [CrossRef]
- Frenkel, R.; Farrance, I.; Badrick, T. Bias in analytical chemistry: A review of selected procedures for incorporating uncorrected bias into the expanded uncertainty of analytical measurements and a graphical method for evaluating the concordance of reference and test procedures. Clin. Chim. Acta 2019, 495, 129–138. [Google Scholar] [CrossRef]
- Handelsman, D.J.; Ly, L.P. An Accurate Substitution Method to Minimize Left ensoring Bias in Serum Steroid Measurements. Endocrinology 2019, 160, 2395–2400. [Google Scholar] [CrossRef]
- Bishara, A.J.; Hittner, J.B. Reducing Bias and Error in the Correlation Coefficient Due to Nonnormality. Educ. Psychol. Meas. 2015, 75, 785–804. [Google Scholar] [CrossRef]
- Charles, L.K.; Dattalo, V.P. Minimizing Social Desirability Bias in Measuring Sensitive Topics: The Use of Forgiving Effect of Bias in Contrast Agent Concentration Measurement on Estimated Pharmacokinetic Parameters in Brain Dynamic Contrast-Enhanced Magnetic Resonance Imaging Studies. J. Soc. Serv. Res. 2018, 44, 587–599. [Google Scholar]
- Schooler, J. Unpublished results hide the decline effect. Nature 2011, 470, 437. [Google Scholar] [CrossRef] [PubMed]
- Ioannidis, J.P.A. Why Most Published Research Findings Are False. PLoS Med. 2005, 2, e124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pang, D.; Yang, L. psychological acceptance mechanism and influencing factors of scientific research educatio. Rev. Argent. Clín. Psicol. 2020, 2, 731–736. [Google Scholar]
- Martinson, B.C.; Crain, A.L.; Anderson, M.S.; De Vries, R. Institutions’ expectations for researchers’ self-funding, federal grant holding and private industry involvement: Manifold drivers of self-interest and researcher behavior. Acad. Med. 2009, 84, 1491–1499. [Google Scholar] [CrossRef]
- Qiu, J. Publish or perish in China. Nature 2010, 463, 142–143. [Google Scholar] [CrossRef]
- Lee, C.; Schrank, A. Incubating innovation or cultivating corruption? The developmental state and the life sciences in Asia. Soc. Forces 2010, 88, 1231–1255. [Google Scholar] [CrossRef]
- Lacetera, N.; Zirulia, L. The economics of scientific misconduct. J. Law Econ. Organ. 2011, 27, 568–603. [Google Scholar] [CrossRef]
- Fang, F.C.; Bennett, J.W.; Casadevall, A. Males are overrepresented among life science researchers committing scientific misconduct. mBio 2013, 4, e00640–e006412. [Google Scholar] [CrossRef] [Green Version]
- Kaatz, A.; Vogelman, P.N.; Carnes, M. Are men more likely than women to commit scientific misconduct? Maybe, maybe not. mBio 2013, 4, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, C.D. Psychopathy, Academic accountants’ attitudes toward unethical research practices, and publication success. Account. Rev. 2015, 90, 1307–1332. [Google Scholar] [CrossRef]
- Antes, A.L.; Brown, R.P.; Murphy, S.T. Personality and ethical decision-making in research: The role of perceptions of self and others. Empir. Res. Hum. Res. Ethics 2007, 2, 15–34. [Google Scholar] [CrossRef] [PubMed]
- MacKenzie, S.B.; Podsakoff, P.M. Common method bias in marketing: Causes, mechanisms, and procedural remedies. J. Retail. 2012, 88, 542–555. [Google Scholar] [CrossRef]
- Eisend, M.; Tarrahi, F. Meta-analysis selection bias in marketing research. Int. J. Res. Mark. 2014, 31, 317–326. [Google Scholar] [CrossRef]
- Zaefarian, G.; Kadile, V.; Henneberg, S.C.; Leischnig, A. Endogeneity bias in marketing research: Problem, causes and remedies. Ind. Mark. Manag. 2017, 65, 39–46. [Google Scholar] [CrossRef]
