Antioxidant and Antimicrobial Properties of Rosemary (Rosmarinus officinalis, L.): A Review
Abstract
:1. Introduction
2. Preparation of Antioxidants from Rosemary
3. Composition of Rosemary Extract and Essential Oil
4. Mechanism of Antioxidant Action
5. Mechanism of Antimicrobial Action and Food Applications
6. Synergistic Effect
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nieto, G.; Huvaere, K.; Skibsted, L.H. Antioxidant activity of rosemary and thyme by-products and synergism with added antioxidant in a liposome system. Eur. Food Res. Technol. 2011, 233, 11–18. [Google Scholar] [CrossRef]
- Del baño, M.J.; Lorente, J.; Castillo, J.; Benavente-Garcia, O.; Marín, P.; Del Río, J.A.; Ortuó, A.; Ibarra, I. Flavoid distribution during the development of leaves flowers, stems and roots of Rosmarinus officinalis postulation of the Biosynthetic pathway. J. Agric. Food Chem. 2004, 52, 4987–4992. [Google Scholar] [CrossRef] [PubMed]
- Reblova, Z.; Kudrnova, J.; Trojakova, L.; Pokorny, J. Effect of rosemary extracts on the stabilization of frying oil during deep fat frying. J. Food Lipids 1999, 6, 13–23. [Google Scholar] [CrossRef]
- Botsoglou, N.A.; Christaki, E.; Fletouris, D.J.; Florou-Paneri, P.; Spais, A.B. The effect of dietary oregano essential oil on lipid oxidation in raw and cooked chicken during refrigerated storage. Meat Sci. 2002, 62, 259–265. [Google Scholar] [CrossRef]
- Cuvelier, M.E.; Richard, H.; Berset, C. Antioxidative activity and phenolic composition of pilot-plant and commercial extracts of sage and rosemary. J. Am. Oil Chem. Soc. 1996, 73, 645–652. [Google Scholar] [CrossRef]
- Rašković, A.; Milanović, I.; Pavlović, N.; Ćebović, T.; Vukmirović, S.; Mikov, M. Antioxidant activity of rosemary (Rosmarinus officinalis L.) essential oil and its hepatoprotective potential. BMC Complement. Altern. Med. 2014, 14, 225. [Google Scholar] [CrossRef] [PubMed]
- Habtemariam, S. The therapeutic potential of rosemary (Rosmarinus officinalis) diterpenes for Alzheimer’s disease. Evid. Based Complement. Altern. Med. 2016, 2016, 2680409. [Google Scholar] [CrossRef] [PubMed]
- Kayashima, T.; Matsubara, K. Antiangiogenic effect of carnosic acid and carnosol, neuroprotective compounds in rosemary leaves. Biosci. Biotechnol. Biochem. 2012, 76, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Djenane, D.; Sánchez-Escalante, A.; Beltrán, J.A.; Roncalés, P. Ability of α-tocopherol, taurine and rosemary, in combination with vitamin C, to increase the oxidative stability of beef steaks displayed in modified atmosphere. Food Chem. 2002, 76, 407–415. [Google Scholar] [CrossRef]
- Nieto, G.; Díaz, P.; Bañón, S.; Garrido, M.D. Dietary administration of ewe diets with a distillate from rosemary leaves (Rosmarinus officinalis L.): Influence on lamb meat quality. Meat Sci. 2010, 84, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Nieto, G.; Bañon, S.; Garrido, M.D. Incorporation of thyme leaves in the diet of pregnant and lactating ewes: Effect on the fatty acid profile of lamb. Small Rumin. Res. 2012, 105, 140–147. [Google Scholar] [CrossRef]
- Nieto, G.; Estrada, M.; Jordán, M.J.; Garrido, M.D.; Bañon, S. Effects in ewe diet of rosemary by-product on lipid oxidation and the eating of cooked lamb under retail display conditions. Food Chem. 2011, 124, 1423–1429. [Google Scholar] [CrossRef]
