Picker Routing and Batching in Multi-Block Parallel-Aisle Warehouses: An Application from the Logistics Service Provider
Abstract
:1. Introduction
- ▪
- How can one accurately ascertain the shortest distance between two orders in warehouses with multiple blocks?
- ▪
- How to solve the issues of batching and routing for the order picker being addressed concurrently?
- ▪
- Can the proposed approach enhance the warehouse operations of a real-world logistics service provider?
2. Order Picking: An Overview
d (X1, X2) = [(6 – 2)2 + (5 – 2)2 ]1/2 =5
d (X1, X2) = (6 – 2) + (5 – 2) =7
3. Methodology
3.1. Computing the Distance Matrix
Case 1: If ONi = 0, ONj ≠ 0, and Ai = Aj, D (i,j) = (Cj × HU) + [(Bj − 1) × (CA + BL)]; | |
Case 2: If ONi ≠ 0, ONj = 0, and Ai = Aj, D (i,j) = (Ci × CL) + [(Bi − 1) × (CA + BL)]; | |
Case 3: If ONi = 0, ONj ≠ 0, and Ai ≠ Aj and if Rj is odd, use Rj + 1 for D(i,j) = (Cj × CL) + [(Bj − 1) × (CA + BL)] + [(Rj − 2) × CW] + [((Rj/2) − 1) × AW]; | |
Case 4: If ONi ≠ 0, ONj = 0, and Ai ≠ Aj and if Ri is odd, use Ri + 1 for D (i,j) = (Ci × CL) + [(Bi − 1) × (CA + BL)] + [(Ri − 2) × CW] + [((Ri/2) − 1) × AW]; | |
Case 5: If ONi ≠ 0, ONj ≠ 0, and Ai = Aj, D (i,j) = |[(Bi − 1) × (BL)] + [((Bi − 1) × CA) + Ci × CL] − [(Bj − 1) × (BL)] − [((Bj − 1) × CA) + Cj × CL]|; | |
Case 6: If ONi ≠ 0, ONj ≠ 0, Ai ≠ Aj, Bi = Bj, (Ci + Cj) × CL > BL, and |Ri − Rj| is an even number, D (i,j) = (BL − Ci × CL) + (BL − Cj × CL) + 2 × CL + (|Ri − Rj| × CW) + (|Ai − Aj| × AW); | |
Case 7: If ONi ≠ 0, ONj ≠ 0, Ai ≠ Aj, Bi = Bj, (Ci + Cj) × CL > BL, and |Ri − Rj| = (2 × |Ai − Aj|) − 1, D (i,j) = (BL − Ci × CL) + (BL − Cj × CL) + 2 × CL + ((|Ri − Rj| × CW) + CW) + (|Ai − Aj| × AW); | |
Case 8: If ONi ≠ 0, ONj ≠ 0, Ai ≠ Aj, Bi = Bj, and (Ci + Cj) × CL > BL, D (i,j) = (BL − Ci × CL) + (BL − Cj × CL) + 2 × CL + ((|Ri − Rj| × CW) − CW) + (|Ai − Aj| × AW); | |
Case 9: If ONi ≠ 0, ONj ≠ 0, Ai ≠ Aj, Bi = Bj, (Ci + Cj) × CL ≤ BL, and |Ri − Rj| is an even number, D (i,j) = ((Ci + Cj) × CL) + (|Ri − Rj| × CW) + (|Ai − Aj| × AW); | |
Case 10: If ONi ≠ 0, ONj ≠ 0, Ai ≠ Aj, Bi = Bj, (Ci + Cj) × CL ≤ BL, and |Ri − Rj| = (2 × |Ai − Aj|) − 1, D (i,j) = ((Ci + Cj) × CL) + ((|Ri − Rj| × CW) + CW) + (|Ai − Aj| × AW); | |
Case 11: If ONi ≠ 0, ONj ≠ 0, Ai ≠ Aj, Bi = Bj, and (Ci + Cj) × CL ≤ BL, D (i,j) = ((Ci + Cj) × CL) + ((|Ri − Rj| × CW) − CW) + (|Ai − Aj| × AW); | |
Case 12: If ONi ≠ 0, ONj ≠ 0, Ai ≠ Aj, Bi ≠ Bj, and |Ri − Rj| is an even number, D (i,j) = |[(Bi − 1) × (BL)] + [((Bi − 1) × CA) + Ci × CL] − [(Bj − 1) × (BL)] − [((Bj − 1) × CA) + Cj × CL]| + (|Ri − Rj| × CW) + (|Ai − Aj| × AW); | |
Case 13: If ONi ≠ 0, ONj ≠ 0, Ai ≠ Aj, Bi ≠ Bj, and |Ri − Rj| = (2 × |Ai − Aj|) − 1, D (i,j) = |[(Bi − 1) × (BL)] + [((Bi − 1) × CA) + Ci × CL] − [(Bj − 1) × (BL)] − [((Bj − 1) × CA) + Cj × CL]| + ((|Ri − Rj| × CW) + CW) + (|Ai − Aj| × AW); | |
Case 14: If ONi ≠ 0, ONj ≠ 0, Ai ≠ Aj, and Bi ≠ Bj, D (i,j) = |[(Bi − 1) × (BL)] + [((Bi − 1) × CA) + Ci × CL] − [(Bj − 1) × (BL)] − [((Bj − 1) × CA) + Cj × CL]| + ((|Ri − Rj| × CW) − CW) + (|Ai − Aj| × AW). |
- Sort the block, shelf, aisle, and cell row numbers for the orders to be picked;
- Define the aisle width, cross-aisle width, cell length, and cell width;
- Examine the block, aisle, shelf, and order numbers of the two items for which the distance needs to be calculated;
- Use the correct equation based on the relative positions of the two orders to calculate the travel distance;
- Proceed to enter the computed distance into the distance matrix;
- Finally, complete the procedure by measuring the distance between all orders in the order list.
