Primer for Mainstreaming Mind-Body Techniques for Extreme Climates-Insights and Future Directions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Philosophical Aspect of MBTs
2.2. Physiological Aspects of MBTs
2.3. Molecular Basis for MBTs
2.4. Efficacy of MBTs in Neuroprotection
2.5. Efficacy of MBTs at Extreme Environments
2.6. Drugs or MBTs for High Altitude?
2.7. In Vitro Hypoxia Studies
2.8. Animal Models of Exercise and Meditation
3. Conclusions
Funding
Conflicts of Interest
References
- Valverde, G.; Zhou, H.; Lippold, S.; De Filippo, C.; Tang, K.; Herráez, D.L.; Li, J.; Stoneking, M. A novel candidate region for genetic adaptation to high altitude in Andean populations. PLoS ONE 2015, 10, e0125444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hannon, J.P.; Shields, J.; Harris, C.W. Anthropometric changes associated with high altitude acclimatization in females. Am. J. Phys. Anthropol. 1969, 31, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Vats, P.; Ray, K.; Majumadar, D.; Joseph, D.A.; Bayen, S.; Akunov, A.; Sarbaev, A.; Singh, S.B. Changes in cardiovascular functions, lipid profile, and body composition at high altitude in two different ethnic groups. High Alt. Med. Biol. 2013, 14, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Shukitt-Hale, B.; Lieberman, H.R. The effect of altitude on cognitive performance and mood states. In Nutritional Needs in Cold and in High-Altitude Environments; Maniott, B., Carlson, S.J., Eds.; National Academy Press: Washington, DC, USA, 1996; pp. 435–451. [Google Scholar]
- Tanaka, S.; Karck, M.; Steinhoff, G.; Haverich, A. Altitude exposure induces hypoxic preconditioning of the heart. Langenbecks Archiv fur Chirurgie Supplement Kongressband Deutsche Gesellschaft fur Chirurgie. Kongress 1998, 115, 669–674. [Google Scholar]
- Grimm, C.; Willmann, G. Hypoxia in the eye: A two-sided coin. High Alt. Med. Biol. 2012, 13, 169–175. [Google Scholar] [CrossRef] [Green Version]
- Jain, V. Brain Food at High Altitude. Adv. Neurobiol. 2016, 12, 307–321. [Google Scholar]
- Swenson, E.R.; Bartsch, P. High-altitude pulmonary edema. Compr. Physiol. 2012, 2, 2753–2773. [Google Scholar]
- Kushwah, N.; Jain, V.; Deep, S.; Prasad, D.; Singh, S.B.; Khan, N. Neuroprotective Role of Intermittent Hypobaric Hypoxia in Unpredictable Chronic Mild Stress Induced Depression in Rats. PLoS ONE 2016, 11, e0149309. [Google Scholar] [CrossRef]
- Health Expenditure toG. World Health Organization Global Health Expenditure Database. Available online: http://data.worldbank.org/indicator/SH.XPD.TOTL.ZS (accessed on 1 December 2019).
- Magalhaes, J.; Ascensao, A.; Marques, F.; Soares, J.M.; Ferreira, R.; Neuparth, M.J.; Duarte, J. Effect of a high-altitude expedition to a Himalayan peak (Pumori, 7161 m) on plasma and erythrocyte antioxidant profile. Eur. J. Appl. Physiol. 2005, 93, 726–732. [Google Scholar] [CrossRef]
- Kim, S.H.; An, H.J.; Choi, J.H.; Kim, Y.Y. Effects of 2-week intermittent training in hypobaric hypoxia on the aerobic energy metabolism and performance of cycling athletes with disabilities. J. Phys. Ther. Sci. 2017, 29, 1116–1120. [Google Scholar] [CrossRef] [Green Version]
- Feuerstein, C.G. The Yoga Tradition; Prescott, A., Ed.; Hohm Press: Chino Valley, AZ, USA, 2001. [Google Scholar]
- Madanmohan, M. Effect of Yogic Practices on Different Systems of Human Body. Available online: http://icyer.com/documents/yogresearchMMT.pdf (accessed on 1 December 2019).
