Chemical Composition, Enantiomeric Distribution, and Antifungal Activity of the Oleoresin Essential Oil of Protium amazonicum from Ecuador
Abstract
:1. Introduction
2. Materials and Methods
2.1. Essential Oil
2.2. Gas Chromatography-Mass Spectrometry (GC-MS)
2.3. Gas Chromatography—Flame Ionization Detection
2.4. Chiral Gas Chromatography—Mass Spectrometry
2.5. Antifungal Screening
3. Results and Discussion
3.1. Chemical Composition
3.2. Enantiomeric Distribution
3.3. Antifungal Activity
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mabberley, D.J. Mabberley’s Plant-Book, 3rd ed.; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Rüdiger, A.L.; Siani, A.C.; Junior, V.F.V. The chemistry and pharmacology of the South America genus Protium Burm. f. (Burseracea). Pharmacogn. Rev. 2007, 1, 93–104. [Google Scholar]
- Murthy, K.S.R.; Reddy, M.C.; Rani, S.S.; Pullaiah, T. Bioactive principles and biological properties of essential oils of Burseraceae: A review. J. Pharmacogn. Phytochem. 2016, 5, 247–258. [Google Scholar]
- Stacey, R.J.; Cartwright, C.R.; McEwan, C. Chemical characterization of ancient Mesoamerican “copal” resins: Preliminary results. Archaeometry 2006, 48, 323–340. [Google Scholar] [CrossRef]
- Siani, A.C.; Moraes, R.; Junior, V.F.V. Toward establishing the productive chain for triterpene-based Amazonian oleoresins as valuable non-timber forest products. Open J. For. 2017, 7, 188–208. [Google Scholar] [CrossRef]
- Siani, A.C.; Ramos, M.F.S.; Menezes-de-Lima, O.; Ribeiro-dos-Santos, R.; Fernandez-Ferreira, E.; Soares, R.O.A.; Rosas, E.C.; Susunaga, G.S.; Guimarães, A.C.; Zoghbi, M.G.B.; et al. Evaluation of anti-inflammatory-related activity of essential oils from the leaves and resin of species of Protium. J. Ethnopharmacol. 1999, 66, 57–69. [Google Scholar] [CrossRef]
- Amaral, M.P.M.; Braga, F.A.V.; Passos, F.F.B.; Almeida, F.R.C.; Oliveira, R.C.M.; Carvalho, A.A.; Chaves, M.H.; Oliveira, F.A. Additional evidence for the anti-inflammatory properties of the essential oil of Protium heptaphyllum resin in mice and rat. Latin Am. J. Pharm. 2009, 28, 775–782. [Google Scholar]
- Lima, F.V.; Malheiros, A.; Otuki, M.F.; Calixto, J.B.; Yunes, R.A.; Filho, V.C.; Monache, F.D. Three new triterpenes from the resinous bark of Protium kleinii and their antinociceptive activity. J. Braz. Chem. Soc. 2005, 16, 578–582. [Google Scholar] [CrossRef]
- Rao, V.S.; Maia, J.L.; Oliveira, F.A.; Lemos, T.L.G.; Chaves, M.H.; Santos, F.A. Composition and antinociceptive activity of the essential oil from Protium heptaphyllum resin. Nat. Prod. Commun. 2007, 2, 1199–1202. [Google Scholar]
- Siani, A.C.; Ramos, M.F.S.; da Monteiro, S.S.; Ribeiro-dos-Santos, R.; Soares, R.O.A. Essential oils of the oleoresins from Protium heptaphyllum growing in the Brazilian southeastern and their cytotoxicity to neoplastic cell lines. J. Essent. Oil Bear. Plants 2011, 14, 373–378. [Google Scholar] [CrossRef]