D (i,j) = |[(Bi − 1) × (BL)] + [((Bi − 1) × CA) + Ci × CL] − [(Bj − 1) × (BL)] − [((Bj − 1) × CA) + Cj × CL]| + ((|Ri − Rj| × CW) + CW) + (|Ai − Aj| × AW) | |
D (1,4) = |[(1−1) × (49.4)] +[((1-1) × 3) + 2 × 1.3] − [(3-1) × (49.4)] − [((3-1) × 3) + 4 × 1.3]| + ((|2 − 21| × 1.3) + 1.3) + (|1 − 11| × 2.5) = 158.4 m |
3.2. Clarke–Wright Heuristic
3.3. Randomized Savings Heuristic
3.4. Genetic Algorithms
4. Case Study
4.1. Current Conditions and Assumptions in the Application
- ▪
- The objective is to minimize the total travel distance;
- ▪
- Operating as a picker-to-parts system, the order picker manually moves through the warehouse using a picking tool to reach the specified areas and pick the items;
- ▪
- The order picking operations are based on a three-block parallel back-to-back racking system, as shown in Figure 4;
- ▪
- Orders listed in the picking list are indivisible, meaning the order picker must collect the entire quantity of an item from its designated shelf location. The partial collection of an order is not allowed;
- ▪
- Each batch of orders assigned to an order picker must not exceed the volumetric capacity of the picker. Real-world applications help to define the capacity limit;
- ▪
- Every order picker has an equal volumetric capacity. The volumetric capacity of all order pickers is considered to be identical, set at 3.4 m3. Calculated as a 1.3 × 1.3 m2 stacking space with about 2 m of product height, this number matches practical situations;
- ▪
- Beginning their path from the front left corner of the warehouse, each order picker gathers all of their orders and returns to the same starting position upon completion.
- ▪
- The order picker can pick items from racks on both the left and right sides as they traverse a given aisle. It is assumed that the picker stops precisely at the center of the cell containing the required item to retrieve it.
4.2. Solutions with CW and RS Heuristics
4.3. Proposed Genetic Algorithm
5. Discussion
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Bi | Block number of order i |
Bj | Block number of order j |
Ai | Aisle number where order i is located |
Aj | Aisle number where order j is located |
Ci | Cell position of order i within the shelf |
Cj | Cell position of order j within the shelf |
Ri | Rack row number of order i |
Rj | Rack row number of order j |
ONi | Order number of order i |
ONj | Order number of order j |
ON0 | Depot point |
BL | Block length |
CA | Width of the cross-aisle |
CL | Cell length (the length of the area where the product is placed on the shelf) |
CW | Cell width (the width of the area where the product is placed on the shelf) |
AW | Aisle width |
CN | Number of cells within a single block in one rack row |
HU | Cell length (the length of the area where the product is placed on the shelf) |
HG | Cell width (the width of the area where the product is placed on the shelf) |
KG | Aisle width |
S | Number of cells within a single block in one rack row |
D (i,j) | The shortest rectilinear distance between any two orders within the racking system |
References
- Boysen, N.; Schwerdfeger, S.; Stephan, K. A review of synchronization problems in parts-to-picker warehouses. Eur. J. Oper. Res. 2023, 307, 1374–1390. [Google Scholar] [CrossRef]
- Derpich, I.; Sepúlveda, J.M.; Barraza, R.; Castro, F. Warehouse Optimization: Energy Efficient Layout and Design. Mathematics 2022, 10, 1705. [Google Scholar] [CrossRef]
- Gu, J.; Goetschalckx, M.; McGinnis, L.F. Research on warehouse operation: A comprehensive review. Eur. J. Oper. Res. 2007, 177, 1–21. [Google Scholar] [CrossRef]
- Amware Fulfillment. Available online: https://www.amwarelogistics.com/blog/reducing-warehouse-labor-costs-smarter-order-picking (accessed on 19 June 2024).
- Masae, M.; Glock, C.H.; Vichitkunakorn, P. Optimal order picker routing in the chevron warehouse. IISE Trans. 2020, 52, 665–687. [Google Scholar] [CrossRef]
- Bottani, E.; Volpi, A.; Montanari, R. Design and optimization of order picking systems: An integrated procedure and two case studies. Comput. Ind. Eng. 2019, 137, 106035. [Google Scholar] [CrossRef]
- Van Gils, T.; Ramaekers, K.; Caris, A.; de Koster, R.B. Designing efficient order picking systems by combining planning problems: State-of-the-art classification and review. Eur. J. Oper. Res. 2018, 267, 1–15. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, R.; Jiang, D. Order-picking efficiency in e-commerce warehouses: A literature review. J. Theor. Appl. Electron. Commer. Res. 2022, 17, 1812–1830. [Google Scholar] [CrossRef]
- Masae, M.; Glock, C.H.; Grosse, E.H. Order picker routing in warehouses: A systematic literature review. Int. J. Prod. Econ. 2020, 224, 107564. [Google Scholar] [CrossRef]
- Trottmann, M.; Zhang, S. The Trend Towards Warehouse Automation. Westernacher & Partner Consulting Inc. 2017. Available online: https://westernacher.com/white-paper-the-trends-towards-warehouse-automation/ (accessed on 25 July 2024).