- Zope, S.A.; Zope, R.A. Sudarshan kriya yoga: Breathing for health. Int. J. Yoga 2013, 6, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.P.; Gerbarg, P.L. Sudarshan Kriya Yogic breathing in the treatment of stress, anxiety, and depression: Part II—Clinical applications and guidelines. J. Altern. Complement. Med. 2005, 11, 711–717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aggarwal, S.; Negi, S.; Jha, P.; Singh, P.K.; Stobdan, T.; Pasha, M.Q.; Ghosh, S.; Agrawal, A.; Prasher, B.; Mukerji, M. EGLN1 involvement in high-altitude adaptation revealed through genetic analysis of extreme constitution types defined in Ayurveda. In Proceedings of the National Academy of Sciences, San Diego, CA, USA, 20–21 September 2010; Volume 107, pp. 18961–18966. [Google Scholar]
- Prasher, B.; Gibson, G.; Mukerji, M. Genomic insights into ayurvedic and western approaches to personalized medicine. J. Genet. 2016, 95, 209–228. [Google Scholar] [CrossRef] [PubMed]
- Manohar, P.R. Nobel prize, Traditional Chinese Medicine and Lessons for Ayurveda? Anc. Sci. Life 2015, 35, 67–69. [Google Scholar] [CrossRef] [PubMed]
- Ilavarasu, J.V.; Mohan, S.; Hankey, A. Triguna as personality concept: Guidelines for empirical research. Int. J. Yoga-Philos. Psychol. Parapsychol. 2013, 1, 15. [Google Scholar] [CrossRef]
- Khanna, P.; Singh, K.; Singla, S.; Verma, V. Relationship between Triguna theory and well-being indicators. Int. J. Yoga-Philos. Psychol. Parapsychol. 2013, 1, 69. [Google Scholar] [CrossRef]
- Dey, S.; Pahwa, P. Prakriti and its associations with metabolism, chronic diseases, and genotypes: Possibilities of new born screening and a lifetime of personalized prevention. J. Ayurveda Integr. Med. 2014, 5, 15. [Google Scholar] [CrossRef]
- Wolf, D.B.; Abell, N. Examining the effects of meditation techniques on psychosocial functioning. Res. Soc. Work Pract. 2003, 13, 27–42. [Google Scholar] [CrossRef]
- Field, T. Yoga clinical research review. Complement. Ther. Clin. Pract. 2011, 17, 1–8. [Google Scholar] [CrossRef]
- Pal, R.; Singh, S.N.; Chatterjee, A.; Saha, M. Age-related changes in cardiovascular system, autonomic functions, and levels of BDNF of healthy active males: Role of yogic practice. Age 2014, 36, 9683. [Google Scholar] [CrossRef] [Green Version]
- Himashree, G.; Mohan, L.; Singh, Y. Yoga Practice Improves Physiological and Biochemical Status at High Altitudes: A Prospective Case-control Study. Altern. Ther. Health Med. 2016, 22, 53–59. [Google Scholar] [PubMed]
- Bhaskar, L.; Kharya, C.; Deepak, K.K.; Kochupillai, V. Assessment of Cardiac Autonomic Tone following Long Sudarshan Kriya Yoga in Art of Living Practitioners. J. Altern. Complement. Med. 2017, 23, 705–712. [Google Scholar] [CrossRef] [PubMed]
- Bharshankar, J.R.; Bharshankar, R.N.; Deshpande, V.N.; Kaore, S.B.; Gosavi, G.B. Effect of yoga on cardiovascular system in subjects above 40 years. Indian J. Physiol. Pharmacol. 2003, 47, 202–206. [Google Scholar] [PubMed]
- Sinha, S.; Singh, S.N.; Monga, Y.P.; Ray, U.S. Improvement of glutathione and total antioxidant status with yoga. J. Altern. Complement. Med. 2007, 13, 1085–1090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diamond, D.M.; Park, C.R.; Woodson, J.C. Stress generates emotional memories and retrograde amnesia by inducing an endogenous form of hippocampal LTP. Hippocampus 2004, 14, 281–291. [Google Scholar] [CrossRef]
- Kimura, H.; Nagao, F.; Tanaka, Y.; Sakai, S.; Ohnishi, S.T.; Okumura, K. Beneficial effects of the nishino breathing method on immune activity and stress level. J. Altern. Complement. Med. 2005, 11, 285–291. [Google Scholar] [CrossRef]
- Carter, K.S.; Carter, R. Breath-based meditation: A mechanism to restore the physiological and cognitive reserves for optimal human performance. World J. Clin. Cases 2016, 4, 99–102. [Google Scholar] [CrossRef]
- Tolahunase, M.; Sagar, R.; Dada, R. Impact of Yoga and Meditation on Cellular Aging in Apparently Healthy Individuals: A Prospective, Open-Label Single-Arm Exploratory Study. Oxidative Med. Cell. Longev. 2017, 2017, 7928981. [Google Scholar]
- Li, Q.-Z.; Li, P.; Garcia, G.E.; Johnson, R.J.; Feng, L. Genomic profiling of neutrophil transcripts in Asian Qigong practitioners: A pilot study in gene regulation by mind–body interaction. J. Altern. Complement. Med. 2005, 11, 29–39. [Google Scholar] [CrossRef]