- Kakoschke, N.; Kemps, E.; Tiggemann, M. Approach bias modification training and consumption: A review of the literature. Addict. Behav. 2017, 64, 21–28. [Google Scholar] [CrossRef]
- Rosenthal, M.; Symoens, J.; De Brabander, M.; Goldstein, G. Immunoregulation with levamisole. Springer Semin. Immunopathol. 1979, 2, 49–68. [Google Scholar]
- Piotrowskj, C. Scholarly research on educational adaption of social media: Is there evidence of publication bias? Coll. Stud. J. 2015, 49, 447–451. [Google Scholar]
- Welner, G.K.; Molnar, A. Truthiness in Education. Educ. Week 2007, 26, 32–44. [Google Scholar]
- Gage, N.A.; Cook, G.B.; Reichow, B. Publication Bias in Special Education Meta-Analyses. Except. Child. 2017, 83, 428–445. [Google Scholar] [CrossRef]
- Makel, C.M.; Steenbergen-Hu, S.; Olszewski-Kubilius, P. What One Hundred Years of Research Says About the Effects of Ability Grouping and Acceleration on K–12 Students’ Academic Achievement: Findings of Two Second-Order Meta-Analyses. Rev. Educ. Res. 2016, 86, 849–899. [Google Scholar]
- Statzner, B.; Resh, H.V. Negative changes in the scientific publication process in ecology: Potential causes and consequences. Freshw. Biol. 2010. [Google Scholar] [CrossRef]
- Ekmekci, E. The Flipped Writing Classroom in Turkish EFL Context: A Comparative Study on a New Model. Turk. Online J. Distance Educ. 2017, 18, 151–167. [Google Scholar] [CrossRef]
- Ioannidis, J.P.A.; Trikalinos, T.A. Early extreme contradictory estimates may appear in published research: The Proteus phenomenon in molecular genetics research and randomized trials. J. Clin. Epidemiol. 2005, 58, 543–549. [Google Scholar] [CrossRef]
- Young, S.N. Bias in the research literature and conflict of interest: An issue for publishers, editors, reviewers and authors, and it is not just about the money. J. Psychiatry Neurosci. Jpn. 2009, 34, 412–417. [Google Scholar] [PubMed]
- Dwan, K.; Altman, D.G.; Arnaiz, J.A.; Bloom, J.; Chan, A.-W.; Cronin, E.; Decullier, E.; Easterbrook, P.J.; Von Elm, E.; Gamble, G.; et al. Systematic review of the empirical evidence of study publication bias and outcome reporting bias. PLoS ONE 2008, 3, e3081. [Google Scholar] [CrossRef] [Green Version]
- Mlinaric, A.; Horvat, M.; Smolcic, S.V. Dealing with the positive publication bias: Why you should really publish your negative results. Biochem. Medica 2017, 27, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francis, R. Report of the Mid Staffordshire NHS Foundation Trust Public Inquiry; Stationary Office: London, UK, 2013. [Google Scholar]
- Jha, M.K.; Arnold, K.; Moriasi, N.D.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; van Griensven, A.; et al. SWAT: Model Use, Calibration and Validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar]
- Owuamalam, K.C.; Rubin, M.; Spears, R. Addressing Evidential and Theoretical Inconsistencies in System-Justification Theory with a Social Identity Model of System Attitudes. Curr. Dir. Psychol. Sci. 2018. [Google Scholar] [CrossRef] [Green Version]
- Sterling, T.; Savarese, D.; Becker, D.J.; Dorband, J.; Ranawake, U.; Packer, V.C. BEOWULF: A Parallel Workstation for Scientific Computation. In Proceedings of the 1995 International Conference on Parallel Processing, Urbana-Champain, IL, USA, 14–18 August 1995; CRC Press: Urbana-Champain, IL, USA, 1995; Volume I: Archit, pp. 11–14. [Google Scholar]
- Davis, M.S.; Wester, K.L.; King, B. Narcissism, entitlement, and questionable research practices in counseling: A pilot study. Couns. Dev. 2008, 86, 200–210. [Google Scholar] [CrossRef]