- Van Nieuwenhuyse, I.; de Koster, R.B. Evaluating order throughput time in 2-block warehouses with time window batching. Int. J. Prod. Econ. 2009, 121, 654–664. [Google Scholar] [CrossRef]
- Pansart, L.; Catusse, N.; Cambazard, H. Exact algorithms for the order picking problem. Comput. Oper. Res. 2018, 100, 117–127. [Google Scholar] [CrossRef]
- Van Gils, T.; Ramaekers, K.; Braekers, K.; Depaire, B.; Caris, A. Increasing order picking efficiency by integrating storage, batching, zone picking, and routing policy decisions. Int. J. Prod. Econ. 2018, 197, 243–261. [Google Scholar] [CrossRef]
- Öztürkoğlu, Ö.; Hoser, D. A discrete cross aisle design model for order-picking warehouses. Eur. J. Oper. Res. 2019, 275, 411–430. [Google Scholar] [CrossRef]
- Cano, J.A.; Correa-Espinal, A.A.; Gómez-Montoya, R.A. Mathematical programming modeling for joint order batching, sequencing and picker routing problems in manual order picking systems. J. King Saud Univ.-Eng. Sci. 2020, 32, 219–228. [Google Scholar] [CrossRef]
- Masae, M.; Glock, C.H.; Vichitkunakorn, P. Optimal order picker routing in a conventional warehouse with two blocks and arbitrary starting and ending points of a tour. Int. J. Prod. Res. 2020, 58, 5337–5358. [Google Scholar] [CrossRef]
- Ouyang, Z.; Leung, E.K.; Shen, C.; Huang, G.Q. Synchronizing order picking and delivery in e-commerce warehouses under community logistics. Transp. Res. Part E Logist. Transp. Rev. 2024, 188, 103631. [Google Scholar] [CrossRef]
- Tutam, M.; White, J.A. Multi-dock unit-load warehouse designs with a cross-aisle. Transp. Res. Part E Logist. Transp. Rev. 2019, 129, 247–262. [Google Scholar] [CrossRef]
- Tompkins, J.A.; White, J.A.; Bozer, Y.A.; Tanchoco, J.M.A. Facilities Planning, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Chiang, D.M.H.; Lin, C.P.; Chen, M.C. The adaptive approach for storage assignment by mining data of warehouse management system for distribution centres. Enterp. Inf. Syst. 2011, 5, 219–234. [Google Scholar] [CrossRef]
- Shetty, N.; Sah, B.; Chung, S.H. Route optimization for warehouse order picking operations via vehicle routing and simulation. SN Appl. Sci. 2020, 2, 311. [Google Scholar] [CrossRef]
- Casella, G.; Volpi, A.; Montanari, R.; Tebaldi, L.; Bottani, E. Trends in order picking: A 2007–2022 review of the literature. Prod. Manuf. Res. 2023, 11, 2191115. [Google Scholar] [CrossRef]
- Grosse, E.H. Application of supportive and substitutive technologies in manual warehouse order picking: A content analysis. Int. J. Prod. Res. 2024, 62, 685–704. [Google Scholar] [CrossRef]
- Pedrielli, G.; Vinsensius, A.; Chew, E.P.; Lee, L.H.; Duri, A.; Li, H. Hybrid order picking strategies for fashion E-commerce warehouse systems. In Proceedings of the Winter Simulation Conference (WSC), Washington, DC, USA, 11–14 December 2016. [Google Scholar]
- Zhong, S.; Giannikas, V.; Merino, J.; McFarlane, D.; Cheng, J.; Shao, W. Evaluating the benefits of picking and packing planning integration in e-commerce warehouses. Eur. J. Oper. Res. 2022, 301, 67–81. [Google Scholar] [CrossRef]
- Baruffaldi, G.; Accorsi, R.; Manzini, R. Warehouse management system customization and information availability in 3pl companies: A decision-support tool. Ind. Manag. Data Syst. 2019, 119, 251–273. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, A.; Arthanari, T.; Liu, Y.; Cheng, T.C.E. Third-party purchase: An empirical study of third-party logistics providers in China. Int. J. Prod. Econ. 2016, 171, 189–200. [Google Scholar] [CrossRef]
- Zennaro, I.; Finco, S.; Calzavara, M.; Persona, A. Implementing E-commerce from logistic perspective: Literature review and methodological framework. Sustainability 2022, 14, 911. [Google Scholar] [CrossRef]
- Yang, P.; Zhao, Z.; Shen, Z.J.M. A flow picking system for order fulfillment in e-commerce warehouses. IISE Trans. 2021, 53, 541–551. [Google Scholar] [CrossRef]