- Sinha, A.N.; Deepak, D.; Gusain, V.S. Assessment of the effects of pranayama/alternate nostril breathing on the parasympathetic nervous system in young adults. J. Clin. Diagn. Res. 2013, 7, 821. [Google Scholar] [CrossRef]
- Nikam, S.V.; Nikam, P.S.; Suryakar, A.N.; Badade, Z.G.; Nikam, K. Effect of pranayama practicing on lipid peroxidation and antioxidants in coronary artery disease. Int. J. Biol. Med. Res. 2010, 1, 153–157. [Google Scholar]
- Anand, A.; Telles, S. Indian PM’s International Yoga Day 2016 Advocacy: Trends, Advances and Future Perspectives. Integr. Med. Int. 2016, 3, 113–114. [Google Scholar] [CrossRef]
- Cramer, H.; Lauche, R.; Haller, H.; Steckhan, N.; Michalsen, A.; Dobos, G. Effects of yoga on cardiovascular disease risk factors: A systematic review and meta-analysis. Int. J. Cardiol. 2014, 173, 170–183. [Google Scholar] [CrossRef] [PubMed]
- Innes, K.E.; Vincent, H.K. The Influence of Yoga-Based Programs on Risk Profiles in Adults with Type 2 Diabetes Mellitus: A Systematic Review. Evid. Based Complement. Altern. Med. 2007, 4, 469–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newberg, A.B.; Wintering, N.; Khalsa, D.S.; Roggenkamp, H.; Waldman, M.R. Meditation effects on cognitive function and cerebral blood flow in subjects with memory loss: A preliminary study. J. Alzheimer’s Dis. 2010, 20, 517–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Froeliger, B.; Garland, E.L.; McClernon, F.J. Yoga meditation practitioners exhibit greater gray matter volume and fewer reported cognitive failures: Results of a preliminary voxel-based morphometric analysis. Evid. Based Complement. Altern. Med. Ecam. 2012, 2012, 821307. [Google Scholar] [CrossRef]
- Hernández, S.E.; Suero, J.; Barros, A.; González-Mora, J.L.; Rubia, K. Increased grey matter associated with long-term sahaja yoga meditation: A voxel-based morphometry study. PLoS ONE 2016, 11, e0150757. [Google Scholar] [CrossRef]
- Neuendorf, R.; Wahbeh, H.; Chamine, I.; Yu, J.; Hutchison, K.; Oken, B.S. The effects of mind-body interventions on sleep quality: A systematic review. Evid. Based Complement. Altern. Med. 2015, 2015, 1–17. [Google Scholar] [CrossRef]
- Pomidori, L.; Campigotto, F.; Amatya, T.M.; Bernardi, L.; Cogo, A. Efficacy and tolerability of yoga breathing in patients with chronic obstructive pulmonary disease: A pilot study. J. Cardiopulm. Rehabil. Prev. 2009, 29, 133–137. [Google Scholar] [CrossRef]
- Bernardi, L.; Passino, C.; Wilmerding, V.; Dallam, G.M.; Parker, D.L.; Robergs, R.A. Breathing patterns and cardiovascular autonomic modulation during hypoxia induced by simulated altitude. J. Hypertens. 2001, 19, 947–958. [Google Scholar] [CrossRef]
- Bernardi, L.; Passino, C.; Spadacini, G.; Bonfichi, M.; Arcaini, L.; Malcovati, L. Reduced hypoxic ventilatory response with preserved blood oxygenation in yoga trainees and Himalayan Buddhist monks at altitude: Evidence of a different adaptive strategy? Eur. J. Appl. Physiol. 2007, 99, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Bilo, G.; Revera, M.; Bussotti, M.; Bonacina, D.; Styczkiewicz, K.; Caldara, G. Effects of slow deep breathing at high altitude on oxygen saturation, pulmonary and systemic hemodynamics. PLoS ONE 2012, 7, e49074. [Google Scholar] [CrossRef] [PubMed]
- Rao, K.S.; Chakraharti, S.K.; Dongare, V.S.; Chetana, K.; Ramirez, C.M.; Koka, P.S. Antiaging Effects of an Intensive Mind and Body Therapeutic Program through Enhancement of Telomerase Activity and Adult Stem Cell Counts. J. Stem Cells 2015, 10, 107–125. [Google Scholar] [PubMed]
- Jacobs, T.L.; Epel, E.S.; Lin, J.; Blackburn, E.H.; Wolkowitz, O.M.; Bridwell, D.A. Intensive meditation training, immune cell telomerase activity, and psychological mediators. Psychoneuroendocrinology 2011, 36, 664–681. [Google Scholar] [CrossRef] [PubMed]
- Harkess, K.N.; Ryan, J.; Delfabbro, P.H.; Cohen-Woods, S. Preliminary indications of the effect of a brief yoga intervention on markers of inflammation and DNA methylation in chronically stressed women. Transl. Psychiatry 2016, 6, e965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Aquino Lemos, V.; Dos Santos, R.V.T.; Lira, F.S.; Rodrigues, B.; Tufik, S.; de Mello, M.T. Can High Altitude Influence Cytokines and Sleep? Mediat. Inflamm. 2013, 2013, 1–8. [Google Scholar] [CrossRef]
