Enrichment of Animal Diets with Essential Oils—A Great Perspective on Improving Animal Performance and Quality Characteristics of the Derived Products
Abstract
:1. Introduction
2. Classification, Structure and Metabolism of EOs
3. Antimicrobial Effects of EOs
3.1. Effects of EOs on the Digestive System and the Gut Microbiota of Swine and Poultry
3.2. Effects of EOs on Rumen Fermentation
4. Antioxidant Effects of EOs
5. Conclusions
Conflicts of Interest
References
- Simitzis, P.E.; Deligeorgis, S.G. The effects of natural antioxidants dietary supplementation on the properties of farm animal products. In Animal Feed: Types, Nutrition, Safety; Nova Science Publishers, Inc.: New York, NY, USA, 2011; pp. 155–168. [Google Scholar]
- Dorman, H.J.D.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Windisch, W.; Schedle, K.; Plitzner, C.; Kroismayr, A. Use of phytogenic products as feed additives for swine and poultry. J. Anim. Sci. 2008, 86 (Suppl. 14), E140–E148. [Google Scholar] [CrossRef] [PubMed]
- Brenes, A.; Roura, E. Essential oils in poultry nutrition: Main effects and modes of action. Anim. Feed Sci. Technol. 2010, 158, 1–14. [Google Scholar] [CrossRef]
- Zeng, Z.; Zhang, S.; Wang, H.; Piao, X. Essential oil and aromatic plants as feed additives in non-ruminant nutrition: A review. J. Anim. Sci. Biotechnol. 2015, 6, 7. [Google Scholar] [CrossRef] [PubMed]
- Dudareva, N.; Pichersky, E.; Gershenzon, J. Biochemistry of plant volatiles. Plant Physiol. 2004, 135, 1893–1902. [Google Scholar] [CrossRef] [PubMed]
- Zwenger, S.; Basu, C. Plant terpenoids: Applications and future potentials. Biotechnol. Mol. Biol. Rev. 2008, 3, 1–7. [Google Scholar]
- De Cássia da Silveira e Sá, R.; Andrade, L.N.; Dos Reis Barreto de Oliveira, R.; De Sousa, D.P. A review on anti-inflammatory activity of phenylpropanoids found in essential oils. Molecules 2014, 19, 1459–1480. [Google Scholar] [CrossRef] [PubMed]
- Faleiro, M.L. The mode of antibacterial action of essential oils. In Science Against Microbial Pathogens: Communicating Current Research and Technological Advances 2; Mendez-Vilas, A., Ed.; Formatex: Badajoz, Spain, 2011; pp. 1143–1156. [Google Scholar]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Calo, J.R.; Crandall, P.G.; O’Bryan, C.A.; Ricke, S.C. Essential oils as antimicrobials in food systems—A review. Food Control 2015, 54, 111–119. [Google Scholar] [CrossRef]
- Ultee, A.; Bennik, M.H.J.; Moezelaar, R. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl. Environ. Microbiol. 2002, 68, 1561–1568. [Google Scholar] [CrossRef] [PubMed]
- Cimanga, K.; Kambu, K.; Tona, L.; Apers, S.; De Bruyne, T.; Hermans, N.; Vlietinck, A.J. Correlation between chemical composition and antibacterial activity of essential oils of some aromatic medicinal plants growing in the Democratic Republic of Congo. J. Ethnopharmacol. 2002, 79, 213–220. [Google Scholar] [CrossRef]
- Govaris, A.; Botsoglou, E.; Florou-Paneri, P.; Moulas, A.; Papageorgiou, G. Dietary supplementation of oregano essential oil and a-tocopheryl acetate on microbial growth and lipid oxidation of turkey breast fillets during storage. Int. J. Poult. Sci. 2005, 4, 969–975. [Google Scholar]
- Aksit, M.; Goksoy, E.; Kok, F.; Ozdemir, D.; Ozdogan, M. The impacts of organic acid and essential oil supplementations to diets on the microbiological quality of chicken carcasses. Arch. Geflugelkd. 2006, 70, 168–173. [Google Scholar]
- Soultos, N.; Tzikas, Z.; Christaki, E.; Papageorgiou, K.; Steris, V. The effect of dietary oregano essential oil on microbial growth of rabbit carcasses during refrigerated storage. Meat Sci. 2009, 81, 474–478. [Google Scholar] [CrossRef] [PubMed]
- Muir, W.I.; Bryden, W.L.; Husband, A.J. Immunity, vaccination and the avian intestinal tract. Dev. Comp. Immunol. 2000, 24, 325–342. [Google Scholar] [CrossRef]
- Adil, S.; Magray, S.N. Impact and manipulation of gut microflora in poultry: A review. J. Anim. Vet. Adv. 2012, 11, 873–877. [Google Scholar] [CrossRef]
- Rinttila, T.; Apajalahti, J. Intestinal microbiota and metabolites—Implications for broiler chicken health and performance. J. Appl. Poult. Res. 2013, 22, 647–658. [Google Scholar] [CrossRef]
- Jang, I.S.; Ko, Y.H.; Kang, S.Y.; Lee, C.Y. Effect of a commercial essential oil on growth performance, digestive enzyme activity and intestinal microflora population in broiler chickens. Anim. Feed Sci. Technol. 2007, 134, 304–315. [Google Scholar] [CrossRef]
- Jamroz, D.; Wertelecki, T.; Houszka, M.; Kamel, C. Influence of diet type on the inclusion of plant origin active substances on morphological and histochemical characteristics of the stomach and jejunum walls in chicken. J. Anim. Physiol. Anim. Nutr. 2006, 90, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Giannenas, I.A.; Florou-Paneri, P.; Papazahariadou, M.; Botsoglou, N.A.; Christaki, E.; Spais, A.B. Effect of diet supplementation with ground oregano on performance of broiler chickens challenged with Eimeria tenella. Arch. Geflugelkd. 2004, 68, 247–252. [Google Scholar]
- Mourão, J.L.; Pinheiro, V.; Alves, A.; Guedes, C.M.; Pinto, L.; Saavedra, M.J.; Spring, P.; Kocher, A. Effect of mannan oligosaccharides on the performance, intestinal morphology and caecal fermentation of fattening rabbits. Anim. Feed Sci. Technol. 2006, 126, 107–120. [Google Scholar] [CrossRef]
- Franz, C.; Baser, K.H.C.; Windisch, W. Essential oils and aromatic plants in animal feeding—A European perspective. A review. Flavour Fragr. J. 2010, 25, 327–340. [Google Scholar] [CrossRef]
- Platel, K.; Srinivasan, K. Digestive stimulant action of spices: A myth or reality? Indian J. Med. Res. 2004, 119, 167–179. [Google Scholar] [PubMed]
- Jamroz, D.; Wiliczkiewicz, A.; Wertelecki, T.; Orda, J.; Skorupińska, J. Use of active substances of plant origin in chicken diets based on maize and locally grown cereals. Br. Poult. Sci. 2005, 46, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Allen, P.C.; Lydon, J.; Danforth, H.D. Effects of components of Artemisia annua on coccidia infections in chickens. Poult. Sci. 1997, 76, 1156–1163. [Google Scholar] [CrossRef] [PubMed]
- Abildgaard, L.; Hojberg, O.; Schramm, A.; Balle, K.M.; Engberg, R.M. The effect of feeding a commercial essential oil product on Clostridium perfringens numbers in the intestine of broiler chickens measured by real-time PCR targeting the α-toxin-encoding gene (plc). Anim. Feed Sci. Technol. 2010, 157, 181–189. [Google Scholar] [CrossRef]
- Abudabos, A.M.; Alyemni, A.H. Effects of the essential oil blend CRINA® Poultry in feed on broiler performance and gut microbiology. Ital. J. Anim. Sci. 2013, 12, e83. [Google Scholar] [CrossRef]
- Abudabos, A.M.; Alyemni, A.H. The effect of feeding a commercial essential oil product to broilers challenged with Clostridium perfringens. Afr. J. Microbiol. Res. 2013, 7, 4539–4545. [Google Scholar] [CrossRef]
- Alali, W.Q.; Hofacre, C.L.; Mathis, G.F.; Faltys, G. Effect of essential oil compound on shedding and colonization of Salmonella enterica serovar Heidelberg in broilers. Poult. Sci. 2013, 92, 836–841. [Google Scholar] [CrossRef] [PubMed]