- Kumar, S.; Narkhede, B.E.; Jain, K. Revisiting the warehouse research through an evolutionary lens: A review from 1990 to 2019. Int. J. Prod. Res. 2021, 59, 3470–3492. [Google Scholar] [CrossRef]
- Mahjoob, M.; Fazeli, S.S.; Milanlouei, S.; Tavassoli, L.S.; Mirmozaffari, M. A modified adaptive genetic algorithm for multi-product multi-period inventory routing problem. Sustain. Oper. Comput. 2022, 3, 1–9. [Google Scholar] [CrossRef]
- Vanheusden, S.; van Gils, T.; Ramaekers, K.; Cornelissens, T.; Caris, A. Practical factors in order picking planning: State-of-the-art classification and review. Int. J. Prod. Res. 2023, 61, 2032–2056. [Google Scholar] [CrossRef]
- Haouassi, M.; Kergosien, Y.; Mendoza, J.E.; Rousseau, L.M. The picker routing problem in mixed-shelves, multi-block warehouses. Int. J. Prod. Res. 2025, 63, 1304–1325. [Google Scholar] [CrossRef]
- Cano, J.A.; Cortés, P.; Muñuzuri, J.; Correa-Espinal, A. Solving the picker routing problem in multi-block high-level storage systems using metaheuristics. Flex. Serv. Manuf. J. 2023, 35, 376–415. [Google Scholar] [CrossRef]
- Prunet, T.; Absi, N.; Cattaruzza, D. A note on the complexity of the picker routing problem in multi-block warehouses and related problems. Ann. Oper. Res. 2025, 1–11. [Google Scholar] [CrossRef]
- Gue, K.R.; Meller, R.D. Aisle configurations for unit-load warehouses. IIE Trans. 2009, 41, 171–182. [Google Scholar] [CrossRef]
- Kocaman, Y.; Öztürkoğlu, Ö.; Gümüşoğlu, Ş. Aisle designs in unit-load warehouses with different flow policies of multiple pickup and deposit points. Cent. Eur. J. Oper. Res. 2021, 29, 323–355. [Google Scholar] [CrossRef]
- Wildt, C.; Weidinger, F.; Boysen, N. Picker routing in scattered storage warehouses: An evaluation of solution methods based on TSP transformations. OR Spectr. 2024, 1–32. [Google Scholar] [CrossRef]
- Hsu, C.M.; Chen, K.Y.; Chen, M.C. Batching orders in warehouses by minimizing travel distance with genetic algorithms. Comput. Ind. 2005, 56, 169–178. [Google Scholar] [CrossRef]
- De Koster, R.; Le-Duc, T.; Roodbergen, K.J. Design and control of warehouse order picking: A literature review. Eur. J. Oper. Res. 2007, 182, 481–501. [Google Scholar] [CrossRef]
- Boysen, N.; Stephan, K.; Weidinger, F. Efficient order consolidation in warehouses: The product-to-order-assignment problem in warehouses with sortation systems. IISE Trans. 2022, 54, 963–975. [Google Scholar] [CrossRef]
- Manzini, R.; Gamberi, M.; Regattieri, A. Design and control of a flexible order-picking system (FOPS) A new integrated approach to the implementation of an expert system. J. Manuf. Technol. Manag. 2005, 16, 18–35. [Google Scholar] [CrossRef]
- Ho, Y.C.; Su, T.S.; Shi, Z.B. Order-batching methods for an order-picking warehouse with two cross aisles. Comput. Ind. Eng. 2008, 55, 321–347. [Google Scholar] [CrossRef]
- Theys, C.; Bräysy, O.; Dullaert, W.; Raa, B. Using a TSP heuristic for routing order pickers in warehouses. Eur. J. Oper. Res. 2010, 200, 755–763. [Google Scholar] [CrossRef]
- Vaughan, T.S. The effect of warehouse cross aisles on order picking efficiency. Int. J. Prod. Res. 1999, 37, 881–897. [Google Scholar] [CrossRef]
- Chabot, T.; Coelho, L.C.; Renaud, J.; Côté, J.F. Mathematical model, heuristics and exact method for order picking in narrow aisles. J. Oper. Res. Soc. 2018, 69, 1242–1253. [Google Scholar] [CrossRef]
- Kübler, P.; Glock, C.H.; Bauernhansl, T. A new iterative method for solving the joint dynamic storage location assignment, order batching and picker routing problem in manual picker-to-parts warehouses. Comput. Ind. Eng. 2020, 147, 106645. [Google Scholar] [CrossRef]
- Scholz, A.; Wäscher, G. Order Batching and Picker Routing in manual order picking systems: The benefits of integrated routing. Cent. Eur. J. Oper. Res. 2017, 25, 491–520. [Google Scholar] [CrossRef]
