First-in-Human Study to Investigate the Safety Assessment of Peri-Implant Soft Tissue Regeneration with Micronized-Gingival Connective Tissue: A Pilot Case Series Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
- Dental implant treatment.
- Keratinized tissue band defect or insufficient thickness (<2 mm).
- Oral health care and good plaque control.
- Aged 20 years or older, but younger than 75 years.
- Written, informed consent (IC) obtained from the patient him/herself.
- Intention and ability to visit a hospital.
- Intention to use barrier contraception during the study period.
- Any malignancy or sepsis.
- Severe autoimmune or endocrinological disease; coagulation abnormality (PT < 50% or outside the APTT range 23.5–42.5 s).
- Syphilis test/HBV antigen/HCV antigen/anti-HTLV-1 antibody/anti-HIV antibody positivity.
- Liver dysfunction (two biomarkers of liver function with concentrations outside the following range: AST 10–40 IU/L, ALT 5–45 IU/L).
- Pregnancy.
- Risk of allergy to the drug used in this study.
- Transmissible spongiform encephalopathy.
- Dementia.
- Metabolic bone disease or treated with bisphosphonates.
- Smoking habit.
- Severe periodontitis.
- Judged by the clinical investigator as inappropriate for this study.
2.2. Preparation of the Micro-Graft with Micronized-Gingival Connective Tissue
2.3. Surgical Procedure
2.4. Outcome Measurements
2.5. Adverse Events (AEs)
2.6. Data Collection and Management
2.7. Trial Status
2.8. Trial Registration
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, B.S.; Kim, Y.K.; Yun, P.Y.; Yi, Y.J.; Lee, H.J.; Kim, S.G.; Son, J.S. Evaluation of peri-implant tissue response according to the presence of keratinized mucosa. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2009, 107, e24–e28. [Google Scholar] [CrossRef] [PubMed]
- Thoma, D.S.; Benić, G.I.; Zwahlen, M.; Hämmerle, C.H.; Jung, R.E. A systematic review assessing soft tissue augmentation techniques. Clin. Oral Implants Res. 2009, 4, 146–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmitt, C.M.; Tudor, C.; Kiener, K.; Wehrhan, F.; Schmitt, J.; Eitner, S.; Agaimy, A.; Schlegel, K.A. Vestibuloplasty: Porcine collagen matrix versus free gingival graft: A clinical and histologic study. J. Periodontol. 2013, 84, 914–923. [Google Scholar] [CrossRef] [PubMed]
- Brito, C.; Tenenbaum, H.C.; Wong, B.K.; Schmitt, C.; Nogueira-Filho, G. Is keratinized mucosa indispensable to maintain peri-implant health? A systematic review of the literature. J. Biomed. Mater. Res. Part B Appl. Biomater. 2014, 102, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, T.; Ueno, T.; Saruta, J.; Hirota, M.; Park, W.; Ogawa, T. Ultraviolet Treatment of Titanium to Enhance Adhesion and Retention of Oral Mucosa Connective Tissue and Fibroblasts. Int. J. Mol. Sci. 2021, 22, 12396. [Google Scholar] [CrossRef]
- Schmitt, C.M.; Brückbauer, P.; Schlegel, K.A.; Buchbender, M.; Adler, W.; Matta, R.E. Volumetric soft tissue alterations in the early healing phase after peri-implant soft tissue contour augmentation with a porcine collagen matrix versus the autologous connective tissue graft: A controlled clinical trial. J. Clin. Periodontol. 2021, 48, 145–162. [Google Scholar] [CrossRef]
- Herford, A.S.; Akin, L.; Cicciu, M.; Maiorana, C.; Boyne, P.J. Use of a porcine collagen matrix as an alternative to autogenous tissue for grafting oral soft tissue defects. J. Oral Maxillofac. Surg. 2010, 68, 1463–1470. [Google Scholar] [CrossRef]
- Agarwal, C.; Tarun Kumar, A.B.; Mehta, D.S. Comparative evaluation of free gingival graft and AlloDerm® in enhancing the width of attached gingival. Contemp. Clin. Dent. 2015, 6, 483–488. [Google Scholar] [CrossRef]