- Nieto, G.; Bañon, S.; Garrido, M.D. Administration of distillate Thyme leaves into the diet of Segureña ewes: Effect on lamb meat quality. Animal 2012, 6, 2048–2056. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, F.; Autrup, H.; Barlow, S.; Castle, L.; Crebelli, R.; Dekant, W.; Engel, K.H.; Gontard, N.; Gott, D.; Grilli, S.; et al. Use of rosemary extracts as a food additive–scientific opinion of the panel on food additives, flavourings, processing aids and materials in contact with food. EFSA J. 2008, 721, 1–29. [Google Scholar]
- Chang, S.S.; Ostric-Matijasevic, B.; Hosieh, O.A.L.; Huang, C.L. Natural antioxidants from rosemary and sage. J. Food Sci. 1977, 42, 1102–1106. [Google Scholar] [CrossRef]
- Bracco, U.; Loliger, J.; Viret, J.-L. Production and use of natural antioxidants. J. Am. Oil Chem. Soc. 1981, 58, 686–690. [Google Scholar] [CrossRef]
- Zegura, B.; Dobnik, D.; Niderl, M.H.; Filipi, M. Antioxidant and antigenotoxic effects of rosemary (Rosmarinus officinalis L.) extracts in Salmonella Typhimurium TA98 and HepG2 cells. Environ. Toxicol. Pharmacol. 2011, 32, 296–305. [Google Scholar] [CrossRef] [PubMed]
- Visentin, A.; Rodríguez-Rojo, S.; Navarrete, A.; Maestri, D.; Cocero, M.J. Precipitation and encapsulation of rosemary antioxidants by supercritical antisolvent process. J. Food Eng. 2012, 109, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, K.; El Omri, A.; Kondo, S.; Han, J.; Isoda, H. Rosmarinus officinalis polyphenols produce anti-depressant like effect through monoaminergic and cholinergic functions modulation. Behav. Brain Res. 2013, 238, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Kontogianni, V.G.; Tomic, G.; Nikolic, I.; Nerantzaki, A.; Sayyad, A.; Stosic-Grujicic, N.; Stojanovic, S.; Gerothanassis, I.P.; Tzakos, A.G. Phytochemical profile of Rosmarinus officinalis and Salvia officinalis extracts and correlation to their antioxidant and anti-proliferative activity. Food Chem. 2013, 136, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Tai, J.; Cheung, S.; Wu, M.; Hasman, D. Antiproliferation effect of Rosemary (Rosmarinus officinalis) on human ovarian cancer cells in vitro. Phytomedicine 2012, 19, 436–443. [Google Scholar] [CrossRef] [PubMed]
- Hölihan, C.M.; Ho, C.T.; Chang, S.S. Elucidation of the chemical structure of a novel antioxidant, rosmaridiphenol, isolated from rosemary. J. Am. Oil Chem. Soc. 1984, 61, 1036–1039. [Google Scholar] [CrossRef]
- Bozin, B.; Mimica-Dukic, N.; Samojlik, I.; Jovin, E. Antimicrobial and Antioxidant properties of Rosemary and Sage (Rosmarinus officinalis L. and Salvia officinalis L., Laminaceae) essential oils. J. Agric. Food Chem. 2007, 55, 7879–7885. [Google Scholar] [CrossRef] [PubMed]
- Sienkiewicz, M.; Lysakowska, M.; Pastuszka, M.; Bienias, W.; Kowalczyk, E. The potential of use Basil and Rosemary essential oils as effective antibacterial agents. Molecules 2013, 18, 9334–9351. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Wu, N.; Fu, Y.-J.; Wang, W.; Luo, M.; Zhao, C.J.; Zu, Y.G.; Liu, X.L. Chemical composition and antimicrobial activity of the essential oil of Rosemary. Environ. Toxicol. Pharmacol. 2011, 32, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Bendeddouche, M.S.; Benhassaini, H.; Hazem, Z.; Romane, A. Essential oil analysis and antibacterial activity of Rosmarinus tournefortii from Algeria. Nat. Prod. Commun. 2011, 6, 1511–1514. [Google Scholar] [PubMed]