- Amerah, A.M.; Péron, A.; Zaefarian, F.; Ravindran, V. Influence of whole wheat inclusion and a blend of essential oils on the performance, nutrient utilisation, digestive tract development and ileal microbiota profile of broiler chickens. Br. Poult. Sci. 2011, 52, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Amerah, A.M.; Mathis, G.; Hofacre, C.L. Effect of xylanase and a blend of essential oils on performance and Salmonella colonization of broiler chickens challenged with Salmonella Heidelberg. Poult. Sci. 2012, 91, 943–947. [Google Scholar] [CrossRef] [PubMed]
- Arczewska-Wlosek, A.; Swiatkiewicz, S. The effect of a dietary herbal extract blend on the performance of broilers challenged with Eimeria oocysts. J. Anim. Feed Sci. 2012, 21, 133–142. [Google Scholar] [CrossRef]
- Bozkurt, M.; Selek, N.; Küçükyilmaz, K.; Eren, H.; Güven, E.; Çatli, A.U.; Çinar, M. Effects of dietary supplementation with a herbal extract on the performance of broilers infected with a mixture of Eimeria species. Br. Poult. Sci. 2012, 53, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.H.; Kim, H.J.; Kim, I.H. Effects of phytogenic feed additive on growth performance, digestibility, blood metabolites, intestinal microbiota, meat color and relative organ weight after oral challenge with Clostridium perfringens in broilers. Livest. Sci. 2014, 160, 82–88. [Google Scholar] [CrossRef]
- Christaki, E.; Florou-Paneri, P.; Giannenas, I.; Papazahariadou, M.; Botsoglou, N.A.; Spais, A.B. Effect of a mixture of herbal extracts on broiler chickens infected with Eimeria tenella. Anim. Res. 2004, 53, 137–144. [Google Scholar] [CrossRef]
- Hong, J.C.; Steiner, T.; Aufy, A.; Lien, T.F. Effects of supplemental essential oil on growth performance, lipid metabolites and immunity, intestinal characteristics, microbiota and carcass traits in broilers. Livest. Sci. 2012, 144, 253–262. [Google Scholar] [CrossRef]
- Isabel, B.; Santos, Y. Effects of dietary organic acids and essential oils on growth performance and carcass characteristics of broiler chickens. J. Appl. Poult. Res. 2009, 18, 472–476. [Google Scholar] [CrossRef]
- Jamroz, D.; Orda, J.; Kamel, C.; Wiliczkiewicz, A.; Wertelecki, T.; Skorupinska, J. The influence of phytogenic extracts on performance, nutrient digestibility, carcass characteristics, and gut microbial status in broiler chickens. J. Anim. Feed Sci. 2003, 12, 583–596. [Google Scholar] [CrossRef]
- Khattak, F.; Ronchi, A.; Castelli, P.; Sparks, N. Effects of natural blend of essential oil on growth performance, blood biochemistry, caecal morphology, and carcass quality of broiler chickens. Poult. Sci. 2014, 93, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Küçükyilmaz, K.; Bozkurt, M.; Selek, N.; Güven, E.; Eren, H.; Atasever, A.; Bintaş, E.; Çatlı, A.U.; Çınar, M. Effects of vaccination against coccidiosis, with and without a specific herbal essential oil blend, on performance, oocyst excretion and serum IBD titers of broilers reared on litter. Ital. J. Anim. Sci. 2012, 11, e1. [Google Scholar] [CrossRef]
- Mitsch, P.; Zitterl-Eglseer, K.; Köhler, B.; Gabler, C.; Losa, R.; Zimpernik, I. The effect of two different blends of essential oil components on the proliferation of Clostridium perfringens in the intestines of broiler chickens. Poult. Sci. 2004, 83, 669–675. [Google Scholar] [CrossRef] [PubMed]
- Oviedo-Rondón, E.O.; Hume, M.E.; Hernandez, C.; Clemente-Hernández, S. Intestinal microbial ecology of broilers vaccinated and challenged with mixed Eimeria species, and supplemented with essential oil blends. Poult. Sci. 2006, 85, 854–860. [Google Scholar] [CrossRef] [PubMed]
- Oviedo-Rondón, E.O.; Clemente-Hernández, S.; Salvador, F.; Williams, P.; Losa, R.; Stephan, F. Essential oils on mixed coccidia vaccination and infection in broilers. Int. J. Poult. Sci. 2006, 5, 723–730. [Google Scholar]
- Oviedo-Rondón, E.O.; Hume, M.E.; Barbosa, N.A.; Sakomura, N.K.; Weber, G.; Wilson, J.W. Ileal and caecal microbial populations in broilers given specific essential oil blends and probiotics in two consecutive grow-outs. Avian Biol. Res. 2010, 3, 157–169. [Google Scholar] [CrossRef]
- Tiihonen, K.; Kettunen, H.; Bento, M.H.L.; Saarinen, M.; Lahtinen, S.; Ouwehand, A.C.; Schulze, H.; Rautonen, N. The effect of feeding essential oils on broiler performance and gut microbiota. Br. Poult. Sci. 2010, 51, 381–392. [Google Scholar] [CrossRef] [PubMed]
- Orndorff, B.W.; Novak, C.L.; Pierson, F.W.; Caldwell, D.J.; McElroy, A.P. Comparison of prophylactic or therapeutic dietary administration of capsaicin for reduction of Salmonella in broiler chickens. Avian Dis. 2005, 49, 527–533. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.L.; Suo, X.; Gu, J.H.; Zhang, W.W.; Fang, Q.; Wang, X. Influence of grape seed proanthocyanidin extract in broiler chickens: Effect on chicken coccidiosis and antioxidant status. Poult. Sci. 2008, 87, 2273–2280. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.C.; Williams, B.A.; Kwakkel, R.P.; Li, H.S.; Li, X.P.; Luo, J.Y.; Li, W.K.; Verstegen, M.W.A. Effects of mushroom and herb polysaccharides, as alternatives for an antibiotic, on the caecal microbial ecosystem in broiler chickens. Poult. Sci. 2004, 83, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.C.; Kwakkel, R.P.; Williams, B.A.; Li, W.K.; Li, H.S.; Luo, J.Y.; Li, X.P.; Wei, Y.X.; Yan, Z.T.; Verstegen, M.W.A. Effects of mushroom and herb polysaccharides, as alternatives for an antibiotic, on growth performance of broilers. Br. Poult. Sci. 2004, 45, 684–694. [Google Scholar] [CrossRef] [PubMed]
- Willis, W.L.; Isikhuemhen, O.S.; Ibrahim, S.A. Performance assessment of broiler chickens given mushroom extract alone or in combination with probiotics. Poult. Sci. 2007, 86, 1856–1860. [Google Scholar] [CrossRef] [PubMed]
- Alp, M.; Midilli, M.; Kocabağlı, N.; Yılmaz, H.; Turan, N.; Gargılı, A.; Acar, N. The effects of dietary oregano essential oil on live performance, carcass yield, serum immunoglobulin G level, and oocyst count in broilers. J. Appl. Poult. Res. 2012, 21, 630–636. [Google Scholar] [CrossRef]
- Basmacioğlu Malayoğlu, H.; Baysal, Ş.; Misirlioğlu, Z.; Polat, M.; Yilmaz, H.; Turan, N. Effects of oregano essential oil with or without feed enzymes on growth performance, digestive enzyme, nutrient digestibility, lipid metabolism and immune response of broilers fed on wheat–soybean meal diets. Br. Poult. Sci. 2010, 51, 67–80. [Google Scholar] [CrossRef] [PubMed]
- Bozkurt, M.; Ege, G.; Aysul, N.; Akşit, H.; Tüzün, A.E.; Küçükyılmaz, K.; Borum, A.E.; Uygun, M.; Aksit, D.; Aypak, S.; et al. Effect of anticoccidial monensin with oregano essential oil on broilers experimentally challenged with mixed Eimeria spp. Poult. Sci. 2016, 95, 1858–1868. [Google Scholar] [CrossRef] [PubMed]
- Giannenas, I.; Florou-Paneri, P.; Papazahariadou, M.; Christaki, E.; Botsoglou, N.A.; Spais, A.B. Effect of dietary supplementation with oregano essential oil on performance of broilers after experimental infection with Eimeria tenella. Arch. Anim. Nutr. 2003, 57, 99–106. [Google Scholar] [CrossRef]
- Horošová, K.; Bujňáková, D.; Kmet, V. Effect of oregano essential oil on chicken lactobacilli and E. coli. Folia Microbiol. 2006, 51, 278–280. [Google Scholar] [CrossRef]
- Kırkpınar, F.; Ünlü, H.B.; Özdemir, G. Effects of oregano and garlic essential oils on performance, carcass, organ and blood characteristics and intestinal microflora of broilers. Livest. Sci. 2011, 137, 219–225. [Google Scholar] [CrossRef]