- Maloney, J.; Wang, D.; Duncan, T.; Voelkel, N.; Ruoss, S. Plasma vascular endothelial growth factor in acute mountain sickness. Chest 2000, 118, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.; Moon, W.; Kim, J. Effect of yoga on pain, brain-derived neurotrophic factor, and serotonin in premenopausal women with chronic low back pain. Evid. Based Complement. Altern. Med. 2014, 2014, 1–7. [Google Scholar] [CrossRef]
- Naveen, G.; Thirthalli, J.; Rao, M.; Varambally, S.; Christopher, R.; Gangadhar, B. Positive therapeutic and neurotropic effects of yoga in depression: A comparative study. Indian J. Psychiatry 2013, 55, S400. [Google Scholar]
- Helan, M.; Aravamudan, B.; Hartman, W.R.; Thompson, M.A.; Johnson, B.D.; Pabelick, C.M. BDNF secretion by human pulmonary artery endothelial cells in response to hypoxia. J. Mol. Cell. Cardiol. 2014, 68, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Sharma, H.; Datta, P.; Singh, A.; Sen, S.; Bhardwaj, N.K.; Kochupillai, V. Gene expression profiling in practitioners of Sudarshan Kriya. J. Psychosom. Res. 2008, 64, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Minhas, G.; Mathur, D.; Ragavendrasamy, B.; Sharma, N.K.; Paanu, V.; Anand, A. Hypoxia in CNS Pathologies: Emerging Role of miRNA-Based Neurotherapeutics and Yoga Based Alternative Therapies. Front. Neurosci. 2017, 11, 386. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.Y.; Loscalzo, J. MicroRNA-210: A unique and pleiotropic hypoxamir. Cell Cycle 2010, 9, 1072–1083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cozzolino, M.; Guarino, F.; Castiglione, S.; Cicatelli, A.; Celia, G. Pilot Study on Epigenetic Response to a Mind-Body Treatment. Transl. Med. Unisa 2017, 17, 40–44. [Google Scholar]
- Watson, C.J.; Collier, P.; Tea, I.; Neary, R.; Watson, J.A.; Robinson, C. Hypoxia-induced epigenetic modifications are associated with cardiac tissue fibrosis and the development of a myofibroblast-like phenotype. Hum. Mol. Genet. 2014, 23, 2176–2188. [Google Scholar] [CrossRef] [Green Version]
- Villemure, C.; Čeko, M.; Cotton, V.A.; Bushnell, M.C. Insular cortex mediates increased pain tolerance in yoga practitioners. Cereb. Cortex 2013, 24, 2732–2740. [Google Scholar] [CrossRef] [Green Version]
- Villemure, C.; Ceko, M.; Cotton, V.A.; Bushnell, M.C. Neuroprotective effects of yoga practice: Age-, experience-, and frequency-dependent plasticity. Front. Hum. Neurosci. 2015, 9, 281. [Google Scholar] [CrossRef] [Green Version]
- Maguire, E.A.; Gadian, D.G.; Johnsrude, I.S.; Good, C.D.; Ashburner, J.; Frackowiak, R.S. Navigation-related structural change in the hippocampi of taxi drivers. Proc. Natl. Acad. Sci. USA 2000, 97, 4398–4403. [Google Scholar] [CrossRef] [Green Version]
- Golestani, N.; Paus, T.; Zatorre, R.J. Anatomical correlates of learning novel speech sounds. Neuron 2002, 35, 997–1010. [Google Scholar] [CrossRef] [Green Version]
- Mechelli, A.; Crinion, J.T.; Noppeney, U.; O’doherty, J.; Ashburner, J.; Frackowiak, R.S. Neurolinguistics: Structural plasticity in the bilingual brain. Nature 2004, 431, 757. [Google Scholar] [CrossRef]
- Lazar, S.W.; Kerr, C.E.; Wasserman, R.H.; Gray, J.R.; Greve, D.N.; Treadway, M.T. Meditation experience is associated with increased cortical thickness. Neuroreport 2005, 16, 1893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grant, J.A.; Courtemanche, J.; Duerden, E.G.; Duncan, G.H.; Rainville, P. Cortical thickness and pain sensitivity in zen meditators. Emotion 2010, 10, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Draganski, B.; Gaser, C.; Busch, V.; Schuierer, G.; Bogdahn, U.; May, A. Neuroplasticity: Changes in grey matter induced by training. Nature 2004, 427, 311. [Google Scholar] [CrossRef] [PubMed]