- Gao, M.; Feng, L.; Jiang, T.; Zhu, J.; Fu, L.; Yuan, D.; Li, J. The use of rosemary extract in combination with nisin to extend the shelf life of pompano (Trachinotus ovatus) fillet during chilled storage. Food Control 2014, 37, 1–8. [Google Scholar] [CrossRef]
- Olmedo, R.H.; Nepote, V.; Grosso, N.R. Preservation of sensory and chemical properties in flavoured cheese prepared with cream cheese base using oregano and rosemary essential oils. LWT-Food Sci. Technol. 2013, 53, 409–417. [Google Scholar] [CrossRef]
- Lo Presti, M.; Ragusa, S.; Trozzi, A.; Dugo, P.; Visinoni, F.; Fazio, A.; Dugo, G.; Mondello, L. A comparison between different techniques for the isolation of rosemary essential oil. J. Sep. Sci. 2005, 28, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Arranz, E.; Jaime, L.; García-Risco, M.R.; Fornari, T.; Reglero, G.; Santoyo, S. Anti-inflammatory activity of rosemary extracts obtained by supercritical carbon dioxide enriched in carnosic acid and carnosol. Int. J. Food Sci. Technol. 2015, 50, 674–681. [Google Scholar] [CrossRef]
- Kültür, S. Medicinal plants used in Kirklareli Province (Turkey). J. Endocrinol. 2007, 111, 341–364. [Google Scholar] [CrossRef] [PubMed]
- Arraz, E.; Mes, J.; Wichers, H.J.; Jaime JL Mendiola, A.; Reglero, R.; Santoyo, S. Anti-inflammatory activity of the basolateral fraction of Caco-2 cells exposed to a rosemary supercritical extract. J. Funct. Foods 2013, 13, 384–390. [Google Scholar] [CrossRef]
- Bakiral, T.; Bakirel, U.; Keles, O.U.; Ulgen, S.G.; Yardibi, H. In vivo assessment of antidiabetic and antioxidant activities of rosemary (Rosmarinus officinalis) in alloxan-diabetic rabbits. J. Ethnopharmacol. 2008, 116, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Al-Attar, A.; Shawush, N.A. Influence of olive and rosemary leaves extracts on chemically induced liver cirrhosis in male rats. Saudi J. Biol. Sci. 2015, 22, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Laham, S.A.A.; Fadel, F.M. Antibacterial efficacy of variety plants against the resistant streptococcus which cause clinical mastitis cows. AJPRHC 2013, 5, 32–41. [Google Scholar]
- Hölihan, C.M.; Ho, C.T.; Chang, S.S. The structure of rosmariquinone—A new antioxidant isolated from Rosmarinus officinalis L. J. Am. Oil Chem. Soc. 1985, 61, 1036–1039. [Google Scholar] [CrossRef]
- Wu, J.W.; Lee, M.-H.; Ho, C.-T.; Chan, S.S. Elucidation of the chemical structures of natural antioxidants isolated from rosemary. J. Am. Oil Chem. Soc. 1982, 59, 339–345. [Google Scholar] [CrossRef]
- Gordon, M.H. The mechanism of antioxidant action in vitro. In Food Antioxidants; Hudson, B.J.F., Ed.; Elsevier Science Publishing: New York, NY, USA, 1990; pp. 1–18. [Google Scholar]
- Fang, X.; Wada, S. Enhancing the antioxidant effect of α-tocopherol with rosemary in inhibiting catalyzed oxidation caused by Fe2+ and hemoprotein. Food Res. Int. 1993, 26, 405–411. [Google Scholar] [CrossRef]
- Löliger, J. The use of antioxidants in foods. In Free Radicals and Food Additives; Aruoma, O.I., Halliwell, B., Eds.; Taylor & Francis: London, UK, 1991; pp. 121–150. [Google Scholar]
- Chen, C.H.; Pearson, A.M.; Gray, J.I. Effects of synthetic antioxidants (BHA, BHT and PG) on the mutagenicity of IQ-like compounds. Food Chem. 1992, 43, 177–183. [Google Scholar] [CrossRef]