- Lee, I.K.; Choi, H.S.; Jeong, S.H.; Lee, J.T. The Effect of Three Surgical Therapies to Increase Keratinized Mucosa Surrounding Dental Implants with Peri-Implantitis: A Pilot Study. Medicina 2021, 57, 1093. [Google Scholar] [CrossRef]
- Puisys, A.; Auzbikaviciute, V.; Vindasiute-Narbute, E.; Zukauskas, S.; Razukevicus, D.; Dard, M.M. Full versus partial thickness flap to determine differentiation and over keratinization of non-keratinized mucosa. A 3-year split mouth randomized pilot study. Clin. Exp. Dent. Res. 2021, 7, 1061–1068. [Google Scholar] [CrossRef]
- De Annuntiis, C.; Testarelli, L.; Guarnieri, R. Vestibuloplasty: Use of Xenogenic Collagen Matrices in Peri-Implant Soft Tissue Volume Augmentation: A Critical Review on the Current Evidence and New Technique Presentation. Materials 2022, 15, 3937. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, C.M.; Moest, T.; Lutz, R.; Wehrhan, F.; Neukam, F.W.; Schlegel, K.A. Long-term outcomes after vestibuloplasty with a porcine collagen matrix (Mucograft®) versus the free gingival graft: A comparative prospective clinical trial. Clin. Oral Implant. Res. 2016, 27, e125–e133. [Google Scholar] [CrossRef] [PubMed]
- Malpartida-Carrillo, V.; Tinedo-Lopez, P.L.; Guerrero, M.E.; Huamani-Echaccaya, J.L.; Özcan, M.; Rösing, C.K. Outcome measurements following palatal soft tissue graft harvesting: A review. J. Clin. Exp. Dent. 2021, 13, e527–e535. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Huang, Y.; Han, J.; Yu, L.; Li, Y.; Lu, Z.; Li, H.; Liu, Z.; Shi, C.; Duan, F.; et al. Immunomodulatory effects of mesenchymal stromal cells-derived exosome. Immunol. Res. 2016, 64, 831–840. [Google Scholar] [CrossRef] [PubMed]
- Jackson, W.M.; Nesti, L.J.; Tuan, R.S. Concise review: Clinical translation of wound healing therapies based on mesenchymal stem cells. Stem Cells Transl. Med. 2012, 1, 44–50. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Xu, S.Q.; Zhao, Y.M.; Yu, S.; Ge, L.H.; Xu, B.H. Comparison of the biological characteristics of human mesenchymal stem cells derived from exfoliated deciduous teeth, bone marrow, gingival tissue, and umbilical cord. Mol. Med. Rep. 2018, 18, 4969–4977. [Google Scholar] [CrossRef] [Green Version]
- Glim, J.E.; van, E.M.; Niessen, F.B.; Everts, V.; Beelen, R.H. Detrimental dermal wound healing: What can we learn from the oral mucosa? Wound Repair Regen. 2013, 21, 648–660. [Google Scholar] [CrossRef]
- Fournier, B.P.; Larjava, H.; Häkkinen, L. Gingiva as a source of stem cells with therapeutic potential. Stem Cells Dev. 2013, 22, 3157–3177. [Google Scholar] [CrossRef]
- Zhang, Q.Z.; Su, W.R.; Shi, S.H.; Wilder-Smith, P.; Xiang, A.P.; Wong, A.; Nguyen, A.L.; Kwon, C.W.; Le, A.D. Human gingiva-derived mesenchymal stem cells elicit polarization of m2 macrophages and enhance cutaneous wound healing. Stem Cells 2010, 28, 1856–1868. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.Z.; Nguyen, A.L.; Yu, W.H.; Le, A.D. Human oral mucosa and gingiva: A unique reservoir for mesenchymal stem cells. J. Dent. Res. 2012, 91, 1011–1018. [Google Scholar] [CrossRef]
- Fawzy El-Sayed, K.M.; Dörfer, C.E. Gingival Mesenchymal Stem/Progenitor Cells: A Unique Tissue Engineering Gem. Stem Cells Int. 2016, 2016, 7154327. [Google Scholar] [CrossRef] [Green Version]
- Magne, B.; Dedier, M.; Nivet, M.; Coulomb, B.; Banzet, S.; Lataillade, J.J.; Trouillas, M. IL-1β-Primed Mesenchymal Stromal Cells Improve Epidermal Substitute Engraftment and Wound Healing via Matrix Metalloproteinases and Transforming Growth Factor-β1. J. Investig. Dermatol. 2020, 140, 688–698. [Google Scholar] [CrossRef]