- Scholz, A.; Schubert, D.; Wäscher, G. Order picking with multiple pickers and due dates–simultaneous solution of order batching, batch assignment and sequencing, and picker routing problems. Eur. J. Oper. Res. 2017, 263, 461–478. [Google Scholar] [CrossRef]
- Cano, J.A.; Correa-Espinal, A.; Gómez-Montoya, R. Using genetic algorithms for order batching in multi-parallel-aisle picker-to-parts systems. Int. J. Appl. Decis. Sci. 2020, 13, 417–434. [Google Scholar] [CrossRef]
- Aerts, B.; Cornelissens, T.; Sörensen, K. The joint order batching and picker routing problem: Modelled and solved as a clustered vehicle routing problem. Comput. Oper. Res. 2021, 129, 105168. [Google Scholar] [CrossRef]
- Yousefi Nejad Attari, M.; Ebadi Torkayesh, A.; Malmir, B.; Neyshabouri Jami, E. Robust possibilistic programming for joint order batching and picker routing problem in warehouse management. Int. J. Prod. Res. 2021, 59, 4434–4452. [Google Scholar] [CrossRef]
- Haouassi, M.; Kergosien, Y.; Mendoza, J.E.; Rousseau, L.M. The integrated orderline batching, batch scheduling, and picker routing problem with multiple pickers: The benefits of splitting customer orders. Flex. Serv. Manuf. J. 2022, 34, 614–645. [Google Scholar] [CrossRef]
- Cao, Z.; Zhou, L.; Lin, C.; Zhou, M. Solving an order batching, picker assignment, batch sequencing and picker routing problem via information integration. J. Ind. Inf. Integr. 2023, 31, 100414. [Google Scholar] [CrossRef]
- Hedayati, S.; Setak, M.; Demir, E.; Van Woensel, T. A new approach to the joint order batching and picker routing problem with alternative locations. IMA J. Manag. Math. 2024, 35, 241–265. [Google Scholar] [CrossRef]
- Pinto, A.R.F.; Nagano, M.S. A comprehensive review of batching problems in low-level picker-to-parts systems with order due dates: Main gaps, trade-offs, and prospects for future research. J. Manuf. Syst. 2022, 65, 1–18. [Google Scholar] [CrossRef]
- Liu, M.; Poh, K.L. E-commerce warehousing: An efficient scattered storage assignment algorithm with bulky locations. Comput. Ind. Eng. 2023, 181, 109236. [Google Scholar] [CrossRef]
- Pawar, N.S.; Rao, S.S.; Adil, G.K. Scattered storage for retail e-commerce fulfillment warehouses with consideration for product turnover. Comput. Ind. Eng. 2024, 197, 110551. [Google Scholar] [CrossRef]
- Li, X.; Hua, G.; Huang, A.; Sheu, J.B.; Cheng, T.C.E.; Huang, F. Storage assignment policy with awareness of energy consumption in the Kiva mobile fulfilment system. Transp. Res. Part E Logist. Transp. Rev. 2020, 144, 102158. [Google Scholar] [CrossRef]
- Cengiz Toklu, M. A fuzzy multi-criteria approach based on Clarke and Wright savings algorithm for vehicle routing problem in humanitarian aid distribution. J. Intell. Manuf. 2023, 34, 2241–2261. [Google Scholar] [CrossRef]
- Zäpfel, G.; Braune, R.; Bögl, M. Metaheuristic Search Concepts: A Tutorial with Applications to Production and Logistics; Springer: Berlin, Germany, 2010. [Google Scholar]
- Girard, S.; Renaud, J.; Boctor, F.F. A Simple and Efficient Perturbation Heuristics to Solve the Vehicle Routing Problem. In Network Organization Technology Research Center—Working Paper; Université Laval: Québec, QC, Canada, 2005; pp. 1–19. [Google Scholar]
- Laporte, G.; Semet, F. Classical Heuristics for the Capacitated VRP. In The Vehicle Routing Problem-SIAM Monographs on Discrete Mathematics and Applications; Toth, P., Vigo, D., Eds.; SIAM Publishing: Philadelphia, USA, 2001. [Google Scholar]
- Cordeau, J.F.; Gendreau, M.; Laporte, G.; Potvin, J.Y.; Semet, F. A guide to vehicle routing heuristics. J. Oper. Res. Soc. 2002, 53, 512–522. [Google Scholar] [CrossRef]
- Altınel, İ.K.; Öncan, T. A new enhancement of the Clarke and Wright savings heuristic for the capacitated vehicle routing problem. Journal of the Oper. Res. Soc. 2005, 56, 954–961. [Google Scholar] [CrossRef]