- Laroche, P.; Soulez, S. La Méthodologie de la Méta-Analyse en Marketing Recherche et Applications en Marketing; Sage Publications, Ltd.: Thousand Oaks, CA, USA, 2012; Volume 27, pp. 79–105. [Google Scholar]
- Dickersin, K.; Min, C.M. Factors influencing publication results: Follow-up on applications submitted to two institutional review boards. JAMA 1991, 267, 374–378. [Google Scholar] [CrossRef]
- Song, Z.; Guan, B.; Bergman, A.; Nicholson, D.W.; Thornberry, N.A.; Peterson, E.P.; Steller, H. Biochemical and genetic interactions between Drosophila caspases and the proapoptotic genes rpr, hid, and grim. Mol. Cell. Biol. 2000, 20, 2907–2914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickersin, K. Publication bias: Recognizing the problem, understanding its origins and scope, and preventing harm. In Publication Bias in Meta-Analysis—Prevention, Assessment and Adjustments; Rothstein, H.R., Ed.; John Wiley & Sons: New York, NY, USA, 2005; pp. 11–33. [Google Scholar]
- Greenhalgh, T.; Peacock, R. Effectiveness and efficiency of search methods in systematic reviews of complex evidence: Audit of primary sources. Br. Med. J. 2005, 331, 1064–1065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polanin, J.R.; Tanner-Smith, E.E.; Hennessy, E.A. Estimating the difference between published and unpublished effect sizes a metareview. Rev. Educ. Res. 2016, 86, 207–236. [Google Scholar] [CrossRef]
- De Leeuw, E.; de Heer, W. Trends in Household Survey Nonresponse: A Longitudinal and International Comparison; Survey Nonresponse; Wiley: New York, NY, USA, 2002; pp. 41–54. [Google Scholar]
- Biemer, P.P. Nonresponse Bias and Measurement Bias in a Comparision of Face to Face and Telephone Interviewing. J. Off. Stat. 2001, 17, 295–320. [Google Scholar]
- Cannell, F.C.; Fowler, F.J. Comparision of a self-enumerative procedure and personal interview: A validity study. Public Opin. Q. 1963, 27, 250–264. [Google Scholar] [CrossRef]
- Muller, J.-L. Pour une revue quantitative de la littérature: Les méta-analyses. Psychol. Franç. 1988, 33, 295–303. [Google Scholar]
- Certo, S.T.; Busenbark, J.R.; Woo, H.S.; Semadeni, M. Sample selection bias and Heckman models in strategic management research. Strateg. Mag. 2016, 37, 2639–2657. [Google Scholar] [CrossRef]
- Anderson, S.F.; Ken, K.; Scott, E.M. Sample-Size Planning for More ccurate Statistical Power: A Method Adjusting Sample Effect Sizes for Publication Bias and Uncertainty. Psychol. Sci. 2017, 28, 1547–1562. [Google Scholar] [CrossRef] [Green Version]
- Rayer, S.; Smith, K.S. Population Projections by Age for Florida and its Counties: Assessing Accuracy and the Impact of Adjustments. Popul. Res. Policy Rev. 2014, 33, 747–770. [Google Scholar] [CrossRef]
- Tayman, J.; Smith, K.S.; Lin, J. Precision, bias, and uncertainty for state population forecasts: An exploratory analysis of time series models. Popul. Res. Policy Rev. 2007, 26, 347–369. [Google Scholar] [CrossRef]
- Alho, M.J.; Spencer, D.B. The Practical Specification of the Expected Error of Population Forecats. J. Off. Stat. 1997, 13, 203–225. [Google Scholar]
- Pflaumer, P. Forecasting US population totals with the Box-Jenkins Approach. Int. J. Forecast. 1992, 8, 329–338. [Google Scholar] [CrossRef]
- Keilman, N.; Pham, Q.D.; Hetland, A. Why population forecasts should be probabilistic—Illustrated by the case of Norway. Demogr. Res. 2002, 6, 409–454. [Google Scholar] [CrossRef] [Green Version]