- Driemeyer, J.; Boyke, J.; Gaser, C.; Büchel, C.; May, A. Changes in gray matter induced by learning—Revisited. PLoS ONE 2008, 3, e2669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hölzel, B.K.; Ott, U.; Gard, T.; Hempel, H.; Weygandt, M.; Morgen, K. Investigation of mindfulness meditation practitioners with voxel-based morphometry. Soc. Cogn. Affect. Neurosci. 2007, 3, 55–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luders, E.; Toga, A.W.; Lepore, N.; Gaser, C. The underlying anatomical correlates of long-term meditation: Larger hippocampal and frontal volumes of gray matter. Neuroimage 2009, 45, 672–678. [Google Scholar] [CrossRef] [Green Version]
- Luders, E.; Kurth, F.; Toga, A.W.; Narr, K.L.; Gaser, C. Meditation effects within the hippocampal complex revealed by voxel-based morphometry and cytoarchitectonic probabilistic mapping. Front. Psychol. 2013, 4, 398. [Google Scholar] [CrossRef] [Green Version]
- Luders, E.; Thompson, P.M.; Kurth, F.; Hong, J.Y.; Phillips, O.R.; Wang, Y. Global and regional alterations of hippocampal anatomy in long-term meditation practitioners. Hum. Brain Mapp. 2013, 34, 3369–3375. [Google Scholar] [CrossRef] [Green Version]
- Luders, E.; Kurth, F.; Mayer, E.A.; Toga, A.W.; Narr, K.L.; Gaser, C. The unique brain anatomy of meditation practitioners: Alterations in cortical gyrification. Front. Hum. Neurosci. 2012, 6, 34. [Google Scholar] [CrossRef] [Green Version]
- Leung, M.-K.; Chan, C.C.; Yin, J.; Lee, C.-F.; So, K.-F.; Lee, T.M. Increased gray matter volume in the right angular and posterior parahippocampal gyri in loving-kindness meditators. Soc. Cogn. Affect. Neurosci. 2012, 8, 34–39. [Google Scholar] [CrossRef]
- Erickson, K.I.; Leckie, R.L.; Weinstein, A.M. Physical activity, fitness, and gray matter volume. Neurobiol. Aging 2014, 35, S20–S28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Good, C.D.; Johnsrude, I.S.; Ashburner, J.; Henson, R.N.; Friston, K.J.; Frackowiak, R.S. A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 2001, 14, 21–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salat, D.H.; Buckner, R.L.; Snyder, A.Z.; Greve, D.N.; Desikan, R.S.; Busa, E. Thinning of the cerebral cortex in aging. Cereb. Cortex 2004, 14, 721–730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziegler, G.; Dahnke, R.; Jäncke, L.; Yotter, R.A.; May, A.; Gaser, C. Brain structural trajectories over the adult lifespan. Hum. Brain Mapp. 2012, 33, 2377–2389. [Google Scholar] [CrossRef] [PubMed]
- Pagnoni, G.; Cekic, M. Age effects on gray matter volume and attentional performance in Zen meditation. Neurobiol. Aging 2007, 28, 1623–1627. [Google Scholar] [CrossRef] [PubMed]
- Luders, E.; Cherbuin, N.; Kurth, F. Forever Young (er): Potential age-defying effects of long-term meditation on gray matter atrophy. Front. Psychol. 2015, 5, 1551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tseng, B.Y.; Uh, J.; Rossetti, H.C.; Cullum, C.M.; Diaz-Arrastia, R.F.; Levine, B.D. Masters athletes exhibit larger regional brain volume and better cognitive performance than sedentary older adults. J. Magn. Reson. Imaging 2013, 38, 1169–1176. [Google Scholar] [CrossRef] [Green Version]
- Sharma, V.K.; Rajajeyakumar, M.; Velkumary, S.; Subramanian, S.K.; Bhavanani, A.B.; Madanmohan, A.S. Effect of fast and slow pranayama practice on cognitive functions in healthy volunteers. J. Clin. Diagn. Res. 2014, 8, 10. [Google Scholar]
- Hota, S.K.; Sharma, V.K.; Hota, K.; Das, S.; Dhar, P.; Mahapatra, B.B. Multi-domain cognitive screening test for neuropsychological assessment for cognitive decline in acclimatized lowlanders staying at high altitude. Indian J. Med. Res. 2012, 136, 411–420. [Google Scholar]
- Murthy., P.N.V.; Janakiramaiah, N.; Gangadhar, B.; Subbakrishna, D. P300 amplitude and antidepressant response to Sudarshan Kriya Yoga (SKY). J. Affect. Disord. 1998, 50, 45–48. [Google Scholar] [CrossRef]
- Kjellgren, A.; Bood, S.Å.; Axelsson, K.; Norlander, T.; Saatcioglu, F. Wellness through a comprehensive Yogic breathing program–A controlled pilot trial. BMC Complement. Altern. Med. 2007, 7, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pagnini, F.; Marconi, A.; Tagliaferri, A.; Manzoni, G.M.; Gatto, R.; Fabiani, V. Meditation training for people with amyotrophic lateral sclerosis: A randomized clinical trial. Eur. J. Neurol. 2017, 24, 578–586. [Google Scholar] [CrossRef] [PubMed]