- Kim, D.; Lee, A.E.; Xu, Q.; Zhang, Q.; Le, A.D. Gingiva-Derived Mesenchymal Stem Cells: Potential Application in Tissue Engineering and Regenerative Medicine—A Comprehensive Review. Front. Immunol. 2021, 12, 667221. [Google Scholar] [CrossRef] [PubMed]
- Izumi, K.; Neiva, R.F.; Feinberg, S.E. Intraoral grafting of tissue-engineered human oral mucosa. Int. J. Oral Maxillofac. Implants 2013, 28, e295–e303. [Google Scholar] [CrossRef] [Green Version]
- Giaccone, M.; Brunetti, M.; Camandona, M.; Trovato, L.; Graziano, A. A new medical device, based on rigenera protocol, in the management of complex wounds. J. Stem Cells Res. Rev. Rep. 2014, 1, 3. [Google Scholar]
- Zanzottera, F.; Lavezzari, E.; Trovato, L.; Icardi, A.; Graziano, A. Adipose Derived Stem Cells and Growth Factors Applied on Hair Transplantation. Follow-Up of Clinical Outcome. J. Cosmet. Dermatol. Sci. Appl. 2014, 4, 268–274. [Google Scholar] [CrossRef] [Green Version]
- Trovato, L.; Monti, M.; Del Fante, C.; Cervio, M.; Lampinen, M.; Ambrosio, L.; Redi, C.A.; Perotti, C.; Kankuri, E.; Ambrosio, G.; et al. A New Medical Device Rigeneracons Allows to Obtain Viable Micro-Grafts from Mechanical Disaggregation of Human Tissues. J. Cell. Physiol. 2015, 230, 2299–2303. [Google Scholar] [CrossRef] [PubMed]
- Svolacchia, F.; De Francesco, F.; Trovato, L.; Graziano, A.; Ferraro, G.A. An innovative regenerative treatment of scars with dermal micrografts. J. Cosmet. Dermatol. 2016, 15, 245–253. [Google Scholar] [CrossRef]
- Marcarelli, M.; Trovato, L.; Novarese, E.; Riccio, M.; Graziano, A. Rigenera protocol in the treatment of surgical wound dehiscence. Int. Wound J. 2017, 14, 277–281. [Google Scholar] [CrossRef]
- Monti, M.; Graziano, A.; Rizzo, S.; Perotti, C.; Del Fante, C.; d’Aquino, R.; Redi, C.A.; Rodriguez, Y.; Baena, R. In Vitro and In Vivo Differentiation of Progenitor Stem Cells Obtained After Mechanical Digestion of Human Dental Pulp. J. Cell. Physiol. 2017, 232, 548–555. [Google Scholar] [CrossRef]
- Tresoldi, M.M.; Graziano, A.; Malovini, A.; Faga, A.; Nicoletti, G. The Role of Autologous Dermal Micrografts in Regenerative Surgery: A Clinical Experimental Study. Stem Cells Int. 2019, 2019, 9843407. [Google Scholar] [CrossRef] [PubMed]
- Marcarelli, M.; Zappia, M.; Rissolio, L.; Baroni, C.; Astarita, C.; Trovato, L.; Graziano, A. Cartilage Micrografts as a Novel Non-Invasive and Non-Arthroscopic Autograft Procedure for Knee Chondropathy: Three-Year Follow-Up Study. J. Clin. Med. 2021, 10, 322. [Google Scholar] [CrossRef] [PubMed]
- Gentile, P. Autologous Cellular Method Using Micrografts of Human Adipose Tissue Derived Follicle Stem Cells in Androgenic Alopecia. Int. J. Mol. Sci. 2019, 20, 3446. [Google Scholar] [CrossRef] [Green Version]
- Noda, S.; Sumita, Y.; Ohba, S.; Yamamoto, H.; Asahina, I. Soft tissue engineering with micronized-gingival connective tissues. J. Cell. Physiol. 2018, 233, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Boink, M.A.; van den Broek, L.J.; Roffel, S.; Nazmi, K.; Bolscher, J.G.; Gefen, A.; Veerman, E.C.; Gibbs, S. Different wound healing properties of dermis, adipose, and gingiva mesenchymal stromal cells. Wound Repair Regen. 2016, 24, 100–109. [Google Scholar] [CrossRef] [Green Version]