- Sartori, E.A. An Estimator for Some Binary-Outcome Selection Models without Exclusion Restrictions. Political Analysis 2003, 11, 111–138. [Google Scholar] [CrossRef]
- Japec, L.; Lundquist, P. Bortfallet—Påverkas det av Intervjuarnas Attityder och Strategier? Rapport inédit; Statistics Sweden: Stockholm, Sweden, 2000. [Google Scholar]
- Curtin, C.; Presser, S.; Singer, E. The Effects of Response Rate Changes on the Index of Consumer Sentiment. Public Opin. Q. 2000, 64, 413–428. [Google Scholar] [CrossRef] [Green Version]
- Keeter, S.; Miller, C.; Kohut, A.; Groves, R.; Presser, S. Consequences of Reducing Nonresponse in a Large National Telephone Survey. Public Opin. Q. 2000, 64, 125–148. [Google Scholar] [CrossRef] [Green Version]
- Young, N.S.; Ioannidis, J.P.A.; Al-Ubaydli, O. Why current publication practices may distort science. PLoS Med. 2008, 5, e201. [Google Scholar] [CrossRef] [Green Version]
- Groves, M.R.; Presser, S.; Dipko, S. The Role of Topic Interest in Survey Participation Decisions. Public Opin. Q. 2004, 86, 2–31. [Google Scholar] [CrossRef] [Green Version]
- Taraday, M. Lack of Publication Bias in Intelligence and Working Memory Research: Reanalysis of Ackerman, Beier, Boyle, 2005. Stud. Psychol. 2019, 61, 203–212. [Google Scholar] [CrossRef]
- Wallach, J.D.; Boyack, K.W.; Ioannidis, J.P.A. Reproducible Research Practices, Transparency, and Open Access Data in the Biomedical Literature, 2015–2017. PLOS Biol. 2018, 16, e2006930. [Google Scholar] [CrossRef]
- Wind, Y.; Saaty, T.L. Marketing applications of the analytic hierarchy process. Manag. Sci. 1980, 26, 641–658. [Google Scholar] [CrossRef]
- John, K.L.; Loewenstein, G.; Prelec, D. Measuring the Prevalence of Questionable Research Practices With Incentives for Truth Telling. Psychol. Sci. 2012, 23, 524–532. [Google Scholar] [CrossRef] [Green Version]
- Wickramasinghe, V.S.K.; Takano, S.E. Application of Combined SWOT and Analytic Hierarchy Process (AHP) for Tourism Revival Strategic Marketing Planning; Eastern Asia Society for Transportation Studies: Surabaya, Indonesia, 2009; Volume 7. [Google Scholar]
- Abedi, G.; Abedini, E. Prioritizing of marketing mix elements effects on patients’ tendency to the hospital using analytic hierarchy process. Int. J. Healthc. Manag. 2017, 10, 34–41. [Google Scholar] [CrossRef]
- Najmi, A.; Kanapathy, K.; Aziz, A.A. Prioritising factors influencing consumers’ reversing intention of e-waste using analytic hierarchy process. Int. J. Electron. Cust. Relatsh. Manag. 2019, 12, 58–74. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, S.C.; Lin, I.C. Elucidating the impact of critical determinants on purchase decision in virtual reality products by Analytic Hierarchy Process approach. Virtual Real. 2019, 23, 187–195. [Google Scholar] [CrossRef]
- Gupta, S.; Dawar, V.; Goyal, A. Enhancing the placement value of professionally qualified students in marketing: An application of the analytic hierarchy process. Acad. Mark. Stud. J. 2018, 22, 1–10. [Google Scholar]
- Jing, Z.X.; Shi, J.H.; Luo, Z.Y.; Chen, D.P.; Chen, Z.Y. Comprehensive Evaluation of Electricity Market Based on Analytic Hierarchy Process and Evidential Reasoning Methods. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 354, p. 012117. [Google Scholar]
- Shaverdi, M.; Heshmati, M.R.; Eskandaripour, E.; Tabar, A.A.A. Developing sustainable SCM evaluation model using fuzzy AHP in publishing industry. Procedia Comput. Sci. 2013, 17, 340–349. [Google Scholar] [CrossRef] [Green Version]