- Naveen, K.; Nagendra, R.N.H.; Telles, S. Yoga breathing through a particular nostril increases spatial memory scores without lateralized effects. Psychol. Rep. 1997, 81, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Jella, S.A.; Shannahoff-Khalsa, D.S. The effects of unilateral forced nostril breathing on cognitive performance. Int. J. Neurosci. 1993, 73, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Chandra, S.; Jaiswal, A.K.; Singh, R.; Jha, D.; Mittal, A.P. Mental Stress: Neurophysiology and Its Regulation by Sudarshan Kriya Yoga. Int. J. Yoga 2017, 10, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Marciniak, R.; Sheardova, K.; Čermáková, P.; Hudeček, D.; Šumec, R.; Hort, J. Effect of meditation on cognitive functions in context of aging and neurodegenerative diseases. Front. Behav. Neurosci. 2014, 8, 17. [Google Scholar] [CrossRef] [Green Version]
- Streeter, C.C.; Whitfield, T.H.; Owen, L.; Rein, T.; Karri, S.K.; Yakhkind, A. Effects of yoga versus walking on mood, anxiety, and brain GABA levels: A randomized controlled MRS study. J. Altern. Complement. Med. 2010, 16, 1145–1152. [Google Scholar] [CrossRef]
- Stroud, M.A.; Ritz, P.; Coward, W.A.; Sawyer, M.B.; Constantin-Teodosiu, D.; Greenhaff, P.L. Energy expenditure using isotope-labelled water (2H218O), exercise performance, skeletal muscle enzyme activities and plasma biochemical parameters in humans during 95 days of endurance exercise with inadequate energy intake. Eur. J. Appl. Physiol. Occup. Physiol. 1997, 76, 243–252. [Google Scholar] [CrossRef]
- Case, H.S.; Reed, H.L.; Palinkas, L.A.; Reedy, K.R.; Van Do, N.; Finney, N.S. Resting and exercise energy use in Antarctica: Effect of 50% restriction in temperate climate energy requirements. Clin. Endocrinol. 2006, 65, 257–264. [Google Scholar] [CrossRef]
- Benso, A.; Broglio, F.; Aimaretti, G.; Lucatello, B.; Lanfranco, F.; Ghigo, E. Endocrine and metabolic responses to extreme altitude and physical exercise in climbers. Eur. J. Endocrinol. 2007, 157, 733–740. [Google Scholar] [CrossRef] [Green Version]
- Boylan, M. Acute Physiological Resonses to Yoga Activity in a Hot Environment; California State University: Long Beach, CA, USA, 2010. [Google Scholar]
- Paralikar, S.J.; Paralikar, J.H. High-altitude medicine. Indian J. Occup. Environ. Med. 2010, 14, 6. [Google Scholar] [CrossRef] [PubMed]
- Ono, Y.; Morifusa, M.; Ikeda, S.; Kunishige, C.; Tohma, Y. A case of non-cardiogenic pulmonary edema provoked by intravenous acetazolamide. Acute Med. Surg. 2017, 4, 349–352. [Google Scholar] [CrossRef] [PubMed]
- Katsura, K.-I.; Kristián, T.; Siesjö, B.K. Energy Metabolism, Ion Homeostasis, and Cell Damage in the Brain; Portland Press Limited: London, UK, 1994. [Google Scholar]
- Dirnagl, U.; Iadecola, C.; Moskowitz, M.A. Pathobiology of ischaemic stroke: An integrated view. Trends Neurosci. 1999, 22, 391–397. [Google Scholar] [CrossRef]
- Brouns, R.; De Deyn, P.P. The complexity of neurobiological processes in acute ischemic stroke. Clin. Neurol. Neurosurg. 2009, 111, 483–495. [Google Scholar] [CrossRef]
- Bando, Y.; Katayama, T.; Kasai, K.; Taniguchi, M.; Tamatani, M.; Tohyama, M. GRP94 (94 kDa glucose-regulated protein) suppresses ischemic neuronal cell death against ischemia/reperfusion injury. Eur. J. Neurosci. 2003, 18, 829–840. [Google Scholar] [CrossRef]
- Vieira-Marques, C.; Arbo, B.D.; Ruiz-Palmero, I.; Ortiz-Rodriguez, A.; Ghorbanpoor, S.; Kucharski, L.C. Dehydroepiandrosterone protects male and female hippocampal neurons and neuroblastoma cells from glucose deprivation. Brain Res. 2016, 1644, 176–182. [Google Scholar] [CrossRef]
- Jiang, W.; Fu, F.; Tian, J.; Zhu, H.; Hou, J. Curculigoside A attenuates experimental cerebral ischemia injury in vitro and vivo. Neuroscience 2011, 192, 572–579. [Google Scholar] [CrossRef]
- Tian, X.; An, L.; Gao, L.Y.; Bai, J.P.; Wang, J.; Meng, W.H. Compound MQA, a Caffeoylquinic Acid Derivative, Protects Against NMDA-Induced Neurotoxicity and Potential Mechanisms in Vitro. CNS Neurosci. Ther. 2015, 21, 575–584. [Google Scholar] [CrossRef]
- Seetapun, S.; Yao, J.; Wang, Y.; Zhu, Y.Z. Neuroprotective Effect of Danshensu Derivatives as Anti-Ischaemia Agents on SH-SY5Y Cells and Rat Brain; Portland Press Limited: London, UK, 2013. [Google Scholar]