- Dukic, G.; Oluic, C. Order-picking methods: Improving order-picking efficiency. Int. J. Logist. Syst. Manag. 2007, 3, 451–460. [Google Scholar] [CrossRef]
- Eryavuz, M.; Gencer, C. An application of the vehicle routing problem. Süleyman Demirel Univ. Fac. Econ. Adm. Sci. J. 2001, 6, 139–155. [Google Scholar]
- Djebali, S.; Segonds, S.; Redonnet, J.M.; Rubio, W. Using the global optimisation methods to minimise the machining path length of the free-form surfaces in three-axis milling. Int. J. Prod. Res. 2015, 53, 5296–5309. [Google Scholar] [CrossRef]
- Chen, F.; Wei, Y.; Wang, H. A heuristic based batching and assigning method for online customer orders. Flex. Serv. Manuf. J. 2018, 30, 640–685. [Google Scholar] [CrossRef]
- Francis, P.; Smilowitz, K.; Tzur, M. The period vehicle routing problem with service choice. Transp. Sci. 2006, 40, 439–454. [Google Scholar] [CrossRef]
- Daskin, S.M. Service Science; Wiley Publications: New York, NY, USA, 2010. [Google Scholar]
- Arakaki, R.K.; Usberti, F.L. Hybrid genetic algorithm for the open capacitated arc routing problem. Comput. Oper. Res. 2018, 90, 221–231. [Google Scholar] [CrossRef]
- McCall, J. Genetic algorithms for modelling and optimisation. J. Comput. Appl. Math. 2005, 184, 205–222. [Google Scholar] [CrossRef]
- Tasan, A.S.; Gen, M. A genetic algorithm based approach to vehicle routing problem with simultaneous pick-up and deliveries. Comput. Ind. Eng. 2012, 62, 755–761. [Google Scholar] [CrossRef]
- Saraç, T.; Özçelik, F. Generation of production cells in the presence of alternative routes using genetic algorithm. Ind. Eng. 2006, 17, 22–36. [Google Scholar]
- Karaboga, D. Artificial Intelligence Optimization Algorithms, 2nd ed.; Nobel Publishing: Ankara, Türkiye, 2011. [Google Scholar]
- Gen, M.; Cheng, R. Genetic Algorithms and Engineering Design; Wiley Series in Engineering Design and Automation: New York, NY, USA, 1997. [Google Scholar]
- Kumar, A.; Tiwari, M.K.; Shankar, R.; Baveja, A. Solving machine-loading problem of a flexible manufacturing system with constraint-based genetic algorithm. Eur. J. Oper. Res. 2006, 175, 1043–1069. [Google Scholar] [CrossRef]
- Tsai, C.Y.; Liou, J.J.; Huang, T.M. Using a multiple-GA method to solve the batch picking problem: Considering travel distance and order due time. Int. J. Prod. Res. 2008, 46, 6533–6555. [Google Scholar] [CrossRef]
- Ene, S.; Öztürk, N. Storage location assignment and order picking optimization in the automotive industry. Int. J. Adv. Manuf. Technol. 2012, 60, 787–797. [Google Scholar] [CrossRef]
- Koch, S.; Wäscher, G. A grouping genetic algorithm for the order batching problem in distribution warehouses. J. Bus. Econ. 2016, 86, 131–153. [Google Scholar] [CrossRef]
- Pinto, A.R.F.; Nagano, M.S. An approach for the solution to order batching and sequencing in picking systems. Prod. Eng. 2019, 13, 325–341. [Google Scholar] [CrossRef]
- Ou, S.; Ismail, Z.H.; Sariff, N. Hybrid Genetic Algorithms for Order Assignment and Batching in Picking System: A Systematic Literature Review. IEEE Access 2024, 12, 23026–23042. [Google Scholar] [CrossRef]
- Wu, G.-H.; Cheng, C.-Y.; Liu, M.-H. Two-Stage Metaheuristic Algorithms for Order-Batching and Routing Problems. Appl. Sciende 2022, 12, 10921. [Google Scholar] [CrossRef]
- Wu, Y.; Ji, P.; Wang, T. An empirical study of a pure genetic algorithm to solve the capacitated vehicle routing problem. ICIC Express Lett. 2008, 2, 41–45. [Google Scholar]
- Ghoseiri, K.; Ghannadpour, S.F. A hybrid genetic algorithm for multi-depot homogenous locomotive assignment with time windows. Appl. Soft Comput. 2010, 10, 53–65. [Google Scholar] [CrossRef]
- Ghannadpour, S.F.; Zandiyeh, F. An adapted multi-objective genetic algorithm for solving the cash in transit vehicle routing problem with vulnerability estimation for risk quantification. Eng. Appl. Artif. Intell. 2020, 96, 103964. [Google Scholar] [CrossRef]