- Mohiti-Asli, M.; Ghanaatparast-Rashti, M. Dietary oregano essential oil alleviates experimentally induced coccidiosis in broilers. Prev. Vet. Med. 2015, 120, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Roofchaee, A.; Irani, M.; Ebrahimzadeh, M.A.; Akbari, M.R. Effect of dietary oregano (Origanum vulgare L.) essential oil on growth performance, caecal microflora and serum antioxidant activity of broiler chickens. Afr. J. Biotechnol. 2011, 10, 6177–6183. [Google Scholar] [CrossRef]
- Silva, M.A.D.; Pessotti, B.M.D.S.; Zanini, S.F.; Colnago, G.L.; Rodrigues, M.R.A.; Nunes, L.D.C.; Zanini, M.S.; Martins, I.V.F. Intestinal mucosa structure of broiler chickens infected experimentally with Eimeria tenella and treated with essential oil of oregano. Ciênc. Rural 2009, 39, 1471–1477. [Google Scholar] [CrossRef]
- Tsinas, A.; Giannenas, I.; Voidarou, C.; Tzora, A.; Skoufos, J. Effects of an oregano based dietary supplement on performance of broiler chickens experimentally infected with Eimeria acervulina and Eimeria maxima. J. Poult. Sci. 2011, 48, 194–200. [Google Scholar] [CrossRef]
- Waldenstedt, L. Effect of vaccination against coccidiosis in combination with an antibacterial oregano (Origanum vulgare) compound in organic broiler production. Acta Agric. Scand. A Anim. Sci. 2003, 53, 101–109. [Google Scholar] [CrossRef]
- Emami, N.K.; Samie, A.; Rahmani, H.R.; Ruiz-Feria, C.A. The effect of peppermint essential oil and fructooligosaccharides, as alternatives to virginiamycin, on growth performance, digestibility, gut morphology and immune response of male broilers. Anim. Feed Sci. Technol. 2012, 175, 57–64. [Google Scholar] [CrossRef]
- Vidanarachchi, J.K.; Mikkelsen, L.L.; Constantinoiu, C.C.; Choct, M.; Iji, P.A. Natural plant extracts and prebiotic compounds as alternatives to antibiotics in broiler chicken diets in a necrotic enteritis challenge model. Anim. Prod. Sci. 2013, 53, 1247–1259. [Google Scholar] [CrossRef]
- Youn, H.J.; Noh, J.W. Screening of the anticoccidial effects of herb extracts against Eimeria tenella. Vet. Parasitol. 2001, 96, 257–263. [Google Scholar] [CrossRef]
- Cross, D.E.; McDevitt, R.M.; Hillman, K.; Acamovic, T. The effect of herbs and their associated essential oils on performance, dietary digestibility and gut microflora in chickens from 7 to 28 days of age. Br. Poult. Sci. 2007, 48, 496–506. [Google Scholar] [CrossRef] [PubMed]
- Cross, D.E.; McDevitt, R.M.; Acamovic, T. Herbs, thyme essential oil and condensed tannin extracts as dietary supplements for broilers, and their effects on performance, digestibility, volatile fatty acids and organoleptic properties. Br. Poult. Sci. 2011, 52, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Placha, I.; Takacova, J.; Ryzner, M.; Cobanova, K.; Laukova, A.; Strompfova, V.; Venglovska, K.; Faix, S. Effect of thyme essential oil and selenium on intestine integrity and antioxidant status of broilers. Br. Poult. Sci. 2014, 55, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.W.; Everts, H.; Kappert, H.J.; Frehner, M.; Losa, R.; Beynen, A.C. Effects of dietary essential oil components on growth performance, digestive enzymes and lipid metabolism in female broiler chickens. Br. Poult. Sci. 2003, 44, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Naidoo, V.; McGaw, L.J.; Bisschop, S.P.; Duncan, N.; Eloff, J.N. The value of plant extracts with antioxidant activity in attenuating coccidiosis in broiler chickens. Vet. Parasitol. 2008, 153, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Denli, M.; Okan, F.; Uluocak, A.N. Effect of dietary supplementation of herb essential oils on the growth performance, carcass and intestinal characteristics of quail (Coturnix coturnix japonica). S. Afr. J. Anim. Sci. 2004, 34, 174–179. [Google Scholar]
- Khaksar, V.; Van Krimpen, M.; Hashemipour, H.; Pilevar, M. Effects of thyme essential oil on performance, some blood parameters and ileal microflora of Japanese quail. J. Poult. Sci. 2012, 49, 106–110. [Google Scholar] [CrossRef]
- Abousekken, M.S.; Azazy, M.F.; El-Khtam, A.O.; Zaglool, W.K. Impact of Artemisia Annua L. Supplementation on Growth Performance and Control of Coccidiosis in rabbit. J. Am. Sci. 2015, 11, 159–169. [Google Scholar] [CrossRef]
- Placha, I.; Chrastinova, L.; Laukova, A.; Cobanova, K.; Takacova, J.; Strompfova, V.; Chrenkova, M.; Formelova, Z.; Faix, S. Effect of thyme oil on small intestine integrity and antioxidant status, phagocytic activity and gastrointestinal microbiota in rabbits. Acta Vet. Hung. 2013, 61, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Giannenas, I.; Papaneophytou, C.P.; Tsalie, E.; Pappas, I.; Triantafillou, E.; Tontis, D.; Kontopidis, G.A. Dietary supplementation of benzoic acid and essential oil compounds affects buffering capacity of the feeds, performance of turkey poults and their antioxidant status, pH in the digestive tract, intestinal microbiota and morphology. Asian-Australas. J. Anim. Sci. 2014, 27, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Wang, J.P.; Kim, H.J.; Meng, Q.W.; Ao, X.; Hong, S.M.; Kim, I.H. Influence of essential oil supplementation and diets with different nutrient densities on growth performance, nutrient digestibility, blood characteristics, meat quality and faecal noxious gas content in grower–finisher pigs. Livest. Sci. 2010, 128, 115–122. [Google Scholar] [CrossRef]
- Yan, L.; Meng, Q.W.; Kim, I.H. The effect of an herb extract mixture on growth performance, nutrient digestibility, blood characteristics and faecal noxious gas content in growing pigs. Livest. Sci. 2011, 141, 143–147. [Google Scholar] [CrossRef]
- Ahmed, S.T.; Hossain, M.E.; Kim, G.M.; Hwang, J.A.; Ji, H.; Yang, C.J. Effects of Resveratrol and Essential Oils on Growth Performance, Immunity, Digestibility and Faecal Microbial Shedding in Challenged Piglets. Asian-Australas. J. Anim. Sci. 2013, 26, 683–690. [Google Scholar] [CrossRef] [PubMed]
- Li, S.Y.; Ru, Y.J.; Liu, M.; Xu, B.; Péron, A.; Shi, X.G. The effect of essential oils on performance, immunity and gut microbial population in weaner pigs. Livest. Sci. 2012, 145, 119–123. [Google Scholar] [CrossRef]
- Li, P.; Piao, X.; Ru, Y.; Han, X.; Xue, L.; Zhang, H. Effects of adding essential oil to the diet of weaned pigs on performance, nutrient utilization, immune response and intestinal health. Asian-Aust. J. Anim. Sci. 2012, 25, 1617–1626. [Google Scholar] [CrossRef] [PubMed]
- Maenner, K.; Vahjen, W.; Simon, O. Studies on the effects of essential-oil-based feed additives on performance, ileal nutrient digestibility, and selected bacterial groups in the gastrointestinal tract of piglets. J. Anim. Sci. 2011, 89, 2106–2112. [Google Scholar] [CrossRef] [PubMed]
- Manzanilla, E.G.; Perez, J.F.; Martin, M.; Kamel, C.; Baucells, F.; Gasa, J. Effect of plant extracts and formic acid on the intestinal equilibrium of early-weaned pigs. J. Anim. Sci. 2004, 82, 3210–3218. [Google Scholar] [CrossRef] [PubMed]
- Manzanilla, E.G.; Nofrarias, M.; Anguita, M.; Castillo, M.; Perez, J.F.; Martin-Orue, S.M.; Kamel, C.; Gasa, J. Effects of butyrate, avilamycin, and a plant extract combination on the intestinal equilibrium of early-weaned pigs. J. Anim. Sci. 2006, 84, 2743–2751. [Google Scholar] [CrossRef] [PubMed]
