Antibacterial and Antifungal Activity of Essential Oils against Pathogens Responsible for Otitis Externa in Dogs and Cats
Abstract
:1. Introduction
2. Material and Methods
2.1. Essential Oils
2.2. Gas Chromatography–Mass Spectrometry Analysis
2.3. Antibacterial Activity
2.3.1. Bacterial Strains
2.3.2. Agar Disc Diffusion Method
2.3.3. Minimum Inhibitory Concentration
2.4. Antimycotic Activity
2.4.1. Fungal Strains
2.4.2. Microdilution Test
3. Results
3.1. Gas Chromatography–Mass Spectrometry Analysis
3.2. Antibacterial Activity
3.3. Antimycotic Activity
4. Discussion
Author Contributions
Conflicts of Interest
References
- Greene, C.E. Otitis externa. In Infectious Diseases of the Dogs and Cats, 3rd ed.; Greene, C.E., Ed.; Saunders Elsevier: St. Louis, MO, USA, 2006; pp. 815–823. [Google Scholar]
- Devriese, L.A.; Hermans, K.; Baele, M.; Haesebrouck, F. Staphylococcus pseudintermedius versus Staphylococcus intermedius. Vet. Microbiol. 2009, 133, 206–207. [Google Scholar] [CrossRef] [PubMed]
- Kuttin, E.S.; Glas, I. Mycotic otitis externa in animals. Mycoses 1985, 28, 61–68. [Google Scholar] [CrossRef]
- Goodale, E.C.; Outerbridge, C.A.; White, S.D. Aspergillus otitis in small animals—A retrospective study of 17 cases. Vet. Dermatol. 2016, 27. [Google Scholar] [CrossRef] [PubMed]
- Pal, M.; Rao, N.M. Canine otitis due to Candida albicans. Indian Vet. J. 2001, 78, 150–151. [Google Scholar]
- Brito, E.H.; Brilhante, R.S.; Cordeiro, R.A.; Sidrim, J.J.; Fontenelle, R.O.; Melo, L.M.; Albuquerque, E.S.; Rocha, M.F. PCR-AGE, automated and manual methods to identify Candida strains from veterinary sources: A comparative approach. Vet. Microbiol. 2009, 18, 318–322. [Google Scholar] [CrossRef] [PubMed]
- Bernardo, F.M.; Martins, H.M.; Martins, M.L. A survey of mycotic otitis externa of dogs in Lisbon. Rev. Iberoam. Micol. 1998, 15, 163–165. [Google Scholar] [PubMed]
- Gedek, B.; Brutzel, K.; Gerlach, R.; Netzer, F.; Rocken, H.; Unger, H.; Symoens, J. The role of Pityrosporum pachydermatis in otitis externa of dogs: Evaluation of a treatment with miconazole. Vet. Rec. 1979, 104, 138–140. [Google Scholar] [CrossRef] [PubMed]
- De Bona, E.; Ubiratan Paz Telesca, S.; Meneghello Fuentefria, A. Occurrence and identification of yeasts in dogs external ear canal with and without otitis. Rev. MVZ Cordoba 2012, 17, 3059–3064. [Google Scholar]
- Nardoni, S.; Pistelli, L.; Baronti, I.; Najar, B.; Pisseri, F.; Bandeira Reidel, R.V.; Papini, R.; Perrucci, S.; Mancianti, F. Traditional Mediterranean plants: Characterization and use of an essential oils mixture to treat Malassezia otitis externa in atopic dogs. Nat. Prod. Res. 2016, 5, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Panahi, Y.; Akhavan, A.; Sahebkar, A.; Hosseini, S.M.; Taghizadeh, M.; Akbari, H.; Sharif, M.R.; Imani, S. Investigation of the effectiveness of Syzygium aromaticum, Lavandula angustifolia and Geranium robertianum essential oils in the treatment of acute external otitis: A comparative trial with ciprofloxacin. J. Microbiol. Immunol. Infect. 2014, 47, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, J.C.; Diniz Mde, F.; Lima, E.O. In vitro antimicrobial activity of plants in acute otitis externa. Braz. J. Otorhinolaryngol. 2008, 74, 118–124. [Google Scholar] [CrossRef]
- Farnan, T.B.; McCallum, J.; Awa, A.; Khan, A.D.; Hall, S.J. Tea tree oil: In vitro efficacy in otitis externa. J. Laryngol. Otol. 2005, 119, 198–201. [Google Scholar] [CrossRef] [PubMed]