- Aruoma, O.I. Antioxidant actions of plant foods, use of oxidative DNA damage as a tool for studying antioxidant efficacy. Free Radic. Res. 1999, 30, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Inatani, R.; Nakatani, N.; Fuwa, H. Antioxidative effect of the constituents of Rosemary (Rosmarinus officinalis L.) and their derivatives. Agric. Biol. Chem. 1983, 47, 521–528. [Google Scholar] [CrossRef]
- Aruoma, O.I.; Halliwell, B.; Aeschbach, R.; Lolingers, J. Antioxidant and pro-oxidant properties of active rosemary constituents: Carnosol and carnosic acid. Xenobiotica 1992, 22, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Kim, M.O.; Seo, J.H.; Kim, I.S.; Kim, N.Y.; Lee, S.H.; Park, J.; Kim, J.; Lee, H.S. Abietane diterpenoids of Rosmarinus officinalis and their diacylglycerolacyltransferase-inhibitory activity. Food Chem. 2012, 132, 1775–1780. [Google Scholar] [CrossRef]
- Souza, L.C.; de Gomes, M.G.; Goes, A.T.R.; Del Fabbro, L.; Filho, C.B.; Boeira, S.P.; Jesse, C.R. Evidence for the involvement of the serotonergic 5-HT1A receptors in the 2 antidepressant-like effect caused by hesperidin in mice Q13. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2012, 40, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.Y.; Hong, C.O.; Lee, G.P.; Kim, C.T.; Lee, W.W. The hepatoprotectionof caffeic acid and rosmarinic acid, major compounds of Perilla frutescens, against t-BHP-induced oxidative liver damage. Food Chem. Toxicol. 2013, 55, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Munné Bosch, S.; Alegre, L. Subcellular compartmentation of the diterpene carnosic acid and its dervivatives in the leaves of rosemary. Plant Physiol. 2001, 125, 1094–1102. [Google Scholar] [CrossRef] [PubMed]
- Wenkert, E.; Fuchs, A.; McChesney, J. Chemical artifacts from the family Labiatae. J. Org. Chem. 1965, 30, 2932–2934. [Google Scholar] [CrossRef]
- Wijeratne, S.S.; Cuppett, S.L. Potential of rosemary (Rosmaninus officinalis L.) diterpenes in preventing lipid hydroperoxide-mediated oxidative stress in Caco-2 cells. J. Agric. Food Chem. 2007, 55, 1993–1999. [Google Scholar] [CrossRef] [PubMed]
- Palitzsc, A.; Schulte, H.; Metzl, F.; Baas, H. Effect of natural spices, spice extracts, essential oil, extraction residues, and synthetic antioxidants on the descomposition of pork fat and model lipids I. Effect of natural spices and spice extracts on pork fat. Fleischwirtschaft 1969, 49, 1349–1354. [Google Scholar]
- Chipault, J.R.; Mizuno, G.R.; Hawkins, J.M.; Lundberg, W.O. The antioxidant properties of natural spices. Food Res. 1952, 17, 46–55. [Google Scholar] [CrossRef]
- Chipault, J.R.; Mizuno, G.R.; Hawkins, J.M.; Lundberg, W.O. Antioxidant properties of spices in oil-in-water emulsion. Food Res. 1955, 20, 443–448. [Google Scholar] [CrossRef]
- Gerhardt, U.; Böhm, T. Redox behaviour of spices in meat products. Fleischwirtschaft 1980, 60, 1523–1526. [Google Scholar]
- Madsen, H.L.; Andersen, L.; Christiansen, L.; Brockhoff, P.; Bertelsen, G. Antioxidant activity of summer savory (Satureja hortensis. L) and rosemary (Rosmarinus officinalis. L) in minced, cooked pork meat. Z. Lebensm. Unters. Forsch. 1996, 203, 303–338. [Google Scholar] [CrossRef]
- Camo, J.; Beltrán, J.A.; Roncalés, P. Extension of the display life of lamb with an antioxidant active packaging. Meat Sci. 2008, 80, 1086–1091. [Google Scholar] [CrossRef] [PubMed]