- Manzanilla, E.G.; Pérez, J.F.; Martín, M.; Blandón, J.C.; Baucells, F.; Kamel, C.; Gasa, J. Dietary protein modifies effect of plant extracts in the intestinal ecosystem of the pig at weaning. J. Anim. Sci. 2009, 87, 2029–2037. [Google Scholar] [CrossRef] [PubMed]
- Muhl, A.; Liebert, F. Growth and parameters of microflora in intestinal and faecal samples of piglets due to application of a phytogenic feed additive. J. Anim. Physiol. Anim. Nutr. 2007, 91, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Muhl, A.; Liebert, F. No impact of a phytogenic feed additive on digestion and unspecific immune reaction in piglets. J. Anim. Physiol. Anim. Nutr. 2007, 91, 426–431. [Google Scholar] [CrossRef] [PubMed]
- Namkung, H.; Gong, M.L.J.; Yu, H.; Cottrill, M.; de Lange, C. Impact of feeding blends of organic acids and herbal extracts on growth performance, gut microbiota and digestive function in newly weaned pigs. Can. J. Anim. Sci. 2004, 84, 697–704. [Google Scholar] [CrossRef]
- Yan, L.; Meng, Q.W.; Kim, I.H. Effect of an herb extract mixture on growth performance, nutrient digestibility, blood characteristics, and faecal microbial shedding in weanling pigs. Livest. Sci. 2012, 145, 189–195. [Google Scholar] [CrossRef]
- Zeng, Z.; Xu, X.; Zhang, Q.; Li, P.; Zhao, P.; Li, Q.; Liu, J.; Piao, X. Effects of essential oil supplementation of a low-energy diet on performance, intestinal morphology and microflora, immune properties and antioxidant activities in weaned pigs. Anim. Sci. J. 2015, 86, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Jung, J.H.; Kim, H.S.; Kim, B.Y.; Kim, I.H. Influences of phytoncide supplementation on growth performance, nutrient digestibility, blood profiles, diarrhea scores and faecal microflora shedding in weaning pigs. Asian-Australas. J. Anim. Sci. 2012, 25, 1309–1315. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.W.; Lee, T.T.; Shih, Y.C.; Yu, B. Effects of dietary supplementation of Chinese medicinal herbs on polymorphonuclear neutrophil immune activity and small intestinal morphology in weanling pigs. J. Anim. Physiol. Anim. Nutr. 2012, 96, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Bodas, R.; Prieto, N.; García-González, R.; Andrés, S.; Giráldez, F.J.; López, S. Manipulation of rumen fermentation and methane production with plant secondary metabolites. Anim. Feed Sci. Technol. 2012, 176, 78–93. [Google Scholar] [CrossRef]
- Boadi, D.; Benchaar, C.; Chiquette, J.; Massé, D. Mitigation strategies to reduce enteric methane emissions from dairy cows: Update review. Can. J. Anim. Sci. 2004, 84, 319–335. [Google Scholar] [CrossRef]
- Benchaar, C.; Greathead, H. Essential oils and opportunities to mitigate enteric methane emissions from ruminants. Anim. Feed Sci. Technol. 2011, 166, 338–355. [Google Scholar] [CrossRef]
- McIntosh, F.M.; Williams, P.; Losa, R.; Wallace, R.J.; Beever, D.A.; Newbold, C.J. Effects of essential oils on ruminal microorganisms and their protein metabolism. Appl. Environ. Microbiol. 2003, 69, 5011–5014. [Google Scholar] [CrossRef] [PubMed]
- Calsamiglia, S.; Busquet, M.; Cardozo, P.W.; Castillejos, L.; Ferret, A. Invited review: Essential oils as modifiers of rumen microbial fermentation. J. Dairy Sci. 2007, 90, 2580–2595. [Google Scholar] [CrossRef] [PubMed]
- Benchaar, C.; Calsamiglia, S.; Chaves, A.V.; Fraser, G.R.; Colombatto, D.; McAllister, T.A.; Beauchemin, K.A. A review of plant-derived essential oils in ruminant nutrition and production. Anim. Feed Sci. Technol. 2008, 145, 209–228. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; McAllister, T.A.; McGinn, S.M. Dietary mitigation of enteric methane from cattle. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2009, 4, 1–18. [Google Scholar] [CrossRef]
- Benchaar, C.; Lettat, A.; Hassanat, F.; Yang, W.Z.; Forster, R.J.; Petit, H.V.; Chouinard, P.Y. Eugenol for dairy cows fed low or high concentrate diets: Effects on digestion, ruminal fermentation characteristics, rumen microbial populations and milk fatty acid profile. Anim. Feed Sci. Technol. 2012, 178, 139–150. [Google Scholar] [CrossRef]
- Tager, L.R.; Krause, K.M. Effects of essential oils on rumen fermentation, milk production, and feeding behavior in lactating dairy cows. J. Dairy Sci. 2011, 94, 2455–2464. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.Z.; Benchaar, C.; Ametaj, B.N.; Chaves, A.V.; He, M.L.; McAllister, T.A. Effects of garlic and juniper berry essential oils on ruminal fermentation and on the site and extent of digestion in lactating cows. J. Dairy Sci. 2007, 90, 5671–5681. [Google Scholar] [CrossRef] [PubMed]
- Hristov, A.N.; Lee, C.; Cassidy, T.; Heyler, K.; Tekippe, J.A.; Varga, G.A.; Corl, B.; Brandt, R.C. Effect of Origanum vulgare L. leaves on rumen fermentation, production, and milk fatty acid composition in lactating dairy cows. J. Dairy Sci. 2013, 96, 1189–1202. [Google Scholar] [CrossRef] [PubMed]
- Tekippe, J.A.; Hristov, A.N.; Heyler, K.S.; Cassidy, T.W.; Zheljazkov, V.D.; Ferreira, J.F.S.; Karnati, S.K.; Varga, G.A. Rumen fermentation and production effects of Origanum vulgare L. leaves in lactating dairy cows. J. Dairy Sci. 2011, 94, 5065–5079. [Google Scholar] [CrossRef] [PubMed]
- Benchaar, C.; Petit, H.V.; Berthiaume, R.; Whyte, T.D.; Chouinard, P.Y. Effects of addition of essential oils and monensin premix on digestion, ruminal fermentation, milk production, and milk composition in dairy cows. J. Dairy Sci. 2006, 89, 4352–4364. [Google Scholar] [CrossRef]
- Benchaar, C.; Petit, H.V.; Berthiaume, R.; Ouellet, D.R.; Chiquette, J.; Chouinard, P.Y. Effects of essential oils on digestion, ruminal fermentation, rumen microbial populations, milk production, and milk composition in dairy cows fed alfalfa silage or corn silage. J. Dairy Sci. 2007, 90, 886–897. [Google Scholar] [CrossRef]
- Kung, L.; Williams, P.; Schmidt, R.J.; Hu, W. A blend of essential plant oils used as an additive to alter silage fermentation or used as a feed additive for lactating dairy cows. J. Dairy Sci. 2008, 91, 4793–4800. [Google Scholar] [CrossRef] [PubMed]
- Spanghero, M.; Robinson, P.H.; Zanfi, C.; Fabbro, E. Effect of increasing doses of a microencapsulated blend of essential oils on performance of lactating primiparous dairy cows. Anim. Feed Sci. Technol. 2009, 153, 153–157. [Google Scholar] [CrossRef]
- Santos, M.B.; Robinson, P.H.; Williams, P.; Losa, R. Effects of addition of an essential oil complex to the diet of lactating dairy cows on whole tract digestion of nutrients and productive performance. Anim. Feed Sci. Technol. 2010, 157, 64–71. [Google Scholar] [CrossRef]
- Meyer, N.F.; Erickson, G.E.; Klopfenstein, T.J.; Greenquist, M.A.; Luebbe, M.K.; Williams, P.; Engstrom, M.A. Effect of essential oils, tylosin, and monensin on finishing steer performance, carcass characteristics, liver abscesses, ruminal fermentation, and digestibility. J. Anim. Sci. 2009, 87, 2346–2354. [Google Scholar] [CrossRef] [PubMed]
- Vakili, A.R.; Khorrami, B.; Mesgaran, M.D.; Parand, E. The effects of Thyme and Cinnamon essential oils on performance, rumen fermentation and blood metabolites in Holstein calves consuming high concentrate diet. Asian-Australas. J. Anim. Sci. 2013, 26, 935–944. [Google Scholar] [CrossRef] [PubMed]
- Fandiño, I.; Calsamiglia, S.; Ferret, A.; Blanch, M. Anise and capsicum as alternatives to monensin to modify rumen fermentation in beef heifers fed a high concentrate diet. Anim. Feed Sci. Technol. 2008, 145, 409–417. [Google Scholar] [CrossRef]