- Bandeira Reidel, R.V.; Melai, B.; Cioni, P.L.; Flamini, G.; Pistelli, L. Aroma profile of Rubus ulmifolius flowers and fruits during different ontogenetic phases. Chem. Biodiv. 2016, 13, 1776–1784. [Google Scholar] [CrossRef] [PubMed]
- Ebani, V.V.; Nardoni, S.; Bertelloni, F.; Giovanelli, S.; Rocchigiani, G.; Pistelli, L.; Mancianti, F. Antibacterial and antifungal activity of essential oils against some pathogenic bacteria and yeasts shed from poultry. Flav. Fragr. J. 2016, 31, 302–309. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk Susceptibility Tests, Approved Standard-Eleventh Edition; CLSI Document; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012. [Google Scholar]
- National Committee for Clinical Laboratory Standards. Performance Standards for Antimicrobial Susceptibility Testing; Twelfth International Supplement; NCCS: Wayne, PA, USA, 2002. [Google Scholar]
- Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi, Approved Standard, 2nd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008. [Google Scholar]
- Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, Approved Standard—Third Edition; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008. [Google Scholar]
- Boost, M.V.; O’Donoghue, M.M.; James, A. Prevalence of Staphylococcus aureus carriage among dogs and their owners. Epidemiol. Infect. 2008, 136, 953–964. [Google Scholar] [CrossRef] [PubMed]
- Lima, C.O.; Barreto, H.M.; de Oliveira Lima, E.; de Souza, E.L.; de Siqueira Junior, J.P. Antimicrobial effect of the essential oil from Rosmarinus officinalis L. against Staphylococcus pseudintermedius isolated from dogs. Rev. Bras. Biocienc. 2013, 11, 280–283. [Google Scholar]
- Mekić, S.; Matanović, K; Šeol, B. Antimicrobial susceptibility of Pseudomonas aeruginosa isolates from dogs with otitis externa. Vet. Rec. 2011, 169, 125–128. [Google Scholar] [CrossRef] [PubMed]
- Barros, J.C.; De Conceicão, M.L.; Da Gomes Neto, N.J.; Costa, C.V.; Da Siqueira Júnior, J.P.; Basílio Junior, I.D.; De Souza, E.L. Interference of Origanum vulgare L. essential oil on the growth and some physiological characteristics of Staphylococcus aureus strains isolated from foods. LWT—Food Sci. Technol. 2009, 42, 1139–1143. [Google Scholar] [CrossRef]
- Kim, J.; Marshall, M.R.; Wei, C. Antibacterial activity of some essential oil components against five foodborne pathogens. J. Agric. Food Chem. 1995, 43, 2839–2845. [Google Scholar] [CrossRef]
- Kuźma, L.; Róžalski, M.; Walencka, E.; Róžalska, B.; Wysokińska, H. Antimicrobial activity of diterpenoids from hairy roots of Salvia sclarea L.: Salvipisone as a potential anti-biofilm agent active against antibiotic resistant Staphylococci. Phytomedicine 2007, 14, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Pozzatti, P.; Scheid, L.A.; Spader, T.B.; Atayde, M.L.; Santurio, J.M.; Alves, S.H. In vitro activity of essential oils extracted from plants used as spices against fluconazole-resistant and fluconazole-susceptible Candida spp. Can. J. Microbiol. 2008, 54, 950–956. [Google Scholar] [CrossRef] [PubMed]
- Elgayyar, M.; Draughon, F.A.; Golden, D.A.; Mount, J.R. Antimicrobial activity of essential oils from plants against selected pathogenic and saprophytic microorganisms. J. Food Prot. 2001, 64, 1019–1024. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Zu, Y.; Chen, L.; Shi, X.; Wang, Z.; Sun, S.; Efferth, T. Antimicrobial activity of clove and rosemary essential oils alone and in combination. Phytother. Res. 2007, 21, 989–994. [Google Scholar] [CrossRef] [PubMed]