- Lim, W.; Kim, J.-H.; Gook, E.; Kim, J.; Ko, Y.; Kim, I. Inhibition of mitochondria-dependent apoptosis by 635-nm irradiation in sodium nitroprusside-treated SH-SY5Y cells. Free Radic. Biol. Med. 2009, 47, 850–857. [Google Scholar] [CrossRef]
- Luan, H.; Kan, Z.; Xu, Y.; Lv, C.; Jiang, W. Rosmarinic acid protects against experimental diabetes with cerebral ischemia: Relation to inflammation response. J. Neuroinflamm. 2013, 10, 810. [Google Scholar] [CrossRef] [Green Version]
- Nehra, S.; Bhardwaj, V.; Ganju, L.; Saraswat, D. Nanocurcumin prevents hypoxia induced stress in primary human ventricular cardiomyocytes by maintaining mitochondrial homeostasis. PLoS ONE 2015, 10, e0139121. [Google Scholar] [CrossRef] [PubMed]
- Nehra, S.; Bhardwaj, V.; Kalra, N.; Ganju, L.; Bansal, A.; Saxena, S. Nanocurcumin protects cardiomyoblasts H9c2 from hypoxia-induced hypertrophy and apoptosis by improving oxidative balance. J. Physiol. Biochem. 2015, 71, 239–251. [Google Scholar] [CrossRef] [PubMed]
- Heilbronn, L.K.; Gan, S.K.; Turner, N.; Campbell, L.V.; Chisholm, D.J. Markers of mitochondrial biogenesis and metabolism are lower in overweight and obese insulin-resistant subjects. J. Clin. Endocrinol. Metab. 2007, 92, 1467–1473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powell, C.S.; Jackson, R.M. Mitochondrial complex I, aconitase, and succinate dehydrogenase during hypoxia-reoxygenation: Modulation of enzyme activities by MnSOD. Am. J. Physiol. Lung Cell. Mol. Physiol. 2003, 285, L189–L198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorescu, D.; Griendling, K.K. Reactive oxygen species, mitochondria, and NAD (P) H oxidases in the development and progression of heart failure. Congest. Heart Fail. 2002, 8, 132–140. [Google Scholar] [CrossRef]
- Ventura-Clapier, R.; Garnier, A.; Veksler, V. Transcriptional control of mitochondrial biogenesis: The central role of PGC-1α. Cardiovasc. Res. 2008, 79, 208–217. [Google Scholar] [CrossRef] [Green Version]
- Redout, E.M.; Wagner, M.J.; Zuidwijk, M.J.; Boer, C.; Musters, R.J.; van Hardeveld, C. Right-ventricular failure is associated with increased mitochondrial complex II activity and production of reactive oxygen species. Cardiovasc. Res. 2007, 75, 770–781. [Google Scholar] [CrossRef]
- Hardt, S.E.; Sadoshima, J. Negative regulators of cardiac hypertrophy. Cardiovasc. Res. 2004, 63, 500–509. [Google Scholar] [CrossRef]
- Choi, D.W.; Rothman, S.M. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu. Rev. Neurosci. 1990, 13, 171–182. [Google Scholar] [CrossRef]
- Mwaniki, M.K.; Atieno, M.; Lawn, J.E.; Newton, C.R. Long-term neurodevelopmental outcomes after intrauterine and neonatal insults: A systematic review. Lancet 2012, 379, 445–452. [Google Scholar] [CrossRef] [Green Version]
- Douglas-Escobar, M.; Weiss, M.D. Hypoxic-ischemic encephalopathy: A review for the clinician. JAMA Pediatr. 2015, 169, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, N.; Kumamoto, E.; Furue, H.; Yoshimura, M. GABA-mediated inhibition of glutamate release during ischemia in substantia gelatinosa of the adult rat. J. Neurophysiol. 2003, 89, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Harinath, K.; Malhotra, A.S.; Pal, K.; Prasad, R.; Kumar, R.; Kain, T.C. Effects of Hatha yoga and Omkar meditation on cardiorespiratory performance, psychologic profile, and melatonin secretion. J. Altern. Complement. Med. 2004, 10, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Maschio-Signorini, L.B.; Gelaleti, G.G.; Moschetta, M.F.; Borin, T.V.; Jardim-Perassi, B.; Lopes, J. Melatonin regulates angiogenic and inflammatory proteins in MDA-MB-231 cell line and in co-culture with cancer-associated fibroblasts. Anti-Cancer Agents Med. Chem. 2016, 16, 1474–1484. [Google Scholar] [CrossRef]
- Ding, Y.H.; Mrizek, M.; Lai, Q.; Wu, Y.; Reyes, R., Jr.; Li, J. Exercise preconditioning reduces brain damage and inhibits TNF-alpha receptor expression after hypoxia/reoxygenation: An in vivo and in vitro study. Curr. Neurovasc. Res. 2006, 3, 263–271. [Google Scholar] [CrossRef]
- Cheng, X.W.; Kuzuya, M.; Kim, W.; Song, H.; Hu, L.; Inoue, A. Exercise training stimulates ischemia-induced neovascularization via phosphatidylinositol 3-kinase/Akt-dependent hypoxia-induced factor-1 alpha reactivation in mice of advanced age. Circulation 2010, 122, 707–716. [Google Scholar] [CrossRef]