- Valero, M.V.; Prado, R.M.D.; Zawadzki, F.; Eiras, C.E.; Madrona, G.S.; Prado, I.N.D. Propolis and essential oils additives in the diets improved animal performance and feed efficiency of bulls finished in feedlot. Acta Sci. Anim. Sci. 2014, 36, 419–426. [Google Scholar] [CrossRef]
- Kongmun, P.; Wanapat, M.; Pakdee, P.; Navanukraw, C.; Yu, Z. Manipulation of rumen fermentation and ecology of swamp buffalo by coconut oil and garlic powder supplementation. Livest. Sci. 2011, 135, 84–92. [Google Scholar] [CrossRef]
- Thao, N.T.; Wanapat, M.; Cherdthong, A.; Kang, S. Effects of eucalyptus crude oils supplementation on rumen fermentation, microorganism and nutrient digestibility in swamp buffaloes. Asian-Australas. J. Anim. Sci. 2014, 27, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Chaves, A.V.; Stanford, K.; Gibson, L.L.; McAllister, T.A.; Benchaar, C. Effects of carvacrol and cinnamaldehyde on intake, rumen fermentation, growth performance, and carcass characteristics of growing lambs. Anim. Feed Sci. Technol. 2008, 145, 396–408. [Google Scholar] [CrossRef]
- Chaves, A.V.; Stanford, K.; Dugan, M.E.R.; Gibson, L.L.; McAllister, T.A.; Van Herk, F.; Benchaar, C. Effects of cinnamaldehyde, garlic and juniper berry essential oils on rumen fermentation, blood metabolites, growth performance, and carcass characteristics of growing lambs. Livest. Sci. 2008, 117, 215–224. [Google Scholar] [CrossRef]
- Bhatt, R.S.; Soren, N.M.; Tripathi, M.K.; Karim, S.A. Effects of different levels of coconut oil supplementation on performance, digestibility, rumen fermentation and carcass traits of Malpura lambs. Anim. Feed Sci. Technol. 2011, 164, 29–37. [Google Scholar] [CrossRef]
- Giannenas, I.; Skoufos, J.; Giannakopoulos, C.; Wiemann, M.; Gortzi, O.; Lalas, S.; Kyriazakis, I. Effects of essential oils on milk production, milk composition, and rumen microbiota in Chios dairy ewes. J. Dairy Sci. 2011, 94, 5569–5577. [Google Scholar] [CrossRef] [PubMed]
- Klevenhusen, F.; Zeitz, J.O.; Duval, S.; Kreuzer, M.; Soliva, C.R. Garlic oil and its principal component diallyl disulfide fail to mitigate methane, but improve digestibility in sheep. Anim. Feed Sci. Technol. 2011, 166, 356–363. [Google Scholar] [CrossRef]
- Lin, B.; Lu, Y.; Salem, A.Z.M.; Wang, J.H.; Liang, Q.; Liu, J.X. Effects of essential oil combinations on sheep ruminal fermentation and digestibility of a diet with fumarate included. Anim. Feed Sci. Technol. 2013, 184, 24–32. [Google Scholar] [CrossRef]
- Ma, T.; Chen, D.D.; Tu, Y.; Zhang, N.F.; Si, B.W.; Deng, K.D.; Diao, Q.Y. Effect of dietary supplementation with resveratrol on nutrient digestibility, methanogenesis and ruminal microbial flora in sheep. J. Anim. Physiol. Anim. Nutr. 2015, 99, 676–683. [Google Scholar] [CrossRef] [PubMed]
- Malecky, M.; Broudiscou, L.P.; Schmidely, P. Effects of two levels of monoterpene blend on rumen fermentation, terpene and nutrient flows in the duodenum and milk production in dairy goats. Anim. Feed Sci. Technol. 2009, 154, 24–35. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem. 2015, 97, 55–74. [Google Scholar] [CrossRef] [PubMed]
- Rice-Evans, C.A.; Miller, N.J.; Bolwell, P.G.; Bramley, P.M.; Pridham, J.B. The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic. Res. 1995, 22, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Wang, S.Y. Antioxidant activity and phenolic compounds in selected herbs. J. Agric. Food Chem. 2001, 49, 5165–5170. [Google Scholar] [CrossRef] [PubMed]
- Miguel, M.G. Antioxidant and anti-inflammatory activities of essential oils: A short review. Molecules 2010, 15, 9252–9287. [Google Scholar] [CrossRef] [PubMed]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Govaris, A.; Botsoglou, N.; Papageorgiou, G.; Botsoglou, E.; Ambrosiadis, I. Dietary versus post-mortem use of oregano oil and/or α-tocopherol in turkeys to inhibit development of lipid oxidation in meat during refrigerated storage. Int. J. Food Sci. Nutr. 2004, 55, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Decker, E.A.; Park, Y. Healthier meat products as functional foods. Meat Sci. 2010, 86, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Florou-Paneri, P.; Nikolakakis, I.; Giannenas, I.; Koidis, A.; Botsoglou, E.; Dotas, V.; Mitsopoulos, I. Hen performance and egg quality as affected by dietary oregano essential oil and a-tocopheryl acetate supplementation. Int. J. Poult. Sci. 2005, 4, 449–454. [Google Scholar]
- Avila-Ramos, F.; Pro-Martinez, A.; Sosa-Montes, E.; Cuca-Garcia, J.M.; Becerril-Perez, C.M.; Figueroa-Velasco, J.L.; Narciso-Gaytan, C. Effects of dietary oregano essential oil and vitamin E on the lipid oxidation stability of cooked chicken breast meat. Poult. Sci. 2012, 91, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Botsoglou, N.A.; Florou-Paneri, P.; Christaki, E.; Fletouris, D.J.; Spais, A.B. Effect of dietary oregano essential oil on performance of chickens and on iron-induced lipid oxidation of breast, thigh and abdominal fat tissues. Br. Poult. Sci. 2002, 43, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Botsoglou, N.A.; Christaki, E.; Fletouris, D.J.; Florou-Paneri, P.; Spais, A.B. The effect of dietary oregano essential oil on lipid oxidation in raw and cooked chicken during refrigerated storage. Meat Sci. 2002, 62, 259–265. [Google Scholar] [CrossRef]
- Botsoglou, N.A.; Fletouris, D.J.; Florou-Paneri, P.; Christaki, E.; Spais, A.B. Inhibition of lipid oxidation in long-term frozen stored chicken meat by dietary oregano essential oil and alpha-tocopheryl acetate supplementation. Food Res. Int. 2003, 36, 207–213. [Google Scholar] [CrossRef]
- Kirkpinar, F.; Ünlü, H.B.; Serdaroğlu, M.; Turp, G.Y. Effects of dietary oregano and garlic essential oils on carcass characteristics, meat composition, colour, pH and sensory quality of broiler meat. Br. Poult. Sci. 2014, 55, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Marcincak, S.; Cabadaj, R.; Popelka, P.; Soltysova, L. Antioxidative effect of oregano supplemented to broilers on oxidative stability of poultry meat. Slov. Vet. Res. 2008, 45, 61–66. [Google Scholar]
- Simitzis, P.E.; Deligeorgis, S.G.; Bizelis, J.A.; Dardamani, A.; Theodosiou, I.; Fegeros, K. Effect of dietary oregano oil supplementation on lamb meat characteristics. Meat Sci. 2008, 79, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Simitzis, P.E.; Symeon, G.K.; Charismiadou, M.A.; Bizelis, J.A.; Deligeorgis, S.G. The effects of dietary oregano oil supplementation on pig meat characteristics. Meat Sci. 2010, 84, 670–676. [Google Scholar] [CrossRef] [PubMed]
- Janz, J.A.M.; Morel, P.C.H.; Wilkinson, B.H.P.; Purchas, R.W. Preliminary investigation of the effects of low-level dietary inclusion of fragrant essential oils and oleoresins on pig performance and pork quality. Meat Sci. 2007, 75, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Botsoglou, N.A.; Florou-Paneri, P.; Christaki, E.; Giannenas, I.; Spais, A.B. Performance of rabbits and oxidative stability of muscle tissues as affected by dietary supplementation with oregano essential oil. Arch. Anim. Nutr. 2004, 58, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Botsoglou, N.A.; Grigoropoulou, S.H.; Botsoglou, E.; Govaris, A.; Papageorgiou, G. The effects of dietary oregano essential oil and a-tocopheryl acetate on lipid oxidation in raw and cooked turkey during refrigerated storage. Meat Sci. 2003, 65, 1193–1200. [Google Scholar] [CrossRef]