- Oliveira, F.A.; Vieira-Júnior, G.M.; Chaves, M.H.; Almeida, F.R.C.; Florêncio, M.G.; Lima, R.C.P.; Silva, R.M.; Santos, F.A.; Rao, V.S.N. Gastroprotective and anti-inflammatory effects of resin from Protium heptaphyllum in mice and rats. Pharmacol. Res. 2004, 49, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Araujo, D.A.O.V.; Takayama, C.; De-Faria, F.M.; Socca, E.A.R.; Dunder, R.J.; Manzo, L.P.; Luiz-Ferreira, A.; Souza-Brito, A.R.M. Gastroprotective effects of essential oil from Protium heptaphyllum on experimental gastric ulcer models in rats. Braz. J. Pharmacogn. 2011, 21, 721–729. [Google Scholar] [CrossRef]
- Milliken, W.; Albert, B. The use of medicinal plants by the Yanomami Indians of Brazil, Part II. Econ. Bot. 1997, 51, 264–278. [Google Scholar] [CrossRef]
- Siani, A.C.; Nakamura, M.J.; Tappin, M.R.R.; Monteiro, S.S.; Guimarães, A.C.; Ramos, M.F.S. Chemical composition of South American Burseraceae non-volatile oleoresins and preliminary solubility assessment of their commercial blend. Phytochem. Anal. 2012, 23, 529–539. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, E.R.; de Oliveira, D.R.; de Melo, M.F.F.; Bizzo, H.R.; Leitão, S.G. Report on the Malungo expedition to the Erepecuru river, Oriximiná, Brazil. Part I: Is there a difference between black and white breu? Rev. Bras. Farmacogn. 2016, 26, 647–656. [Google Scholar] [CrossRef]
- Pontes, W.J.T.; de Oliveira, J.C.S.; da Camara, C.A.G.; Lopes, A.C.H.R.; Júnior, M.G.C.G.; de Oliveira, J.V.; Schwartz, M.O.E. Composition and acaricidal activity of the resin’s essential oil of Protium bahianum Daly against two spotted spider mite (Tetranychus urticae). J. Essent. Oil Res. 2007, 19, 379–383. [Google Scholar] [CrossRef]
- De Carvalho, L.E.; da Pinto, D.S.; Magalhães, L.A.M.; da Lima, M.P.; Marques, M.O.M.; Facanali, R. Chemical constituents of essential oil of Protium decandrum (Burseraceae) from western Amazon. J. Essent. Oil Bear. Plants 2010, 13, 181–184. [Google Scholar] [CrossRef]
- Bandeira, P.N.; Fonseca, A.M.; Costa, S.M.O.; Lins, M.U.D.S.; Pessoa, O.D.L.; Monte, F.J.Q.; Nogueira, N.A.P.; Lemos, T.L.G. Antimicrobial and antioxidant activities of the essential oil of resin of Protium heptaphyllum. Nat. Prod. Commun. 2006, 1, 117–120. [Google Scholar]
- De Lima, E.M.; Cazelli, D.S.P.; Pinto, F.E.; Mazuco, R.A.; Kalil, I.C.; Lenz, D.; Scherer, R.; de Andrade, T.U.; Endringer, D.C. Essential oil from the resin of Protium heptaphyllum: Chemical composition, cytotoxicity, antimicrobial activity, and antimutagenicity. Pharmacogn. Mag. 2016, 12, S42–S46. [Google Scholar] [PubMed]
- Albino, R.C.; Oliveira, P.C.; Prosdocimi, F.; da Silva, O.F.; Bizzo, H.R.; Gama, P.E.; Sakuragui, M.; Furtado, C.; de Oliveira, D.R. Oxidation of monoterpenes in Protium heptaphyllum oleoresins. Phytochemistry 2017, 136, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Pinto, F.E.; Heringer, O.A.; Silva, M.A.; Uggere, T.; Ribeiro, J.S.; Lenz, D.; Campos, F.; Lessa, R.; Endringer, D.C. Stability and disinfecting proprieties of the toothbrush rinse of the essential oil of Protium heptaphyllum. Afr. J. Pharm. Pharmacol. 2015, 9, 173–181. [Google Scholar]
- Mobin, M.; de Lima, S.G.; Almeida, L.T.G.; Silva Filho, J.C.; Rocha, M.S.; Oliveira, A.P.; Mendes, M.B.; Carvalho, F.A.A.; Melhem, M.S.C.; Costa, J.G.M. Gas chromatography-triple quadrupole mass spectrometry analysis and vasorelaxant effect of essential oil from Protium heptaphyllum (Aubl.) March. BioMed Res. Int. 2017, 2017, 1928171. [Google Scholar] [CrossRef]