- Rostamy, A.A.A.; Shaverdi, M.; Ramezani, I. Green supply chain management evaluation in publishing industry based on fuzzy AHP approach. J. Logist. Manag. 2013, 2, 9–14. [Google Scholar]
- Diouf, M.; Kwak, C. Fuzzy AHP, DEA, and Managerial analysis for supplier selection and development; From the perspective of open innovation. Sustainability 2018, 10, 3779. [Google Scholar] [CrossRef] [Green Version]
- Owusu-Agyeman, Y.; Larbi-Siaw, O.; Brenya, B.; Anyidoho, A. An embedded fuzzy analytic hierarchy process for evaluating lecturers’ conceptions of teaching and learning. Stud. Educ. Eval. 2017, 55, 46–57. [Google Scholar] [CrossRef]
- Myeong, S.; Jung, Y.; Lee, E. A study on determinant factors in smart city development: An analytic hierarchy process analysis. Sustainability 2018, 10, 2606. [Google Scholar] [CrossRef] [Green Version]
- Mayo, F.L.; Taboada, E.B. Ranking factors affecting public transport mode choice of commuters in an urban city of a developing country using analytic hierarchy process: The case of Metro Cebu, Philippines. Transp. Res. Interdiscip. Perspect. 2020, 4, 100078. [Google Scholar] [CrossRef]
- Ma, D.; Zheng, X. 9/9-9/1 Scale Method of AHP. In Proceedings of the 2nd International Symposium on AHP, Pittsburgh, PA, USA, 11–14 August 1991; Volume 1, pp. 197–202. [Google Scholar]
- Ishizaka, A.; Balkenborg, D.; Kaplan, T. Influence of aggregation and measurement scale on ranking a compromise alternative in AHP. J. Oper. Res. Soc. 2010, 62, 700–710. [Google Scholar] [CrossRef] [Green Version]
- Harker, P.; Vargas, L. The Theory of Ratio Scale Estimation: Saaty’s Analytic Hierarchy Process. Manag. Sci. 1987, 33, 1383–1403. [Google Scholar] [CrossRef]
- Saaty, T.L.; Vargas, L.G. Models, Methods, Concepts Applications of the Analytic Hierarchy Process; Springer Science Business Media: New York, NY, USA, 2012; Volume 175. [Google Scholar]
- Libby, R.; Blashfield, R.K. Performance of a composite as a function of the number of judges. Organ. Behav. Hum. Perform. 1978, 21, 121–129. [Google Scholar] [CrossRef]
- Goepel, K.D. Comparison of judgment scales of the analytical hierarchy process—A new approach. Int. J. Inf. Technol. Decis. Mak. 2019, 18, 445–463. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Zhang, G.; Hong, W.C.; Xu, Y. Consensus models for AHP group decision making under row geometric mean prioritization method. Decis. Support Syst. 2010, 49, 281–289. [Google Scholar] [CrossRef]
- Saaty, T.L. Fundamentals of the analytic hierarchy process. In The Analytic Hierarchy Process in natural Resource and Environmental Decision Making; Springer: Dordrecht, Germany, 2001; pp. 15–35. [Google Scholar]
- Benedetti, R.; Andreano, A.S.; Piersimoni, F. Sample selection when a multivariate set of size measures is available. Stat. Methods Appl. 2019, 28, 1–25. [Google Scholar] [CrossRef]
- Patino, C.M.; Ferreira, J.C. Inclusion and exclusion criteria in research studies: Definitions and why they matter. J. Bras. De Pneumol. 2018, 44, 84. [Google Scholar] [CrossRef] [Green Version]
- Gray, J.R.; Grove, S.K.; Sutherland, S. Burns and Grove’s the Practice of Nursing Research: Appraisal, Synthesis, and Generation of Evidence, 8th ed.; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Beullens, K.; Loosveldt, G.; Vandenplas, C.; Stoop, I. Response Rates in the European Social Survey: Increasing, Decreasing, or a Matter of Fieldwork Efforts? Survey Methods: Insights from the Field. 2018. Available online: https://surveyinsights.org/?p=9673 (accessed on 16 July 2020).