- Florou-Paneri, P.; Galatos, G.; Govaris, A.; Botsoglou, D.; Giannenas, I.; Ambrosiadis, I. Oregano herb versus oregano essential oil as feed supplements to increase the oxidative stability of turkey meat. Int. J. Poult. Sci. 2005, 4, 866–871. [Google Scholar]
- Simitzis, P.E.; Bizelis, J.A.; Fegeros, K.; Deligeorgis, S.G. Effect of dietary oregano oil supplementation on sheep milk characteristics. Anim. Sci. Rev. 2007, 37, 69–78. [Google Scholar]
- Yesilbag, D.; Gezen, S.S.; Biricik, H.; Meral, Y. Effects of dietary rosemary and oregano volatile oil mixture on quail performance, egg traits and egg oxidative stability. Br. Poult. Sci. 2013, 54, 231–237. [Google Scholar] [CrossRef] [PubMed]
- O’Grady, M.N.; Maher, M.; Troy, D.J.; Moloney, A.P.; Kerry, J.P. An assessment of dietary supplementation with tea catechins and rosemary extract on the quality of fresh beef. Meat Sci. 2006, 73, 132–143. [Google Scholar] [CrossRef] [PubMed]
- Vasta, V.; Aoudi, D.; Bronga, D.M.R.; Scerra, M.; Luciano, G.; Priolo, A.; Ben Salem, H. Effect of the dietary supplementation of essential oils from rosemary and artemisia on muscle fatty acids and volatile compound profiles in Barbarine lambs. Meat Sci. 2013, 95, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Serrano, R.; Jordan, M.J.; Banon, S. Use of dietary rosemary extract in ewe and lamb to extend the shelf life of raw and cooked meat. Small Rumin. Res. 2014, 116, 144–152. [Google Scholar] [CrossRef]
- Smeti, S.; Atti, N.; Mahouachi, M.; Munoz, F. Use of dietary rosemary (Rosmarinus officinalis L.) essential oils to increase the shelf life of Barbarine light lamb meat. Small Rumin. Res. 2013, 113, 340–345. [Google Scholar] [CrossRef]
- Aoudi, D.; Luciano, G.; Vasta, V.; Nasri, S.; Brogna, D.M.R.; Abidi, S.; Priolo, A.; Ben Salem, H. The antioxidant status and oxidative stability of muscle from lambs receiving oral administration of Artemisia herba alba and Rosmarinus officinalis essential oils. Meat Sci. 2014, 97, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Ortuno, J.; Serrano, R.; Jordan, M.J.; Banon, S. Shelf life of meat from lambs given essential oil-free rosemary extract containing carnosic acid plus carnosol at 200 or 400 mg kg−1. Meat Sci. 2014, 96, 1452–1459. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Bote, C.J.; Gray, J.I.; Gomaa, E.A.; Flegal, C.J. Effect of dietary administration of oil extracts from rosemary and sage on lipid oxidation in broiler meat. Br. Poult. Sci. 1998, 39, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Yesilbag, D.; Eren, M.; Agel, H.; Kovanlikaya, A.; Balci, F. Effects of dietary rosemary, rosemary volatile oil and vitamin E on broiler performance, meat quality and serum SOD activity. Br. Poult. Sci. 2011, 52, 472–482. [Google Scholar] [CrossRef] [PubMed]
- Haak, L.; Raes, K.; Van Dyck, S.; De Smet, S. Effect of dietary rosemary and a-tocopheryl acetate on the oxidative stability of raw and cooked pork following oxidized linseed oil administration. Meat Sci. 2008, 78, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Chiofalo, V.; Liotta, L.; Fiumano, R.; Riolo, E.B.; Chiofalo, B. Influence of dietary supplementation of Rosmarinus officinalis L. on performances of dairy ewes organically managed. Small Rumin. Res. 2012, 104, 122–128. [Google Scholar] [CrossRef]
Essential Oil or Component | Level | Animal | Effects | Reference |
---|---|---|---|---|
Artemisinin | 17 ppm | Broilers | Reduction of oocyst output and lesion scores attributable to Eimeria tenella. | [27] |
BEO (thymol, eugenol and piperine) | 100–200 mg/kg | Broilers | No effect on intestinal numbers of C. perfringens, GP and FCR. Reduction of FBW. | [28] |
BEO (thymol, eugenol and piperine) | 100 mg/kg | Broilers | No effect on FI, BWG, FCR, CT and ileal bacterial count (C. perfringens and Gram− bacilli). Increase of ileum length and ileal villi height. | [29,30] |
BEO (carvacrol, thymol, eucalyptol, lemon) | 125–500 mg/kg | Broilers | Improvement of BWG and FCR (125 or 250 mg/kg). Reduction of Salmonella Heidelberg colonization in crops (500 mg/kg). No effect on Salmonella Heidelberg caecal or faecal counts. | [31] |
BEO (cinnamaldehyde and thymol) | 100 mg/kg | Broilers | No effect on ADG, FI, gut morphology and ileal bacterial count. Improvement of FCR and apparent ileal nitrogen digestibility. | [32] |
BEO (cinnamaldehyde and thymol) | 100 mg/kg | Broilers | No effect on FI. Improvement of BWG and FCR. Reduction of Salmonella-positive caecal samples. | [33] |
BEO (garlic, sage, echinacea, thyme, oregano) | 1 g/kg | Broilers | No effect on BWG, FI, FCR, CT and lesion score. Reduction of oocyst counts 6–14 days post infection. | [34] |
BEO (oregano, laurel leaf and lavender) | 50 mg/kg | Broilers | No effect on BWG, FI, FCR, intestinal length and caecal weight. Reduction of faecal Eimeria oocyst output. | [35] |
BEO (oregano, cinnamaldehyde, carvacol, yucca extract) | 250 mg/kg | Broilers | No effect on BWG and FI. Improvement of FCR, ATTD of DM and gross energy. Reduction of lesion score and C. perfringens and E. coli intestinal counts. | [36] |
BEO (Agrimonia eupatoria, Echinacea angustifolia, Ribes nigrum and Cinchona succirubra extracts) | 0.5–1.0 g/kg | Broilers | No effect on caecal lesion score. Improvement of BWG and FCR. Reduction of Eimeria tenella oocysts count and bloody diarrhea intensity. | [37] |
BEO (oregano, anis and citrus peel) | 125 mg/kg | Broilers | No effect on BWG, FI, intestinal pH values, caecal TVFA levels and total ileum microbiota counts. Improvement of FCR. Reduction of ileum ammonia concentration. | [38] |
BEO (clove and cinnamon) | 100 mg/kg | Broilers | No effect on FBW, ADG, FCR and CT. | [39] |
BEO (capsaicin, cinnamaldehyde, carvacrol) | 150–300 mg/kg | Broilers | No effect on FBW, ADG, FCR, CT and ileal ND. Reduction of rectal E. coli and Clostridium perfringens counts. | [40] |
BEO (capsaicin, cinnamaldehyde, carvacrol) | 100 mg/kg | Broilers | No effect on FBW, CT and ileal ND. Improvement of FCR. Increase of LAB counts and lipase activity in pancreas and intestine wall. Reduction of intestinal E. coli and Clostridium perfringens counts. | [22] |
BEO (capsicum oleoresin, cinnamaldehyde, carvacrol) | 100 mg/kg | Broilers | No effect on FBW. Improvement of FCR. Increase of mucus secretion intensity and accumulation inside cells of the gastrointestinal mucosa. Reduction of intestinal E. coli and Clostridium perfringens counts. | [19] |
BEO (thymol, eugenol and piperine) | 50 mg/kg | Broilers | No effect on FBW, ADG, FI, FCR and LAB counts. Increase of pancreatic trypsin, pancreatic alpha-amylase and intestinal maltase activity. Reduction of E. coli counts in ileo-caecal digesta. | [21] |
BEO (basil, caraway, laurel, lemon, oregano, sage, tea and thyme) | 30 mg/kg | Broilers | No effect on FI. Improvement of FBW, ADG, FCR and CT. Increase of caecal villus surface area. | [41] |
BEO (carvacrol, 1,8-cineole, camphor, thymol, oregano EO, laurel leaf EO and lavender EO) | 75 mg/kg | Broilers | No effect on CT. Negative effect on FCR. Reduction of FBW, ADG, FI, caecum weight, intestinal length and faecal Eimeria spp. oocyst excretion. | [42] |