- Siani, A.C.; Ramos, M.F.S.; Guimarães, A.C.; Susunaga, G.S.; Zoghbi, M.G.B. Volatile constituents from oleoresin of Protium heptaphyllum (Aubl.) March. J. Essent. Oil Res. 1999, 11, 72–74. [Google Scholar] [CrossRef]
- Bandeira, P.N.; Machado, M.I.L.; Cavalcanti, F.S.; Lemos, T.L.G. Essential oil composition of leaves, fruits and resin of Protium heptaphyllum (Aubl.) March. J. Essent. Oil Res. 2001, 13, 33–34. [Google Scholar] [CrossRef]
- Da Silva, E.R.; Oliveira, D.R.; Leitão, S.G.; Assis, I.M.; Veiga-Junior, V.F.; Lourenço, M.C.; Alviano, D.S.; Alviano, C.S.; Bizzo, H.R. Essential oils of Protium spp. samples from Amazonian popular markets: Chemical composition, physicochemical parameters and antimicrobial activity. J. Essent. Oil Res. 2013, 25, 171–178. [Google Scholar] [CrossRef]
- Marques, D.D.; Sartori, R.A.; Lemos, T.L.G.; Machado, L.L.; de Souza, J.S.N.; Monte, F.J.Q. Chemical composition of the essential oils from two subspecies of Protium heptaphyllum. Acta Amazon. 2010, 40, 227–230. [Google Scholar] [CrossRef]
- Siani, A.C.; Garrido, I.S.; Monteiro, S.S.; Carvalho, E.S.; Ramos, M.F.S. Protium icicariba as a source of volatile essences. Biochem. Syst. Ecol. 2004, 32, 477–489. [Google Scholar] [CrossRef]
- Suárez, A.I.; Compagnone, R.S.; Acosta, D.; Vásquez, L.; Diaz, B.; Canelón, D.J. Chemical composition and antimicrobial activity of the essential oil from oleoresin of Protium neglectum S. J. Essent. Oil Bear. Plants 2007, 10, 70–75. [Google Scholar] [CrossRef]
- Satyal, P.; Setzer, W.N. Chemical composition of Cryptomeria japonica leaf oil from Nepal. Am. J. Essent. Oils Nat. Prod. 2015, 3, 7–10. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing: Carol Stream, IL, USA, 2007. [Google Scholar]
- Surapuram, V.; Setzer, W.N.; McFeeters, R.L.; McFeeters, H. Antifungal activity of plant extracts against Aspergillus niger and Rhizopus stolonifer. Nat. Prod. Commun. 2014, 9, 1603–1605. [Google Scholar] [PubMed]
- Satyal, P.; Murray, B.L.; McFeeters, R.L.; Setzer, W.N. Essential oil characterization of Thymus vulgaris from various geographical locations. Foods 2016, 5, 70. [Google Scholar] [CrossRef] [PubMed]
- Hausen, B.M.; Reichling, J.; Harkenthal, M. Degradation products of monoterpenes are the sensitizing agents in tea tree oil. Am. J. Contact Dermat. 1999, 10, 68–77. [Google Scholar] [CrossRef]
- Sawamura, M.; Son, U.-S.; Choi, H.-S.; Kim, M.-S.L.; Phi, N.T.L.; Fears, M.; Kumagai, C. Compositional changes in commercial lemon essential oil for aromatherapy. Int. J. Aromather. 2004, 14, 27–63. [Google Scholar] [CrossRef]
- Turek, C.; Stintzing, F.C. Impact of different storage conditions on the quality of selected essential oils. Food Res. Int. 2012, 46, 341–353. [Google Scholar] [CrossRef]
- Holm, Y.; Vuorela, P.; Hiltunen, R. Enantiomeric composition of monoterpene hydrocarbons in n-hexane extracts of Angelica archangelica L. roots and seeds. Flavour Fragr. J. 1997, 12, 397–400. [Google Scholar] [CrossRef]
- Sjödin, K.; Persson, M.; Borg-Karlson, A.-K.; Norin, T. Enantiomeric compositions of monoterpene hydrocarbons in different tissues of four individuals of Pinus sylvestris. Phytochemistry 1996, 41, 439–445. [Google Scholar] [CrossRef]