N. | Class | Component | RI | A.n | O.v | O.b | S.s | T.v | I.v | R.o | L.c | L.h |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | est | propyl butanoate | 898 | 5.5 | ||||||||
2 | mh | tricyclene | 926 | 1.4 | 1.5 | |||||||
3 | mh | α-pinene | 940 | 1.2 | 37.9 | |||||||
4 | mh | camphene | 953 | 5.4 | ||||||||
5 | mh | sabinene | 976 | 1.0 | ||||||||
6 | est | isopropyl tiglate | 976 | 1.7 | ||||||||
7 | mh | β-pinene | 980 | 5.0 | 1.2 | |||||||
8 | nt | 6-methyl-5-hepten-2-one | 985 | 1.5 | ||||||||
9 | mh | myrcene | 991 | 2.2 | 1.6 | |||||||
10 | est | isobutyl isovalerate | 1005 | 1.3 | ||||||||
11 | est | 2-methylbutyl isobutyrate | 1015 | 4.5 | ||||||||
12 | mh | α-terpinene | 1018 | 2.1 | ||||||||
13 | mh | o-cymene | 1026 | 1.1 | ||||||||
14 | mh | p-cymene | 1026 | 9.3 | 15.3 | |||||||
15 | mh | limonene | 1031 | 3.9 | 3.3 | 16.3 | ||||||
16 | om | 1,8-cineole | 1033 | 5.9 | 22.0 | 2.3 | 7.7 | |||||
17 | mh | (Z) β-ocimene | 1040 | 1.2 | ||||||||
18 | mh | (E) β-ocimene | 1050 | 2.1 | ||||||||
19 | est | isobutyl angelate | 1053 | 34.5 | ||||||||
20 | mh | γ-terpinene | 1062 | 5.3 | 2.9 | 0.5 | ||||||
21 | mh | artemisia ketone | 1065 | 7.4 | ||||||||
22 | om | cis-linalool oxide (furanoid) | 1074 | 2.2 | ||||||||
23 | om | trans-linalool oxide (furanoid) | 1088 | 1.8 | ||||||||
24 | est | isobutyl tiglate | 1093 | 1.5 | ||||||||
25 | om | trans-sabinene hydrate | 1097 | 1.8 | 3.8 | |||||||
26 | om | linalool | 1098 | 46.0 | 8.1 | 1.5 | 31.5 | |||||
27 | om | trans-pinocarveol | 1142 | 1.7 | ||||||||
28 | om | camphor | 1143 | 7.6 | 7.3 | |||||||
29 | est | propyl tiglate | 1153 | 5.3 | ||||||||
30 | est | isoamyl angelate | 1162 | 18.7 | ||||||||
31 | om | borneol | 1165 | 1.6 | 2.0 | 2.1 | ||||||
32 | om | pinocarvone | 1166 | 2.7 | ||||||||
33 | om | terpinen-4-ol | 1177 | 2.4 | 4.0 | |||||||
34 | om | α-terpineol | 1189 | 2.1 | ||||||||
35 | unknown | 1.7 | ||||||||||
36 | pp | methyl chavicol (=estragol) | 1195 | 1.1 | ||||||||
37 | om | thymol methyl ether | 1232 | 1.7 | ||||||||
38 | om | neral | 1240 | 32.5 | ||||||||
39 | om | linalyl acetate | 1257 | 54.7 | 26.8 | |||||||
40 | om | geranial | 1270 | 36.4 | ||||||||
41 | pp | (E)-anethol | 1283 | 89.8 | ||||||||
42 | om | isobornyl acetate | 1285 | 1.6 | 3.3 | |||||||
43 | om | bornyl acetate | 1285 | 2.4 | ||||||||
44 | om | thymol | 1290 | 52.6 | ||||||||
45 | om | carvacrol | 1298 | 65.9 | ||||||||
46 | om | (E)-8-hydroxylinalool | 1345 | 5.6 | ||||||||
47 | om | (Z)-8-hydroxylinalool | 1360 | 15.8 | ||||||||
48 | pp | eugenol | 1356 | 11.5 | ||||||||
49 | sh | β-elemene | 1392 | 2.2 | ||||||||
50 | sh | β-caryophyllene | 1418 | 3.7 | 6.8 | 4.1 | 2.2 | |||||
51 | sh | trans-α-bergamotene | 1437 | 3.6 | ||||||||
52 | sh | α-guaiene | 1440 | 1.1 | ||||||||
53 | sh | (E)-β-farnesene | 1458 | 1.4 | ||||||||
54 | sh | germacrene D | 1481 | 3.5 | ||||||||
55 | sh | α-bulnesene | 1505 | 2.0 | ||||||||
56 | sh | trans-γ-cadinene | 1513 | 2.8 | ||||||||
57 | sh | δ-cadinene | 1524 | 1.0 | ||||||||
58 | os | caryophyllene oxide | 1581 | 4.8 | 0.3 | |||||||
59 | os | 1,10-di-epi-cubenol | 1614 | 1.0 | ||||||||
60 | os | t-cadinol | 1640 | 5.8 | ||||||||
61 | od | sclareol | 2223 | 1.3 | ||||||||
Total% | 92.1 | 98.5 | 99.2 | 98.9 | 95.6 | 100.0 | 97.4 | 99.4 | 100.0 |