- Formanek, Z.; Kerry, J.P.; Buckley, D.J.; Morrissey, P.A.; Farkas, J. Effects of dietary vitamin E supplementation and packaging on the quality of minced beef. Meat Sci. 1998, 50, 203–210. [Google Scholar] [CrossRef]
- Murphy, A.; Kerry, J.P.; Buckley, D.J.; Gray, I. The antioxidative properties of rosemary oleoresin and inhibition of off-flavours in precooked roast beef slices. J. Sci. Food Agric. 1998, 77, 235–243. [Google Scholar] [CrossRef]
- Stoick, S.M.; Gray, J.I.; Booren, A.M.; Buckley, D.J. Oxidative stability of restructured beef steaks processed with oleoresin rosemary, tertiary butylhydroquinone and sodium tripolyphospahte. J. Food Sci. 1991, 56, 597–600. [Google Scholar] [CrossRef]
- Shahidi, F.; Wanasundara, P.; Janhita, P.K. Phenolic antioxidants. Crit. Rev. Food Sci. Nutr. 1992, 32, 67–103. [Google Scholar] [CrossRef] [PubMed]
- Huisman, M.; Madsen, H.L.; Skibsted, L.H.; Bertelsen, G. The combined effect of rosemary (Rosmarinus officinalis, L.) and modified atmosphere packaging as protein against warmed over flavour in cooked minced meat. Z. Lebensm. Unters. Forsch. 1994, 198, 57–59. [Google Scholar] [CrossRef]
- Sánchez-Escalante, A.; Djenane, D.; Torrescano, G.; Beltrán, J.A.; Roncalés, P. The effects of ascorbic acid, taurine, carnosine and rosemary powder on colour and lipid stability of beef patties packaged in modified atmosphere. Meat Sci. 2001, 58, 421–429. [Google Scholar] [CrossRef]
- Formanek, Z.; Lynch, A.; Galván, K.; Farkas, J.; Kerry, J.P. Combined effects of irradiation and the use of natural antioxidants on the shelf-life stability overwrapped minced beef. Meat Sci. 2003, 63, 433–440. [Google Scholar] [CrossRef]
- Frankel, E.N.; Huang, S.W.; Aeschbach, R.; Prior, E. Antioxidant activity of rosemary extract and its constituents, carnosic acid, carnosol, and rosmarinic acid, in bulk oil and oil-in water emulsion. J. Agric. Food Chem. 1996, 44, 131–135. [Google Scholar] [CrossRef]
- López-Bote, C.J.; Gray, J.I.; Gomaa, E.A.; Flegal, C.J. Effect of dietary administration of oil extracts from rosemary and sage on lipid oxidation in broiler meat. Br. Poult. Sci. 1998, 39, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Moñino, M.I.; Martínez, C.; Sotomayor, J.A.; Lafuente, A.; Jordán, M.J. Polyphenolic transmission to segureño lamb meat from ewes dietary supplemented with the distillate from rosemary (Rosmarinus officinalis) leaves. J. Agric. Food Chem. 2008, 56, 3363–3367. [Google Scholar] [CrossRef] [PubMed]
- Descalzo, A.M.; Insani, E.M.; Violatto, A.; Sancho, A.M.; García, P.T.; Pensel, N.A.; Josifovich, J.A. Influence of pasture or grain-based diets supplemented with vitamin E on antioxidant/oxidative balance of Argentine beef. Meat Sci. 2005, 70, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Petron, M.J.; Raes, K.; Claeys, E.; Lourenço, M.; Fremaut, D.; De Smet, S. Effect of grazing pastures of different botanical composition on antioxidant enzyme activities and oxidative stability of lamb meat. Meat Sci. 2007, 75, 737–745. [Google Scholar] [CrossRef] [PubMed]
- Mc Carthy, T.L.; Kerry, J.P.; Kerry, J.F.; Lynch, P.B.; Buckley, D.J. Assessment of the antioxidant potential of natural food and plant extracts in fresh and previously frozen pork patties. Meat Sci. 2001, 57, 177–184. [Google Scholar] [CrossRef]