- Chang, Y.; Chen, L. Solve the vehicle routing problem with time windows via a genetic algorithm. Discret. Contin. Dyn. Syst.-Spec. Issue 2007, 2007, 240–249. [Google Scholar] [CrossRef]
- Hsieh, L.F.; Huang, C.J.; Huang, C.L. Applying particle swarm optimization to schedule order picking routes in a distribution center. Asian J. Manag. Humanit. Sci. 2007, 1, 558–576. [Google Scholar]
- Engin, O.; Fığlalı, A. Determination of appropriate crossover operator in the solution of flow type scheduling problems by genetic algorithm. J. Doğuş Univ. 2002, 6, 27–35. [Google Scholar]
- Molnar, B.; Lipovszki, G. Multi-objective routing and scheduling of order pickers in a warehouse. Int. J. Simul. 2005, 6, 22–32. [Google Scholar]
- Ozmen, M.; Sahin, H. Real-time Optimization of School Bus Routing Problem in Smart Cities using Genetic Algorithm. In Proceedings of the International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India, 20–22 January 2021; pp. 1152–1158. [Google Scholar]
- Aytug, H.; Koehler, G.J. New stopping criterion for genetic algorithms. Eur. J. Oper. Res. 2000, 126, 662–674. [Google Scholar] [CrossRef]
- Hillier, F.S.; Lieberman, G.J. Introduction to Operations Research, 8th ed.; McGraw-Hill: New York, NY, USA, 2005. [Google Scholar]
- Machado, P.; Tavares, J.; Pereira, F.B.; Costa, E. Vehicle Routing Problem: Doing It The Evolutionary Way. In Proceedings of the Genetic and Evolutionary Computation Conference-GECCO, New York, NY, USA, 9–13 June 2002. [Google Scholar]
- Ma, B.J.; Kuo, Y.H.; Jiang, Y.; Huang, G.Q. RubikCell: Toward robotic cellular warehousing systems for e-commerce logistics. IEEE Trans. Eng. Manag. 2023, 71, 9270–9285. [Google Scholar] [CrossRef]
- Bottani, E.; Cecconi, M.; Vignali, G.; Montanari, R. Optimisation of storage allocation in order picking operations through a genetic algorithm. Int. J. Logist. Res. Appl. 2012, 15, 127–146. [Google Scholar] [CrossRef]
- Cergibozan, Ç.; Tasan, A.S. Genetic algorithm based approaches to solve the order batching problem and a case study in a distribution center. J. Intell. Manuf. 2022, 33, 137–149. [Google Scholar] [CrossRef]
ON | B | R | C | A |
---|---|---|---|---|
1 | 1 | 2 | 2 | 1 |
4 | 3 | 21 | 4 | 11 |
ON | B | R | C | A |
---|---|---|---|---|
0 | 0 | 0 | 0 | 1 |
1 | 1 | 2 | 1 | 1 |
2 | 1 | 1 | 2 | 1 |
. | . | . | . | . |
. | . | . | . | . |
. | . | . | . | . |
128 | 1 | 23 | 3 | 12 |
129 | 1 | 23 | 11 | 12 |
ON | 0 | 1 | 2 | . | . | . | 128 | 129 |
---|---|---|---|---|---|---|---|---|
0 | 0.0 | 1.3 | 2.6 | . | . | . | 60.0 | 70.4 |
1 | 1.3 | 0.0 | 1.3 | . | . | . | 61.3 | 71.7 |
2 | 2.6 | 1.3 | 0.0 | . | . | . | 62.6 | 73.0 |
. | . | . | . | . | . | . | . | . |
. | . | . | . | . | . | . | . | . |
. | . | . | . | . | . | . | . | . |
128 | 60.0 | 61.3 | 62.6 | . | . | . | 0.0 | 10.4 |
129 | 70.4 | 71.7 | 73.0 | . | . | . | 10.4 | 0.0 |
Order Set | Parameters | Results | ||||
---|---|---|---|---|---|---|
Depth | Iteration | Average Distance (m) | Standard Dev. | Number of Pickers | Shortest Distance (m) | |
1 | 5 | 100 | 4700.8 | 24.6 | 30 | 4662.0 |
1 | 5 | 300 | 4705.7 | 34.1 | 31 | 4648.8 |
1 | 5 | 500 | 4691.9 | 39.7 | 30 | 4624.6 |
1 | 10 | 100 | 4704.5 | 22.7 | 29 | 4664.6 |
1 | 10 | 300 | 4695.8 | 39.2 | 30 | 4627.2 |
1 | 10 | 500 | 4702.1 | 42.8 | 29 | 4631.2 |
1 | 20 | 100 | 4698.9 | 24.1 | 29 | 4645.2 |
1 | 20 | 300 | 4711.1 | 44.9 | 30 | 4636.6 |
1 | 20 | 500 | 4710.9 | 48.7 | 30 | 4632.4 |
1-CW | - | - | - | - | 32 | 4865.0 |
2 | 5 | 100 | 9456.9 | 32.2 | 42 | 9413.0 |
2 | 5 | 300 | 9487.9 | 57.3 | 42 | 9390.2 |
2 | 5 | 500 | 9487.1 | 57.4 | 42 | 9385.0 |
2 | 10 | 100 | 9451.3 | 23.6 | 42 | 9399.4 |
2 | 10 | 300 | 9481.1 | 63.2 | 41 | 9372.6 |
2 | 10 | 500 | 9477.4 | 61.1 | 41 | 9368.2 |
2 | 20 | 100 | 9453.7 | 27.5 | 42 | 9377.4 |
2 | 20 | 300 | 9484.2 | 57.4 | 42 | 9389.4 |
2 | 20 | 500 | 9504.6 | 70.9 | 41 | 9379.0 |
2-CW | - | - | - | - | 43 | 9579.6 |
3 | 5 | 100 | 14,059.1 | 55.4 | 55 | 13,959.0 |