BEO1 (thymol, eugenol and piperine) or BEO2 (thymol, carvacrol, eugenol and piperine) | 100 mg/kg | Broilers | Reduction of intestinal Clostridium perfringens counts. | [43] |
BEO (thymol, eugenol and piperine) | 100 mg/kg | Broilers | No effect on BWG, FI, FCR, lesion scores and Eimeria sp. oocyst counts. Modulation of intestinal microbial communities. | [44,45] |
BEO (thymol, eugenol and piperine) | 300 mg/kg | Broilers | No effect on BWG, FI, FCR and caecal microbial population. Slight modulation of intestinal microbial population. | [46] |
BEO (thymol, cinnamaldehyde) | 15 + 5 mg/kg | Broilers | No effect on FI, FCR and caecal bacterial (LAB, E. coli, Clostridium perfringens) counts. Increase of BWG. | [47] |
Capsaicin | 5–20 mg/kg | Broilers | Reduction of Salmonella Typhimurium counts. | [48] |
Grape Seed Proanthocyanidin Extract | 12 mg/kg | Broilers | Increase of BWG. Reduction of lesion scores. Restoration of the antioxidant/oxidant system balance after the parasite infection. | [49] |
Mushroom (Lentinus edodes or Tremella fuciformis) or herb (Astragalus membranaceus Radix) polysaccharide extracts | 2 g/kg | Broilers | No effect on BWG, FI, FCR. Increase of bifidobacteria and LAB counts and reduction of Bacteroides spp. and E. coli counts. | [50,51] |
Mushroom (Lentinus edodes) extract | 100 g/L water | Broilers | No effect on BWG, FI, FCR and CT. Promotion of bifidobacteria growth. | [52] |
Oregano EO | 300 mg/kg | Broilers | No effect on FBW and CT. Improvement of FCR. Reduction of FI and excreta oocyst counts. | [53] |
Oregano EO | 250–500 g/kg | Broilers | No effect on BWG, FI, FCR, digesta pH, weight and height of the intestinal parts and lipase and amylase activity. Increase of chymotrypsin activity and CPD. | [54] |
Oregano EO | 12–24 mg/kg | Broilers | No effect on BWG and FI. Improvement of FCR, intestinal morphological development and enzymatic activities (amylase). | [55] |
Oregano EO | 300 mg/kg | Broilers | No effect on FI. Improvement of BWG and FCR. Reduction of lesion score and Eimeria tenella oocyst counts. | [56] |
Oregano EO | 5–10 μL/kg | Broilers | Intense bacteridical action against lactobacilli and E. coli in faecal samples. | [57] |
Oregano or garlic EO | 300 mg/kg | Broilers | No effect on FI, FCR, CT, ileal Streptococcus, LAB and CB counts. Oregano EO results in reduced FBW (no effect of garlic EO). Reduction of ileal Clostridium perfringens counts. | [58] |
Oregano EO | 500 mg/kg | Broilers | Improvement of BWG and FCR. Reduction of coccidiosis lesion scores and faecal oocyst counts. | [59] |
Oregano EO | 600 mg/kg | Broilers | Improvement of BWG and FCR. No effect on LAB counts, but decrease of E. coli counts. | [60] |
Oregano EO | 0.5–1 g/kg | Broilers | No effect on intestinal villous height and crypt depth. Reduction of Eimeria tenella oocyst counts. | [61] |
Oregano EO | 300–600 mg/kg | Broilers | No effect on BWG and FI. Improvement of FCR. Reduction of lesion score and faecal Eimeria sp. oocyst counts. | [62] |
Oregano EO | 330 mg/kg | Broilers | No effect on FCR and lesion scores. Increase of FBW, FI and reduction of caecal Clostridium perfringens counts. | [63] |
Peppermint EO | 400 mg/kg | Broilers | No effect on BW, ADG, FI and FCR, faecal DMD and CPD and intestinal morphology. | [64] |
Renga renga lily or Acacia extract | 10 g/kg | Broilers | No effect on BWG, FI, FCR, intestinal morphology and ileal CB and Clostridium perfringens counts. Increase of ileal LAB counts. | [65] |
Sophora flavescens extract | 6–30 g/L water | Broilers | Increase of BWG. Reduction of lesion scores and faecal Eimeria tenella oocyst counts. | [66] |
Thyme EO | 1 g/kg | Broilers | No effect on FCR, AME, ATTD and intestinal microflora populations. Increase of BWG and FI. | [67] |
Thyme EO | 1 g/kg | Broilers | No effect on ADG, FI, FCR, DMD, CPD and TVFA. Reduction of caecal isobutyric+ isovaleric levels. | [68] |
Thyme EO | 0.5 g/kg | Broilers | No effect on caecal and large-intestinal bacterial counts. Improvement of intestinal barrier integrity and antioxidant status. | [69] |
Thymol or cinnamaldehyde or BEO (thymol, eugenol and piperine) | 100 mg/kg | Broilers | No effect on FBW, ADG, FI, FCR, ileal CPD and activity of digestive enzymes in intestinal contents and pancreatic tissue. | [70] |
Tulbaghia violacea extract | 35 mg/kg | Broilers | No effect on BWG. Improvement of FCR and reduction of Eimeria sp. oocyst counts. | [71] |
Thyme EO | 60 mg/kg | Quails | No effect on FI, intestinal parameters and CT. Improvement of BWG and FCR. Reduction of abdominal fat levels. | [72] |
Thyme EO | 1 g/kg | Quails | No effect on FI and FCR. Increase of FBW, carcass weight ileal LAB counts and reduction of ileal E. coli counts. | [73] |
Artemisia annua L. extract | 2.5–5.0 mL/kg | Rabbits | Reduction of faecal oocytes and caecal TBC. Improvement of FCR and RGR. | [74] |
Thyme EO | 0.5 g/kg | Rabbits | No effect on faecal and caecal bacterial counts. Improvement of intestinal integrity and antioxidant status. | [75] |
BEO (thymol, eugenol, piperine) | 30 mg/kg | Turkeys | Improvement BWG, FCR and antioxidant status. Increase of caecal LAB counts and reduction of caecal CB counts. | [76] |
BEO (thyme, rosemary, oregano) | 100 mg/kg | Grower-finisher pigs | Improvement of ADG, FCR, GED, CPD (grower period) and ADG (grower-finisher period). Reduction of ammonia excretion. | [77] |
BEO (buckwheat, thyme, curcuma, black pepper and ginger) | 250–500 mg/kg | Grower pigs | No effect on FCR. Increase of BWG, FI and reduction of faecal noxious gas (ammonia and hydrogen sulfide) content. | [78] |
BEO (oregano, anise, orange peel, and chicory EOs) | 125 mg/kg | Weaner pigs | No effect on ADG, FI, FCR. Improvement of DM and N digestibility. Reduction of faecal Salmonella typhimurium and E. coli counts. Increase of faecal Lactobacillus spp. count. | [79] |
BEO (thymol and cinnamaldehyde) | 0.1–0.15 mg/kg | Weaner pigs | Improvement of ADG and FCR. Increase of FI and faecal LAB counts. Reduction of diarrhea occurrence and faecal E. coli counts. | [80] |
BEO (thymol and cinnamaldehyde) | 100 mg/kg | Weaner pigs | Improvement of ADG, DMD, CPD and faecal score. Increase of villus height to crypt depth ratio in the jejunum, caecal LAB counts and reduction of caecal and rectal E. coli counts. | [81] |
BEO (peppermint, anise and clove) | 300 mg/kg | Weaner pigs | No effect on BWG, FI and gastrointestinal microbiota. Improvement of FCR, CPD and amino acids digestibility. | [82] |
BEO (oregano, cinnamon and Mexican pepper) | 150–300 mg/kg | Weaner pigs | No effect on BWG, FI, FCR and ATTD. Increase of gastric retention time and pH, lactobacilli:enterobacteria ratio and decrease of ileum total microbial count. | [83] |
BEO (oregano, cinnamon and Mexican pepper) | 300 mg/kg | Weaner pigs | No effect on BWG, FI, FCR, ATTD, intestinal pH and gastrointestinal morphology. | [84] |
BEO (oregano, cinnamon and Mexican pepper) | 200 mg/kg | Weaner pigs | No effect on BWG, FI and FCR. Increase of ileal lactobacilli:enterobacteria ratio and decrease of TVFA production in the cecum. | [85] |
BEO (carvacrol and thymol) | 500–1500 mg/kg | Weaner pigs | No effect on BWG, FI, FCR, praecaecal digestibility, enzyme activities, faecal microbial counts and intestinal microflora. | [86,87] |