- Janz, J.A.M.; Morel, P.C.H.; Wilkinson, B.H.P.; Purchas, R.H. Preliminary investigation of the effects of low-level dietary inclusion of fragrant essential oils and oleoresins on pig performance and pork quality. Meat Sci. 2007, 75, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Scanlin, L.; Wilson, J.; Schmidt, G. Rosemary extracts as inhibitors of lipid oxidation and color cahnge in cooked turkey products during refrigerated storage. J. Food Sci. 2002, 67, 582–585. [Google Scholar] [CrossRef]
- Govaris, A.; Florou-Paneri, P.; Botsoglou, E.; Giannenas, I.; Amvrosiadis, I.; Botsoglou, N. The inhibitory potential of feed supplementation with rosemary and/or α-tocopheryl acetate on microbial growth and lipid oxidation of turkey breast during refrigerated storage. LWT-Food Sci. Technol. 2007, 40, 331–337. [Google Scholar] [CrossRef]
- Parpinello, G.P.; Meluzzi, A.; Sirri, F.; Tallarico, N.; Versari, A. Sensory evaluation of egg products and eggs laid from hens fed diets with different fatty acid composition and supplemented with antioxidants. Food Res. Int. 2006, 39, 47–52. [Google Scholar] [CrossRef]
- Florou-Paneri, P.; Dotas, D.; Mitsopoulos, I.; Dotas, V.; Botsoglou, E.; Nikolakakis, I.; Botsoglou, N. Effect of feeding rosemary and α-tocoferol acetate on hen performance and egg quality. J. Poult. Sci. 2006, 43, 143–149. [Google Scholar] [CrossRef]
- Sebranek, J.G.; Sewalt, V.J.H.; Robbins, K.L.; Houser, T.A. Comparison of a natural rosemary extract and BHA/BHT for relative antioxidant effectiveness in pork sausage. Meat Sci. 2005, 69, 289–296. [Google Scholar] [CrossRef] [PubMed]
- O’Grady, M.N.; Maher, M.; Troy, D.J.; Moloney, A.P.; Kerry, J.P. An assessment of dietary supplementation with tea catechins and rosemary extract on the quality of fresh beef. Meat Sci. 2006, 73, 132–143. [Google Scholar] [CrossRef] [PubMed]
- Galobart, J.; Barroeta, A.C.; Baucells, M.D.; Codony, R.; Ternes, W. Effect of dietary supplementation with rosemary extract and α-tocoferol acetate on lipid oxidation in eggs enriched with w3-fatty acids. Poult. Sci. 2001, 80, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Estévez, M.; Cava, R. Effectiveness of rosemary essential oil as an inhibitor of lipid and protein oxidation: Contradictory effects in different types of frankfurters. Meat Sci. 2006, 72, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Nieto, G.; Jongberg, S.; Andersen, M.L.; Skibsted, L.H. Thiol oxidation and protein cross-link formation during chill storage of pork patties added essential oil of oregano, rosemary, or garlic. Meat Sci. 2013, 95, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Tohma, S.; Turan, S. Rosemary plant (Rosmarinus officinalis L.), solvent extract and essential oil can be used to extend the usage life of hazelnut oil during deep frying. Eur. J. Lipid Sci. Technol. 2015, 117, 1978–1990. [Google Scholar] [CrossRef]
- Taha, E.; Abouelhawa, S.; El-Geddawy, M.; Sorour, M.; Aladedunye, F.; Matthäus, B. Stabilization of refined rapeseed oil during deep-fatfrying by selected herbs. Eur. J. Lipid Sci. Technol. 2014, 116, 771–779. [Google Scholar] [CrossRef]
- Urbancic, S.; Kolar, M.H.; Dimitrijevic, D.; Demsar, L.; Vidrih, R. Stabilization of sunflower oil and reductionof acrylamide formation of potato with rosemary extractduring deep-fat frying. LWT-Food Sci. Technol. 2014, 57, 671–678. [Google Scholar] [CrossRef]