- Mosandl, A.; Hener, U.; Kreis, P.; Schmarr, H.-G. Enantiomeric distribution of α-pinene, β-pinene and limonene in essential oils and extracts. Part 1. Rutaceae and Gramineae. Flavour Fragr. J. 1990, 5, 193–199. [Google Scholar] [CrossRef]
- Dugo, G.; d’Alcontres, I.S.; Donato, M.G.; Dugo, P. On the genuineness of citrus essential oils. Part XXXVI. Detection of added reconstituted lemon oil in genuine cold-pressed lemon essential oil by high resolution gas chromatography with chiral capillary columns. J. Essent. Oil Res. 1993, 5, 21–26. [Google Scholar] [CrossRef]
- Eleni, M.; Antonios, M.; George, K.; Alexios-Leandros, S.; Prokopios, M. High quality bergamot oil from Greece: Chemical analysis using chiral gas chromatography and larvicidal activity against the West Nile virus vector. Molecules 2009, 14, 839–849. [Google Scholar] [CrossRef] [PubMed]
- Sciarrone, D.; Schipilliti, L.; Ragonese, C.; Tranchida, P.Q.; Dugo, P.; Dugo, G.; Mondello, L. Thorough evaluation of the validity of conventional enantio-gas chromatography in the analysis of volatile chiral compounds in mandarin essential oil: A comparative investigation with multidimensional gas chromatography. J. Chromatogr. A 2010, 1217, 1101–1105. [Google Scholar] [CrossRef] [PubMed]
- Delort, E.; Jaquier, A.; Decorzant, E.; Chapuis, C.; Casilli, A.; Frérot, E. Comparative analysis of three Australian finger lime (Citrus australasica) cultivars: Identification of unique citrus chemotypes and new volatile molecules. Phytochemistry 2015, 109, 111–124. [Google Scholar] [CrossRef] [PubMed]
- Ravid, U.; Putievsky, E.; Katzir, I. Determination of the enantiomeric composition of α-terpineol in essential oils. Flavour Fragr. J. 1995, 10, 281–284. [Google Scholar] [CrossRef]
- Tsokou, A.; Georgopoulou, K.; Melliou, E.; Magiatis, P.; Tsitsa, E. Composition and enantiomeric analysis of the essential oil of the fruits and the leaves of Pistacia vera from Greece. Molecules 2007, 12, 1233–1239. [Google Scholar] [CrossRef] [PubMed]
- Basar, S.; Koch, A.; König, W.A. A verticillane-type diterpene from Boswellia carterii essential oil. Flavour Fragr. J. 2001, 16, 315–318. [Google Scholar] [CrossRef]
- Woolley, C.L.; Suhail, M.M.; Smith, B.L.; Boren, K.E.; Taylor, L.C.; Schreuder, M.F.; Chai, J.K.; Casabianca, H.; Haq, S.; Lin, H.K.; et al. Chemical differentiation of Boswellia sacra and Boswellia carterii essential oils by gas chromatography and chiral gas chromatography-mass spectrometry. J. Chromatogr. A 2012, 1261, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Cavaleiro, C.; Pinto, E.; Gonçalves, M.J.; Salgueiro, L. Antifungal activity of Juniperus essential oils against dermatophyte, Aspergillus and Candida strains. J. Appl. Microbiol. 2006, 100, 1333–1338. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J.M.; Noletto, J.A.; Vogler, B.; Setzer, W.N. Abaco bush medicine: Chemical composition of the essential oils of four aromatic medicinal plants from Abaco Island, Bahamas. J. Herbs Spices Med. Plants 2006, 12, 43–65. [Google Scholar] [CrossRef]
- Marei, G.I.K.; Rasoul, M.A.A.; Abdelgaleil, S.A.M. Comparative antifungal activities and biochemical effects of monoterpenes on plant pathogenic fungi. Pestic. Biochem. Physiol. 2012, 103, 56–61. [Google Scholar] [CrossRef]