- Ceccarelli, G.; Gentile, P.; Marcarelli, M.; Balli, M.; Ronzoni, F.L.; Benedetti, L.; Cusella De Angelis, M.G. In Vitro and In Vivo Studies of Alar-Nasal Cartilage Using Autologous Micro-Grafts: The Use of the Rigenera ® Protocol in the Treatment of an Osteochondral Lesion of the Nose. Pharmaceuticals 2017, 10, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirada, R.; Farina, E.; Farina, M.A. Micrografting chronic lower extremity ulcers with mechanically disaggregated skin using a micrograft preparation system. J. Wound Care 2018, 27, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Marcarelli, M.; Fiammengo, M.; Trovato, L.; Lancione, V.; Novarese, E.; Indelli, P.F.; Risitano, S. Autologous grafts in the treatment of avascular osteonecrosis of the femoral head. Acta Biomed. 2020, 91, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Park, K.S.; Lee, W.S.; Ji, S.Y.; Yang, W.S. The treatment of post-traumatic facial skin defect with artificial dermis. Arch. Craniofac. Surg. 2018, 19, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, H.; Kimura, S.; Shimada, H.; Murakami, M.; Yanagisawa, T.; Atsuta, M.; Matsuura, T.; Yokawa, Y.; Ishida, K.; Egawa, S. Outcomes of laparoscopic resection of urachal remnants followed by novel umbilicoplasty. Int. Urol. Nephrol. 2018, 50, 2167–2172. [Google Scholar] [CrossRef]
- Hsu, K.F.; Chiu, Y.L.; Chiao, H.Y.; Chen, C.Y.; Chang, C.K.; Wu, C.J.; Peng, Y.J.; Wang, C.H.; Dai, N.T.; Chen, S.G.; et al. Negative-pressure wound therapy combined with artificial dermis (Terudermis) followed by split-thickness skin graft might be an effective treatment option for wounds exposing tendon and bone: A retrospective observation study. Medicine 2021, 100, e25395. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhao, G.; Li, D.; Chen, X.; Pang, J.; Ke, J. Isolation and multiple differentiation potential assessment of human gingival mesenchymal stem cells. Int. J. Mol. Sci. 2014, 15, 20982–20996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.; Xu, Y.; Zhang, S.; Gao, J.; Gan, X.; Zheng, J.; Lu, L.; Zeng, W.; Gu, J. Human gingiva-derived mesenchymal stem cells alleviate inflammatory bowel disease via IL-10 signalling-dependent modulation of immune cells. Scand. J. Immunol. 2019, 90, e12751. [Google Scholar] [CrossRef] [PubMed]
Case | Gender | Age | Surgical Procedure | Implant Placement Site | Keratinized-Gingival Connective Tissue Harvested Site | TERUDERMIS® Size |
---|---|---|---|---|---|---|
1 | F | 67 | one-stage implant | 76┬67 | both palatal mucosa of maxillary tuberosity | 10 × 20 mm |
2 | F | 58 | second-stage surgery (two-stage implant) | └245 | left palatal mucosa of maxillary tuberosity | 5 × 20 mm |
3 | F | 71 | second-stage surgery (two-stage implant) | └56 | left palatal mucosa of maxillary tuberosity | 20 × 20 mm |
4 | M | 68 | second-stage surgery (two-stage implant) | 2┬2 | right palatal mucosa of maxillary tuberosity | 10 × 20 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
I, T.; Noda, S.; Ohba, S.; Asahina, I.; Sumita, Y. First-in-Human Study to Investigate the Safety Assessment of Peri-Implant Soft Tissue Regeneration with Micronized-Gingival Connective Tissue: A Pilot Case Series Study. Medicines 2023, 10, 9. https://doi.org/10.3390/medicines10010009
I T, Noda S, Ohba S, Asahina I, Sumita Y. First-in-Human Study to Investigate the Safety Assessment of Peri-Implant Soft Tissue Regeneration with Micronized-Gingival Connective Tissue: A Pilot Case Series Study. Medicines. 2023; 10(1):9. https://doi.org/10.3390/medicines10010009
Chicago/Turabian StyleI, Takashi, Sawako Noda, Seigo Ohba, Izumi Asahina, and Yoshinori Sumita. 2023. "First-in-Human Study to Investigate the Safety Assessment of Peri-Implant Soft Tissue Regeneration with Micronized-Gingival Connective Tissue: A Pilot Case Series Study" Medicines 10, no. 1: 9. https://doi.org/10.3390/medicines10010009
APA StyleI, T., Noda, S., Ohba, S., Asahina, I., & Sumita, Y. (2023). First-in-Human Study to Investigate the Safety Assessment of Peri-Implant Soft Tissue Regeneration with Micronized-Gingival Connective Tissue: A Pilot Case Series Study. Medicines, 10(1), 9. https://doi.org/10.3390/medicines10010009