- Mihajilov-Kristev, T.; Radnovic, D.; Kitic, D.; Stajnovic-Radic, Z.; Zlatkovic, B. Antimicrobial activity of Satureja hortensis L. essential oil against pathogenic microbial strains. Bioterchnol. Biotechnol. Equip. 2009, 23, 1492–1496. [Google Scholar] [CrossRef]
- Probuseenivasan, S.; Jayakumar, M.; Ignacimuthu, S. In vitro antibacterial activity of some plant essential oils. BMC Complement. Altern. Med. 2006, 6, 39. [Google Scholar] [CrossRef] [PubMed]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Sirocchi, V.; Caprioli, G.; Cecchini, C.; Coman, M.M.; Cresci, A.; Maggi, F.; Papa, F.; Ricciutelli, M.; Vittori, S.; Sagratini, G. Biogenic amines as freshness index of meat wrapped in a new active packaging system formulated with essential oils of Rosmarinus officinalis. Int. J. Food Sci. Nutr. 2013, 64, 921–928. [Google Scholar] [CrossRef] [PubMed]
- Fung, D.Y.C.; Taylor, S.; Kahan, J. Effect of butylated hydroxyanisole (BHA) and buthylated hydroxytoluebe (BHT) on growth and aflatoxin production of Aspergillus flavus. J. Food Saf. 1977, 1, 39–51. [Google Scholar] [CrossRef]
- Vegara, S.; Funes, L.; Martí, N.; Saura, D.; Micol, V.; Valero, M. Bactericidal activities against pathogenic bacteria by selected constituents of plant extracts in carrot broth. Food Chem. 2011, 128, 872–877. [Google Scholar] [CrossRef]
- Moreno, S.; Scheyer, T.; Romano, C.S.; Vojnov, A.A. Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition. Free Radic. Res. 2006, 40, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Ivanovic, J.; Misic, D.; Zizovic, I.; Ristic, M. In vitro control of multiplication of some food-associated bacteria by thyme, rosemary and sage isolates. Food Control 2012, 25, 110–116. [Google Scholar] [CrossRef]
- Bernardes, W.A.; Lucarini, R.; Tozatti, M.G.; Souza, M.G.M.; Silva, M.L.; Filho, A.A.; Gomes Martin, C.H.; Crotti, A.E.M.; Pauletti, P.M.; Groppo, M.; et al. Antimicrobial Activity of Rosmarinus officinalisagainst OralPathogens: Relevance of Carnosic Acid and Carnosol. Chem. Biodivers. 2010, 7, 1835–1840. [Google Scholar] [CrossRef] [PubMed]
- Zaouali, Y.; Bouzaine, T.; Boussaid, M. Essential oils composition in two Rosmarinus officinalis L. varieties and incidence for antimicrobial and antioxidant activities. Food Chem. Toxicol. 2010, 48, 3144–3152. [Google Scholar] [CrossRef] [PubMed]
- Bajpai, V.K.; Kwang-Hyun Baek, K.; Kang, S.C. Control of Salmonella in foods by using essential oils: A review. Food Res. Int. 2012, 45, 722–734. [Google Scholar] [CrossRef]
- Tornuk, F.; Cankurt, H.; Ozturk, I.; Sagdic, O.; Bayram, O.; Yetim, H. Efficacy of various plant hydrosols as natural food sanitizers in reducing Escherichia coli O157:H7 and Salmonella Typhimurium on fresh cut carrots and apples. Int. J. Food Microbiol. 2011, 148, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, B.; Marques, A.; Ramos, C.; Neng, N.R.; Nogueira, J.M.F.; Saraiva, J.A.; Nunes, M.L. Chemical composition and antibacterial and antioxidant properties of commercial essential oils. Ind. Crops Prod. 2013, 43, 587–595. [Google Scholar] [CrossRef]