Bacterial Strains | |||
---|---|---|---|
Staphylococcus aureus | Staphylococcus pseudointermedius | Pseudomonas aeruginosa | |
Essential Oils | |||
M SD | M SD | M SD | |
Anthemis nobilis | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 |
Illicium verum | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 |
Lavandula hybrida | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 |
Litsea cubeba | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 |
Ocimum basilicum | 0.0 ± 0.0 | 7.0 ± 0.0 1 | 8.0 ± 0.0 2 |
Origanum vulgare | 13.3 ± 0.6 3 | 17.3 ± 0.6 4 | 0.0 ± 0.0 |
Rosmarinus officinalis | 0.0 ± 0.0 | 0.0 ± 0.0 | 7.0 ± 0.0 5 |
Salvia sclarea | 0.0 ± 0.0 | 14.3 ± 0.6 6 | 8.0 ± 0.0 7 |
Thymus vulgaris | 8.3 ± 0.6 8 | 0.0 ± 0.0 | 0.0 ± 0.0 |
Bacterial Strains | |||
---|---|---|---|
Staphylococcus aureus | Staphylococcus pseudointermedius | Pseudomonas aeruginosa | |
Antibiotics | |||
Amikacin | 7 (R) | 9 (R) | 17 (S) |
Amoxycillin–clavulanic acid | 27 (S) | 26 (S) | 0 (R) |
Ampicillin | 16 (R) | 15 (R) | 0 (R) |
Ceftazidime | 0 (R) | 0 (R) | 0 (R) |
Cephalexin | 0 (R) | 0 (R) | 0 (R) |
Cephotaxime | 0 (R) | 0 (R) | 13 (R) |
Ciprofloxacin | 10 (R) | 0 (R) | 0 (R) |
Enrofloxacin | 14 (R) | 0 (R) | 0 (R) |
Erythromycin | 17 (S) | 0 (R) | 0 (R) |
Streptomycin | 0 (R) | 0 (R) | 0 (R) |
Sulphametoxazole–trimethoprim | 24 (S) | 0 (R) | 0 (R) |
Tetracycline | 20 (S) | 0 (R) | 0 (R) |
Fungal Agents | |||||||
---|---|---|---|---|---|---|---|
Essential Oils | Candida albicans | Candida tropicalis | Aspergillus niger | Aspergillus terreus | Aspergillus fumigatus | Trichosporon sp. | Rhodotorula sp. |
Anthemis nobilis | 4.50 | 4.50 | 4.50 | 4.50 | 2.25 | 4.50 | 4.50 |
Illicium verum | 2.44 | 4.88 | 2.44 | 2.44 | 0.59 | 9.78 | 2.44 |
Lavandula hybrida | 4.25 | 4.25 | 2.12 | >8.50 | 8.50 | >8.50 | 4.25 |
Litsea cubeba | 4.43 | 2.21 | 0.53 | 2.21 | 0.18 | 8.86 | 4.43 |
Ocimum basilicum | 2.29 | 4.58 | 1.10 | 4.58 | 2.29 | 9.17 | 1.10 |
Origanum vulgare | 0.19 | 1.14 | 0.19 | 0.19 | 0.19 | 2.37 | 0.19 |
Rosmarinus officinalis | 9.14 | 0.29 | 0.29 | >9.14 | 0.29 | 0.46 | 0.29 |
Salvia sclarea | 1.07 | 0.18 | 2.23 | 4.46 | 2.23 | >8.93 | >8.93 |
Thymus vulgaris | 5.72 | 0.19 | 0.56 | 11.71 | 5.72 | 11.71 | 5.72 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ebani, V.V.; Nardoni, S.; Bertelloni, F.; Najar, B.; Pistelli, L.; Mancianti, F. Antibacterial and Antifungal Activity of Essential Oils against Pathogens Responsible for Otitis Externa in Dogs and Cats. Medicines 2017, 4, 21. https://doi.org/10.3390/medicines4020021
Ebani VV, Nardoni S, Bertelloni F, Najar B, Pistelli L, Mancianti F. Antibacterial and Antifungal Activity of Essential Oils against Pathogens Responsible for Otitis Externa in Dogs and Cats. Medicines. 2017; 4(2):21. https://doi.org/10.3390/medicines4020021
Chicago/Turabian StyleEbani, Valentina V., Simona Nardoni, Fabrizio Bertelloni, Basma Najar, Luisa Pistelli, and Francesca Mancianti. 2017. "Antibacterial and Antifungal Activity of Essential Oils against Pathogens Responsible for Otitis Externa in Dogs and Cats" Medicines 4, no. 2: 21. https://doi.org/10.3390/medicines4020021
APA StyleEbani, V. V., Nardoni, S., Bertelloni, F., Najar, B., Pistelli, L., & Mancianti, F. (2017). Antibacterial and Antifungal Activity of Essential Oils against Pathogens Responsible for Otitis Externa in Dogs and Cats. Medicines, 4(2), 21. https://doi.org/10.3390/medicines4020021