- Hammer, K.A.; Carson, C.F.; Riley, T.V. Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil. J. Appl. Microbiol. 2003, 95, 853–860. [Google Scholar] [CrossRef] [PubMed]
- Jing, L.; Lei, Z.; Li, L.; Xie, R.; Xi, W.; Guan, Y.; Sumner, L.W.; Zhou, Z. Antifungal activity of Citrus essential oils. J. Agric. Food Chem. 2014, 62, 3011–3033. [Google Scholar] [CrossRef] [PubMed]
- Kusumoto, N.; Zhao, T.; Swedjemark, G.; Ashitani, T.; Takahashi, K.; Borg-Karlson, A.-K. Antifungal properties of terpenoids in Picea abies against Heterobasidion parviporum. For. Pathol. 2014, 44, 353–361. [Google Scholar] [CrossRef]
- Filipowicz, N.; Kaminski, M.; Kurlenda, J.; Asztemborska, M.; Ochocka, J.R. Antibacterial and antifungal activity of juniper berry oil and its selected components. Phytother. Res. 2003, 17, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Omran, S.M.; Moodi, M.A.; Amiri, S.M.B.N.A.; Mosavi, S.J.; Saeed, S.A.M.G.M.; Shiade, S.M.J.; Kheradi, E.; Salehi, M. The effects of limonene and orange peel extracts on some spoilage fungi. Int. J. Mol. Clin. Microbiol. 2011, 1, 82–86. [Google Scholar]
Species | Traditional Medicinal Uses and/or Biological Activities | Major Components | Ref. |
---|---|---|---|
P. altsonii (sucuruba) | p-cymene (16.3%), γ-cadinene (9.5%), γ-gurjunene (5.2%) | [15] | |
P. bahianum | Treatment of wounds, ulcers, inflammation, and as an insect repellent | Fresh resin: p-cymene (18.3%), α-phellandrene (14.0%), tricyclene (11.4%), β-phellandrene (9.1%), β-pinene (6.6%) | [16] |
P. bahianum | Acaricidal activity (Tetranychus urticae) | Aged resin: (E)-β-santalol acetate (83.1%) | [16] |
P. decandrum | α-trans-bergamotene (47.7%), α-cis-bergamotene (6.5%), β-caryophyllene (5.9%), ar-curcumene (5.2%) | [17] | |
P. decandrum (black breu) | δ-3-carene + iso-sylvestrene (40.9%), p-cymene (13.4%), limonene + β-phellandrene (20.3%) | [15] | |
P. decandrum (white breu) | Burning and inhaling smoke to treat headache | p-cymene (32.4%), α-phellandrene (21.0%), α-pinene (19.0%), limonene + β-phellandrene (12.0%) | [15] |
P. heptaphyllum | Antimicrobial (Candida albicans, MIC = 1.25 μg/mL; Staphylococcus aureus, MIC = 2.5 μg/mL) | α-pinene (10.5%), α-phellandrene (16.7%), p-cymene (6.0%), limonene (16.9%), terpinolene (28.5%) | [18] |
P. heptaphyllum | Antinociceptive (mouse model) | 1,8-cineole (58.7%), α-terpinene (13.7%), α-phellandrene (10.4%), γ-terpineol (7.7%) | [9] |
P. heptaphyllum | Anti-inflammatory (rat model) | limonene (50.0%), (E)-β-ocimene (11.8%), 1,8-cineole (10.9%), p-cymene (10.8%), α-phellandrene (10.0%) | [7] |
P. heptaphyllum | Anti-genotoxic activity | terpinolene (32.7–37.8%), p-cymene (7.9–38.1%), limonene (0–2%), δ-3-carene (0–15.0%), α-thujene (0–1.1%), p-cymen-8-ol (2.5–10.1%) | [19] |
P. heptaphyllum | Fresh resin: terpinolene (28.2–69.7%), p-cymene (4.3–23.3%), α-pinene (3.6–14.6%), α-terpinene (3.1–10.4%), limonene (6.4–10.1%), p-cymen-8-ol (2.7–9.8%) | [20] | |
P. heptaphyllum | Aged resin: p-cymene (18.7–43.0%), terpinolene (8.8–21.6%), α-pinene (3.5–17.8%), α-limonene (5.8–1.6%), p-cymen-8-ol (8.2–31.8%) | [20] | |