- Langer, G. Probability versus non-probability methods. In The Palgrave Handbook of Survey Research; Vannette, D.L., Krosnick, J.A., Eds.; Springer: Cham, Switzerland, 2018; pp. 393–403. [Google Scholar]
- Franco, A.; Malhotra, N.; Simonovits, G. Publication bias in the social sciences: Unlocking the file drawer. Science 2014, 345, 1502–1505. [Google Scholar] [CrossRef] [PubMed]
- Peck, R.L.; D’Attoma, I.; Camillo, F.; Guo, G. A New Strategy for Reducing Selection Bias in Nonexperimental Evaluations, and the Case of How Public Assistance Receipt Affects Charitable Giving. Policy Stud. J. 2012, 40, 601–625. [Google Scholar] [CrossRef]
- Showalter, A.D.; Mullet, B.L. Sniffing Out the Secret Poison: Selection Bias in Educational Research. Mid-West. Educ. Res. 2017, 29, 207–234. [Google Scholar]
- Clark, G.T.; Mulligan, R. Fifteen common mistakes encountered in clinical research. J. Prosthodont. Res. 2011, 55, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Churchill, G.A.; Iacobucci, D. Marketing Research: Methodological Foundations; Dryden Press: New York, NY, USA, 2006. [Google Scholar]
- Greenwood, M. Approving or improving research ethics in management journals. J. Bus. Ethics 2016, 137, 507–520. [Google Scholar] [CrossRef]
- Plemmons, D.K.; Baranski, E.N.; Harp, K.; Lo, D.D.; Soderberg, C.K.; Errington, T.M.; Esterling, K.M. A randomized trial of a lab-embedded discourse intervention to improve research ethics. Proc. Natl. Acad. Sci. USA 2020, 117, 1389–1394. [Google Scholar] [CrossRef] [Green Version]
Reliability Indicators | |||
---|---|---|---|
Scale | Inverse | Logarithmic | Power |
Lambda, λ | 8.432 | 8.256 | 8.331 |
Consistency Ratio, CR | 0.019 | 0.013 | 0.017 |
Consensus Index, CI, % | 68.2 | 83.5 | 74.7 |
Scale | Inverse | Logarithmic | Power |
---|---|---|---|
Failure to examine and critically assess the prior literature | 0.127 | 0.111 | 0.118 |
Failure to specify the inclusion and exclusion criteria for researched subjects | 0.142 | 0.151 | 0.147 |
Failure to determine and report the error of measurement methods | 0.071 | 0.076 | 0.08 |
Failure to specify the exact statistical assumptions and failure to perform sample size analysis | 0.065 | 0.069 | 0.057 |
Improper population specification | 0.097 | 0.108 | 0.106 |
Sampling and sample frame errors | 0.17 | 0.159 | 0.162 |
Selection errors | 0.102 | 0.109 | 0.113 |
Non-responsiveness | 0.124 | 0.113 | 0.119 |
Missing data, dropped subjects and use of an intention to treat analysis | 0.062 | 0.057 | 0.052 |
Problems to point out the weaknesses of your own study | 0.04 | 0.047 | 0.046 |
Factors Causing Bias in Marketing Related Publications | Rank Obtained by Inverse Scale | Rank Obtained by Logarithmic Scale | Rank Obtained by Power Scale | Final Rank |
---|---|---|---|---|
Sampling and sample frame errors | 1 | 1 | 1 | 1 |
Failure to specify the inclusion and exclusion criteria for researched subjects | 2 | 2 | 2 | 2 |
Non-responsiveness | 4 | 3 | 3 | 3 |
Failure to examine and critically assess the prior literature | 3 | 4 | 4 | 4 |
Selection errors | 5 | 5 | 5 | 5 |
Improper population specification | 6 | 6 | 6 | 6 |
Failure to determine and report the error of measurement methods | 7 | 7 | 7 | 7 |
Failure to specify the exact statistical assumptions and failure to perform sample size analysis | 8 | 8 | 8 | 8 |
Missing data, dropped subjects and use of an intention to treat analysis | 9 | 9 | 9 | 9 |
Problems to point out the weaknesses of your own study | 10 | 10 | 10 | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morkunas, M.; Rudienė, E.; Giriūnas, L.; Daučiūnienė, L. Assessment of Factors Causing Bias in Marketing- Related Publications. Publications 2020, 8, 45. https://doi.org/10.3390/publications8040045
Morkunas M, Rudienė E, Giriūnas L, Daučiūnienė L. Assessment of Factors Causing Bias in Marketing- Related Publications. Publications. 2020; 8(4):45. https://doi.org/10.3390/publications8040045
Chicago/Turabian StyleMorkunas, Mangirdas, Elzė Rudienė, Lukas Giriūnas, and Laura Daučiūnienė. 2020. "Assessment of Factors Causing Bias in Marketing- Related Publications" Publications 8, no. 4: 45. https://doi.org/10.3390/publications8040045
APA StyleMorkunas, M., Rudienė, E., Giriūnas, L., & Daučiūnienė, L. (2020). Assessment of Factors Causing Bias in Marketing- Related Publications. Publications, 8(4), 45. https://doi.org/10.3390/publications8040045