BEO (cinnamon, thyme and oregano extract) | 750 mg/kg | Weaner pigs | No effect on BWG, FI, FCR, intestinal morphology and LAB counts. Reduction of CB counts. | [88] |
BEO (buckwheat, thyme, curcuma, black pepper and ginger) | 250 mg/kg | Weaner pigs | No effect on ADG, FI, FCR and caecal LAB counts. Improvement of CPD and DMD and reduction of faecal E. coli counts. | [89] |
BEO (thymol, cinnamaldehyde) | 250 mg/kg | Weaner pigs | No effect on FI, caecal E. coli and LAB counts. Improvement of ADG, FCR, DMD, CPD and GED. Increase of villus height (jejunum) and reduction of rectal E. coli counts. | [90] |
Phytoncide | 2 g/kg | Weaner pigs | No effect on ADG, FI, FCR, faecal E. coli counts and diarrhea scores. Improvement of DMD and increase of faecal LAB counts. | [91] |
Powder of medicinal herbs (Panax ginseng, Dioscoreaceae opposite, Atractylodes macrocephala, Glycyrrhiza uralensis, Ziziphus jujube and Platycodon grandiflorum) | 1–3 g/kg | Weaner pigs | No effect on FI, BWG and FCR. Increase of DMD, CPD, GED, villous height and ileal and caecal LAB counts and reduction of caecal CB counts. | [92] |
Essential Oil or Component | Level | Animal | Effects | Reference |
---|---|---|---|---|
Eugenol | 50 mg/kg DM | Dairy cows | No effect on DMI, ND, RP and MY. | [100] |
Cinnamaldehyde and eugenol | 85 & 140 mg/day, respectively | Dairy cows | No effect on DMI, FB, VFA concentration, NH3, A:P ratio, ruminal pH, ND and MY. | [101] |
Cinnamaldehyde and eugenol | 1.7 & 2.8 g/day, respectively | Dairy cows | No effect on DMI, FB, VFA concentration, NH3, A:P ratio, ruminal pH, ND and MY. | [101] |
Garlic EO | 5 g/day | Dairy cows | No effect on DMI, ruminal pH, VFA concentration, NH3 and MY. Improvement of FD in rumen. | [102] |
Juniper berry EO | 2 g/day | Dairy cows | No effect on DMI, ruminal pH, VFA concentration, NH3 and MY. Improvement of FD in rumen. | [102] |
Oregano leaves | 250, 500 or 750 g/day | Dairy cows | No effect on ND, VFA concentration, ruminal pH and MY. Dose-dependent decrease of DMI and MP. | [103] |
Oregano leaves | 500 g/day | Dairy cows | No effect on DMI, ND, VFA concentration, ruminal pH and MY. Decrease of MP. | [104] |
MEO | 2 g/day | Dairy cows | No effect on FI, ND, VFA concentration and MY. Increase of ruminal pH. | [105] |
MEO | 750 mg/day | Dairy cows | No effect on FI, ND, RP and MY. Increase of ruminal pH. | [106] |
MEO | 1.2 g/day | Dairy cows | No effect on BW, BCS and VFA concentration. Increase of DMI and MY. | [107] |
Blend of oregano, cinnamon, thyme and orange peel EOs | 0.32, 0.64 or 0.96 g/day | Dairy cows | No effect on DMI, ND and MY. | [108] |
Mixture of eugenol, geranyl acetate and coriander oil | 1 g/day | Dairy cows | No effect on DMI, ND and MY. Decrease of BCS. | [109] |
MEO | 1 g/day | Steers | No effect on DMI, ADG, CC, ND, VFA concentration and ruminal pH. | [110] |
Cinnamon EO | 5 g/day | Calves | No effect on DMI, ADG, VFA concentration and ruminal pH. Decrease of A:P ratio. | [111] |
Thyme EO | 5 g/day | Calves | No effect on DMI, ADG, VFA concentration and ruminal pH. Decrease of A:P ratio. | [111] |
Anise extract | 500 mg/day | Beef heifers | Reduction of VFA concentration and RP (A:P ratio, NH3). | [112] |
Cashew and castor EOs | 3 g/day | Bulls | No effect on DMI, ND and CC. Improved ADG, final BW and FE. | [113] |
Coconut oil | 7% | Swamp buffaloes | Negative effect on DMI, VFA concentration, A:P ratio and MP. No effect on ruminal pH, NH3 and ND. | [114] |
Eucalyptus EO | 2 mL/day | Swamp buffaloes | No effect on DMI, ND, ruminal pH, VFA concentration. Decrease of MP. | [115] |
Carvacrol | 200 mg/kg DM | Lambs | Reduction of ruminal pH and increase of VFA concentration. No effect on other RP (A:P ratio, NH3), DMI, AVG, CC and MC. | [116] |
Cinnamaldehyde | 200 mg/kg DM | Lambs | Reduction of ruminal pH, increase of VFA concentration. No effect on other RP (A:P ratio, NH3) DMI, AVG, CC and MC. | [116] |
Cinnamaldehyde | 200 mg/kg DM | Lambs | No effect on RP, DMI, CC and MC. Positive effect on AVG. | [117] |
Coconut oil | 25, 50 or 75 g/kg of CF | Lambs | No effect on ADG and CC. Decrease of DMI. | [118] |
Garlic EO | 200 mg/kg DM | Lambs | No effect on RP, DMI, AVG, CC and MC. | [117] |
Juniper berry EO | 200 mg/kg DM | Lambs | No effect on RP, DMI, CC and MC. Positive effect on AVG. | [117] |
MEO | 50, 100 or 150 mg/kg DM | Dairy ewes | No effect on DMI and ruminal pH. Positive dose-dependent effect on MY. | [119] |
Garlic EO | 5 g/kg DM | Sheep | No effect on DMI and MP. | [120] |
Mixture of clove, oregano, cinnamon, and lemon EOs | 1 g/day | Sheep | No effect on DMI, ND and ruminal pH. Decrease of VFA concentration, A:P ratio and RPD. | [121] |
Mixture of eugenol, carvacrol, citral and cinnamaldehyde | 1 g/day | Sheep | No effect on DMI, ND and ruminal pH. Decrease of VFA concentration, A:P ratio and RPD. | [121] |
Resveratrol | 0.25 g/day | Sheep | No effect on DMI, ruminal pH, NH3 and VFA concentration. Positive effect on ND. Decrease of MP and A:P ratio. | [122] |
Mixture of linalool, p-cymene, alpha-pinene & beta-pinene | 0.043 or 0.43 g/kg DM | Dairy goats | No effect on DMI, ND, VFA concentration, A:P ratio and MY. | [123] |
Essential Oil | Major Antioxidant Compounds | Level | Product | Effect | Reference |
---|---|---|---|---|---|
Oregano | p-cymene, gamma-terpinene, beta-Caryophyllene, borneol, carvacrol, thymol | 100–200 mg/kg | Egg | + | [131] |
100 mg/kg | Chicken Meat | + | [132] | ||
50–100 mg/kg | Chicken Meat | + | [133,134,135] | ||
300 mg/kg | Chicken Meat | NS | [136] | ||
500 mg/kg | Chicken Meat | + | [137] | ||
1.0 mL/kg | Lamb Meat | + | [138] | ||
0.25–1.0 mL/kg | Pork Meat | NS | [139] | ||
500 mg/kg | Pork Meat | NS | [140] | ||
100–200 mg/kg | Rabbit Meat | + | [141] | ||
100 mg/kg | Turkey Meat | + | [14,142] | ||
200 mg/kg | Turkey Meat | + | [129,143] | ||
1 mL/kg | Sheep Milk | NS | [144] | ||
Rosemary | Carnosic acid, carnosol, rosmanol, rosmarinic acid | 200 mg/kg | Quail egg | + | [145] |
1.0 g/kg | Beef | + | [146] | ||
400 mg/kg | Lamb Meat | NS | [147] | ||
0.6 g/kg | Lamb Meat | NS | [148,149] | ||
0.4 g/kg | Lamb Meat | + | [150,151] | ||
500 mg/kg | Chicken Meat | + | [152] | ||
100–200 mg/kg | Chicken Meat | + | [153] | ||
40 mg/kg | Pork Meat | + | [154] | ||
0.6–1.2 g/day | Sheep Milk | + | [155] |
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simitzis, P.E. Enrichment of Animal Diets with Essential Oils—A Great Perspective on Improving Animal Performance and Quality Characteristics of the Derived Products. Medicines 2017, 4, 35. https://doi.org/10.3390/medicines4020035
Simitzis PE. Enrichment of Animal Diets with Essential Oils—A Great Perspective on Improving Animal Performance and Quality Characteristics of the Derived Products. Medicines. 2017; 4(2):35. https://doi.org/10.3390/medicines4020035
Chicago/Turabian StyleSimitzis, Panagiotis E. 2017. "Enrichment of Animal Diets with Essential Oils—A Great Perspective on Improving Animal Performance and Quality Characteristics of the Derived Products" Medicines 4, no. 2: 35. https://doi.org/10.3390/medicines4020035
APA StyleSimitzis, P. E. (2017). Enrichment of Animal Diets with Essential Oils—A Great Perspective on Improving Animal Performance and Quality Characteristics of the Derived Products. Medicines, 4(2), 35. https://doi.org/10.3390/medicines4020035