P. heptaphyllum | Fresh resin: myrcene (35.0%), α-pinene (27.0%), sabinene (11.0%), β-caryophyllene (7.2%) | [10] | |
P. heptaphyllum | Cytotoxic on SP2/0 (murine plasmocytoma) and J774 (murine monocytic macrophage) cell lines | Freshly tapped resin: terpinolene (28.0%), p-cymene (16.0%), α-pinene (8.7%), α-terpinene (6.6%), limonene (5.5%), p-cymen-8-ol (5.6%) | [10] |
P. heptaphyllum | Antibacterial (Streptococcus mutans, MIC 0.13 μg/mL) | tricyclene (11.1%), p-cymene (26.7%), terpinolene (35.8%), p-cymen-8-ol (10.1%) | [21] |
P. heptaphyllum | Vasorelaxant (rat upper mesenteric artery ring, IC50 316 μg/mL) | δ-3-carene (5.1%), p-cymene (17.0%), limonene (34.5%), 1,8-cineole (20.6%), α-terpineol (9.8%) | [22] |
P. heptaphyllum | α-phellandrene (7.0%), p-cymene (26.9%), limonene (28.9%), α-terpineol (18.4%) | [22] | |
P. heptaphyllum | Fresh resin: α-terpinene (18.0%), p-cymene (36.0%), γ-terpinene (12.0%) | [23] | |
P. heptaphyllum | Aged resin: p-cymene (11.0%), terpinolene (15.0%), p-cymenene (5.3%), p-cymen-8-ol (11.0%), dillapiole (16.0%) | [23] | |
P. heptaphyllum | Fresh resin: α-pinene (10.5%), α-phellandrene (16.7%), p-cymene (6.0%), limonene (16.9%), terpinolene (28.5%) | [24] | |
P. heptaphyllum (black breu) | Treatment of headaches (inhalation); treat pain and inflammation (plasters) | [25] | |
P. heptaphyllum (black breu) | δ-3-carene + iso-sylvestrene (79.5%) | [15] | |
P. heptaphyllum (black breu) | δ-3-carene + iso-sylvestrene (56.4%), p-cymene (14.0%), limonene + β-phellandrene (6.8%) | [15] | |
P. heptaphyllum (black breu) | p-cymene (33.0%), δ-3-carene + iso-sylvestrene (14.7%) | [15] | |
P. heptaphyllum (breuzinho) | δ-3-carene + iso-sylvestrene (69.0%), p-cymene (6.4%), limonene + β-phellandrene (5.7%) | [15] | |
P. heptaphyllum subsp. heptaphyllum | p-cymene (39.9%), n-tetradecane (13.4%), dihydro-4-carene (11.7%), α-phellandrene (7.4%) | [26] | |
P. heptaphyllum subsp. ulei | terpinolene (42.3%), p-cymen-8-ol (13.6%), limonene (11.9%) | [26] | |
P. icicariba | α-pinene (5.6–7.7%), p-cymene (20–40%), limonene (5.8–8.0%), α-terpinolene (5.8–31%), p-cymen-8-ol (10–26%) | [27] | |
P. neglectum | Traditional remedy for inflammations, as an inhalant to clear respiratory and bronchial passages, wound healing. Antibacterial, disk diffusion assay (Bacillus subtilis, Staphylococcus aureus) | Fresh resin: p-cymene (5.2%), durenol (15.6%), α-terpineol (6.9%), piperitenone (25.4%), thymol (17.5%), methyl eugenol (9.2%) | [28] |
P. occultum (white breu) | burning and inhaling smoke to treat headache | p-cymene (10.4%), limonene + β-phellandrene (41.1%), α-terpineol (30.9%), α-pinene (8.0%) | [15] |
P. cf. opacum (surucuba) | p-cymene (6.6%), α-neo-clovene (5.3%), α-neo-callitropsene (7.3%), γ-cadinene (14.4%) | [15] | |
P. strumosum (white breu) | burning and inhaling smoke to treat headahce | α-pinene (57.7%), β-pinene (9.3%), p-cymene (9.2%), limonene + β-phellandrene (10.8%) | [15] |
RIcalc | RIlit | Compound | % |
---|---|---|---|
779 | 780 | Toluene | 0.2 |
925 | 930 | α-Thujene | 0.7 |
932 | 939 | α-Pinene | 4.0 |
947 | 952 | α-Fenchene | 0.2 |
949 | 954 | Camphene | 0.1 |
970 | 972 | 3,7,7-Trimethyl-1,3,5-cycloheptatriene | 1.4 |
972 | 975 | Sabinene | 0.1 |