3 | 5 | 300 | 14,135.2 | 93.1 | 55 | 13,977.8 |
3 | 5 | 500 | 14,013.6 | 46.5 | 54 | 13,935.8 |
3 | 10 | 100 | 14,086. | 49.4 | 55 | 14,007.8 |
3 | 10 | 300 | 14,100.4 | 83.7 | 55 | 13,960.4 |
3 | 10 | 500 | 14,038.8 | 35.4 | 55 | 13,971.8 |
3 | 20 | 100 | 14,098.5 | 55.9 | 54 | 13,992.2 |
3 | 20 | 300 | 14,047.6 | 80.6 | 55 | 13,915.0 |
3 | 20 | 500 | 14,072.6 | 73.1 | 54 | 13,944.8 |
3-CW | - | - | - | - | 56 | 14,189.4 |
4 | 5 | 100 | 13,345.5 | 28.0 | 61 | 13,298.6 |
4 | 5 | 300 | 13,406.7 | 55.3 | 61 | 13,315.4 |
4 | 5 | 500 | 13,304.6 | 32.0 | 60 | 13,247.6 |
4 | 10 | 100 | 13,373.8 | 40.1 | 59 | 13,301.6 |
4 | 10 | 300 | 13,413.2 | 51.6 | 60 | 13,321.4 |
4 | 10 | 500 | 13,362.0 | 45.4 | 61 | 13,289.0 |
4 | 20 | 100 | 13,380.1 | 35.4 | 60 | 13,318.4 |
4 | 20 | 300 | 13,415.4 | 76.1 | 59 | 13,278.2 |
4 | 20 | 500 | 13,376.8 | 68.8 | 60 | 13,265.2 |
4-CW | - | - | - | - | 61 | 13,433.8 |
No | Population Size | Crossover | Crossover Rate | Mutation | Mutation Rate | Number of Iterations | Average of Distance (m) | Standard Dev. | Number of Pickers | Shortest Distance (m) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 30 | PMX | 0.9 | Swap | 0.3 | 100000 | 5243.6 | 42.5 | 30 | 5182.3 |
2 | 30 | PMX | 0.9 | Inversion | 0.3 | 100000 | 5765.7 | 79.1 | 30 | 5648.0 |
3 | 30 | PMX | 0.6 | Swap | 0.3 | 100000 | 5523.5 | 46.5 | 30 | 5446.7 |
4 | 30 | PMX | 0.6 | Inversion | 0.3 | 100000 | 5531.8 | 136.6 | 31 | 5324.6 |
5 | 30 | PMX | 0.9 | Swap | 0.3 | 1000000 | 5271.1 | 88.1 | 30 | 5111.1 |
. | . | . | . | . | . | . | . | . | . | . |
. | . | . | . | . | . | . | . | . | . | . |
. | . | . | . | . | . | . | . | . | . | . |
60 | 50 | OX-1 | 0.6 | Inversion | 0.3 | 2000000 | 4765.4 | 72.8 | 29 | 4664.8 |
61 | 50 | OX-1 | 0.9 | Swap | 0.3 | 3000000 | 5496.5 | 156.4 | 31 | 5209.3 |
62 | 50 | OX-1 | 0.9 | Inversion | 0.3 | 3000000 | 4950.3 | 81.1 | 29 | 4818.4 |
63 | 50 | OX-1 | 0.6 | Swap | 0.3 | 3000000 | 5306.0 | 61.7 | 31 | 5226.7 |
64 | 50 | OX-1 | 0.6 | Inversion | 0.3 | 3000000 | 4759.1 | 76.3 | 29 | 4625.2 |
Created Batches | Order Picker Route | Picker’s Load (m3) | Order Picker Utilization Rate (%) | Traveled Distance (m) |
---|---|---|---|---|
1 | 0-60-92-94-0 | 3.21 | 94.41 | 202.20 |
2 | 0-26-39-0 | 2.97 | 87.35 | 69.40 |
3 | 0-2-20-81-82-12-0 | 3.33 | 97.94 | 346.20 |
4 | 0-4-52-49-28-0 | 3.33 | 97.94 | 218.40 |
5 | 0-38-41-0 | 2.61 | 76.76 | 66.80 |
. | . | . | . | . |
. | . | . | . | . |
. | . | . | . | . |
37 | 0-68-91-90-0 | 3.21 | 94.41 | 191.80 |
38 | 0-69-89-0 | 3.18 | 93.53 | 172.80 |
39 | 0-116-117-74-0 | 3.40 | 100.00 | 384.60 |
40 | 0-87-104-0 | 3.10 | 91.18 | 94.60 |
41 | 0-95-96-0 | 3.24 | 95.29 | 215.20 |
Average | Total | |||
94.30 | 9326.60 |
Distance Values Obtained with Applied Methods (m) | |||
---|---|---|---|
Order Cluster | Clarke-Wright | Randomized Savings | Genetic Algorithm |
1 | 4865.0 | 4624.6 | 4600.2 |
2 | 9579.6 | 9368.2 | 9326.6 |
3 | 14189.4 | 13915.0 | 13897.0 |
4 | 13433.8 | 13247.6 | 13210.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Görener, A. Picker Routing and Batching in Multi-Block Parallel-Aisle Warehouses: An Application from the Logistics Service Provider. Logistics 2025, 9, 40. https://doi.org/10.3390/logistics9010040
Görener A. Picker Routing and Batching in Multi-Block Parallel-Aisle Warehouses: An Application from the Logistics Service Provider. Logistics. 2025; 9(1):40. https://doi.org/10.3390/logistics9010040
Chicago/Turabian StyleGörener, Ali. 2025. "Picker Routing and Batching in Multi-Block Parallel-Aisle Warehouses: An Application from the Logistics Service Provider" Logistics 9, no. 1: 40. https://doi.org/10.3390/logistics9010040
APA StyleGörener, A. (2025). Picker Routing and Batching in Multi-Block Parallel-Aisle Warehouses: An Application from the Logistics Service Provider. Logistics, 9(1), 40. https://doi.org/10.3390/logistics9010040