- Fernández-López, J.; Zhi, N.; Aleson-Carbonell, L.; Pérez-Álvarez, J.A.; Kuri, V. Antioxidant and antibacterial activities of natural extracts: Application in beef meatballs. Meat Sci. 2005, 69, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.; Grün, I.U.; Mustapha, A. Effects of plant extracts on microbial growth, color change and lipid oxidation in cooked beef. Food Microbiol. 2007, 24, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Pandit, V.A.; Shelef, L.A. Sensitivity of Listeria monocytogenes to rosemary (Rosmarinus officinalis L.). Food Microbiol. 1994, 11, 57–63. [Google Scholar] [CrossRef]
- Gómez-Estaca, J.; López de Lacey, A.; López-Caballero, M.E.; Gómez-Guillén, M.C.; Montero, P. Biodegradable gelatin–chitosan films incorporated with essential oils as antimicrobial agents for fish preservation. Food Microbiol. 2010, 27, 889–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouattara, B.; Sabato, S.F.; Lacroix, M. Combinated effect of antimicrobial coating and gamma irradiation on shelf life extension of pre-cooked shrimp (Penaus spp.). Int. J. Food Microbiol. 2001, 68, 1–9. [Google Scholar] [CrossRef]
- Ismail, A.A.; Pierson, M.D. Effect of sodium nitrite and origenum oil on growth and toxin production of Clostridium botulinum in TYG broth and ground pork. J. Prot. 1990, 53, 958–960. [Google Scholar]
- Resurreccion, A.V.A.; Reynold, A.E., Jr. Evaluation of Natural Antioxidants in Frankfurters containing Chicken and Pork. J. Food Sci. 1990, 55, 629–631. [Google Scholar] [CrossRef]
- Wong, J.W.; Hashimoto, K.; Shibamoto, T. Antioxidant activities of rosemary and sage extracts and vitamin E in a model system. J. Agric. Food Chem. 1995, 43, 2707–2712. [Google Scholar] [CrossRef]
- Wada, S.; Fang, X. The synergistic antioxidant effect of rosemary extract and α-tocopherol in sardine oil model system and frozen-crushed fish meat. J. Food Process. Preserv. 1992, 16, 263–274. [Google Scholar] [CrossRef]
- Lai, S.H.; Gray, J.I.; Smith, D.M.; Booren, A.M.; Crackel, R.L.; Buckley, D.J. Effects of oleoresin rosemary, tertiary butylhydroquinone, and sodium tripolyphsphate on the development of oxidative rancidity in restructed chicken nuggets. J. Food Sci. 1991, 56, 616–620. [Google Scholar] [CrossRef]
Spice, Herb | Food | Antioxidant Effectiveness |
---|---|---|
Marjoram, black pepper, white pepper, sage, rosemary, nutmeg, corianda | Bacon | Rosemary > sage > nutmeg > white pepper > marjoram [51] |
Materials of 32 different plants | Bacon | Rosemary > sage > oreganum > nutmeg > thyme [52] |
Materials of 32 different plants | Emulsion oil in water | Clove > turmeric > Jamaica pepper > Rosemary [53] |
Materials of 15 different plants | Sausages | Sage > Rosemary > paprika > marjoram > Anís [54] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nieto, G.; Ros, G.; Castillo, J. Antioxidant and Antimicrobial Properties of Rosemary (Rosmarinus officinalis, L.): A Review. Medicines 2018, 5, 98. https://doi.org/10.3390/medicines5030098
Nieto G, Ros G, Castillo J. Antioxidant and Antimicrobial Properties of Rosemary (Rosmarinus officinalis, L.): A Review. Medicines. 2018; 5(3):98. https://doi.org/10.3390/medicines5030098
Chicago/Turabian StyleNieto, Gema, Gaspar Ros, and Julián Castillo. 2018. "Antioxidant and Antimicrobial Properties of Rosemary (Rosmarinus officinalis, L.): A Review" Medicines 5, no. 3: 98. https://doi.org/10.3390/medicines5030098
APA StyleNieto, G., Ros, G., & Castillo, J. (2018). Antioxidant and Antimicrobial Properties of Rosemary (Rosmarinus officinalis, L.): A Review. Medicines, 5(3), 98. https://doi.org/10.3390/medicines5030098