977 | 979 | β-Pinene | 1.0 |
1000 | 1002 | δ-2-Carene | 0.1 |
1007 | 1002 | α-Phellandrene | 0.5 |
1010 | 1011 | δ-3-Carene | 47.9 |
1017 | 1017 | α-Terpinene | 0.4 |
1019 | 1026 | o-Cymene | 0.3 |
1024 | 1024 | p-Cymene | 4.1 |
1029 | 1029 | Limonene | 5.1 |
1030 | 1029 | β-Phellandrene | 0.4 |
1032 | 1031 | 1,8-Cineole | 0.7 |
1057 | 1059 | γ-Terpinene | 0.5 |
1072 | 1072 | Pinol | 0.2 |
1080 | 1085 | m-Cymenene | 1.8 |
1085 | 1088 | Terpinolene | 0.7 |
1090 | 1091 | p-Cymenene | 3.2 |
1095 | 1099 | α-Pinene oxide | 0.1 |
1141 | 1139 | trans-Pinocarveol | 0.1 |
1142 | --- | 2-Isobutylnorbornane | 0.7 |
1147 | 1146 | Camphor | 0.3 |
1149 | 1147 | trans-Dihydro-α-terpineol | 0.5 |
1153 | 1150 | Eucarvone | 0.3 |
1162 | 1170 | α-Phellandren-8-ol | 1.9 |
1170 | 1160 | iso-Borneol | 0.3 |
1171 | --- | β-Phellandren-8-ol | 0.9 |
1174 | 1169 | Borneol | 0.6 |
1180 | 1179 | m-Cymen-8-ol | 4.8 |
1183 | --- | p-Isobutyltoluene | 0.3 |
1184 | 1182 | p-Methylacetophenone | 0.1 |
1186 | 1182 | p-Cymen-8-ol | 1.7 |
1188 | --- | (Z)-β-Ocimenol | 0.2 |
1195 | 1188 | α-Terpineol | 5.5 |
1207 | 1205 | Verbenone | 0.2 |
1210 | 1217 | 4-Methyleneisophorone | 3.0 |
1220 | --- | 2-Carone | 0.9 |
1240 | 1238 | (E)-Ocimenone | 0.2 |
1242 | 1241 | Cuminal | 0.1 |
1243 | 1243 | Carvone | 0.2 |
1246 | 1248 | Car-3-en-2-one | 0.4 |
1248 | 1247 | Carvotanacetone | 0.2 |
1253 | 1252 | Piperitone | 0.1 |
1264 | 1268 | 3,5-Dimethoxytoluene | 0.2 |
1277 | 1275 | Phellandranal | 0.3 |
1290 | 1290 | Thymol | 0.2 |
1296 | 1299 | Carvacrol | 0.3 |
1419 | 1419 | β-Caryophyllene | 0.1 |
1433 | 1434 | α-trans-Bergamotene | 0.9 |
1581 | 1583 | Caryophyllene oxide | 0.2 |
Total identified | 99.6% |
Compounds | Relative % | ee (%) | ed [(+) to (−)] (%) |
---|---|---|---|
α-Thujene | 0.7 | 45.6 | 27.2 to 72.8 |
α-Pinene | 4.0 | 41.8 | 29.1 to 70.9 |
β-Pinene | 1.0 | 45.6 | 27.2 to 72.8 |
δ-3-Carene | 47.9 | 100 | 0 to 100 |
Limonene | 5.1 | 68.0 | 84.0 to 16.0 |
α-Terpineol | 5.5 | 79.6 | 89.8 to 10.2 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Satyal, P.; Powers, C.N.; Parducci V., R.; McFeeters, R.L.; Setzer, W.N. Chemical Composition, Enantiomeric Distribution, and Antifungal Activity of the Oleoresin Essential Oil of Protium amazonicum from Ecuador. Medicines 2017, 4, 70. https://doi.org/10.3390/medicines4040070
Satyal P, Powers CN, Parducci V. R, McFeeters RL, Setzer WN. Chemical Composition, Enantiomeric Distribution, and Antifungal Activity of the Oleoresin Essential Oil of Protium amazonicum from Ecuador. Medicines. 2017; 4(4):70. https://doi.org/10.3390/medicines4040070
Chicago/Turabian StyleSatyal, Prabodh, Chelsea N. Powers, Rafael Parducci V., Robert L. McFeeters, and William N. Setzer. 2017. "Chemical Composition, Enantiomeric Distribution, and Antifungal Activity of the Oleoresin Essential Oil of Protium amazonicum from Ecuador" Medicines 4, no. 4: 70. https://doi.org/10.3390/medicines4040070
APA StyleSatyal, P., Powers, C. N., Parducci V., R., McFeeters, R. L., & Setzer, W. N. (2017). Chemical Composition, Enantiomeric Distribution, and Antifungal Activity of the Oleoresin Essential Oil of Protium amazonicum from Ecuador. Medicines, 4(4), 70. https://doi.org/10.3390/medicines4040070