- Disanzo, B.L.; You, T. Effects of exercise training on indicators of adipose tissue angiogenesis and hypoxia in obese rats. Metab. Clin. Exp. 2014, 63, 452–455. [Google Scholar] [CrossRef]
- Weible, A.P.; Piscopo, D.M.; Rothbart, M.K.; Posner, M.I.; Niell, C.M. Rhythmic brain stimulation reduces anxiety-related behavior in a mouse model based on meditation training. Proc. Natl. Acad. Sci. USA 2017, 114, 2532–2537. [Google Scholar] [CrossRef] [Green Version]
- Coates, G.; O’Brodovich, H.; Jefferies, A.L.; Gray, G.W. Effects of exercise on lung lymph flow in sheep and goats during normoxia and hypoxia. J. Clin. Investig. 1984, 74, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Wolf, S.A.; Melnik, A.; Kempermann, G. Physical exercise increases adult neurogenesis and telomerase activity, and improves behavioral deficits in a mouse model of schizophrenia. Brain Behav. Immun. 2011, 25, 971–980. [Google Scholar] [CrossRef]
Study | Sample Size & Treatment Groups | Intervention | Targeted Output | Outcome Measurements | Findings |
---|---|---|---|---|---|
Cramer et al. 2014 | n = 3168 from 44 RCTs | Meta-analysis of yoga RCT | Cardiac function, lipid profiles | Diastolic and systolic blood pressure, heart rate, respiratory rate, waist and hip circumference, waist/hip ratio, lipid profile and HbA1c | Clinically important effect of yoga on cardiovascular diseases and associated risk factors |
Innes and Vincent 2007 | 15 uncontrolled trials, 6 NRCTs and 4 RCTs | Systematic review on yoga | Type 2 Diabetes mellitus (T2DM) | Glucose tolerance, insulin sensitivity, lipid profiles, anthropometric characteristics, blood pressure, oxidative stress, coagulation profiles, sympathetic activation, and pulmonary function | Yoga is Beneficial for improving indices of risk in adults with T2DM and in preventing and managing cardiovascular complications |
Newberg et al. 2010 | 14 subjects with memory problems | 8-week meditation program | Memory and Cerebral blood flow (CBF) | SPECT scan andNeuropsychological assessment of verbal fluency, trails B and logical memory | Meditation leads to significant increase in baseline CBF ratios in the prefrontal, superior frontal and superior parietal cortices |
Froeliger et al. 2012 | n = 14; 7 Hatha yoga meditation practitioners and 7 matched control group | Hatha yoga meditation | Voxel-based morphometry (VBM), Cognitive Function, Anxiety, Stress and anger | Cognitive failures questionnaire (CFQ), Beck Anxiety Inventory, 20-item positive and negative affect schedule (PANAS) | Positive correlation of greater gray matter volume with hatha yoga meditation and significant improvement in cognitive failures task |
Hernández et al. 2016 | n = 23 Sahaja yoga Meditators; n = 23 age, sex education matched non-meditators | Long-Term Sahaja yoga meditation | Grey matter volume | Structural magnetic resonance imaging | Sahaja yoga leads to overall larger grey matter volume and regional enlargement in several right hemispheric cortical and subcortical brain regions |
Neuendorf et al. 2015 | 13/23 studies using meditation, 21/30 using movement MBIs, and 14/25 using relaxation | Review of mind-body interventions (MBIs) on sleep | Sleep outcome measure | Subjective and objective sleep outcomes, sleep quality, sleep duration, and sleep latency. | MBIs as a treatment for sleep disorders |
Pomidori et al. 2009 | n = 11, chronic obstructive pulmonary disease (COPD) patients. | Yoga with deep and slow breathing | Ventilatory pattern and oxygen saturation (SaO2% | SaO2% and respiratory parameters including tidal volume, VE, respiratory rate, inspiratory time, total breath time and fractional inspiratory time | Yoga leads to significant improvement in SaO2% and induction of favorable respiratory changes in COPD patients. |
Study | Sample Size & Treatment Groups | Interventions | Targeted Output | Outcome Measurements | Findings |
---|---|---|---|---|---|
Bernardi et al. 2001 | n = 19; 10 yoga trainees and 9 controls | Slow yogic Breathing | Blood oxidation and sympathetic system | minute ventilation (VE), oxygen saturation, RR interval, blood pressure and response to carotid baroreceptors at baseline and after acute hypobaric hypoxia | Slow yogic breathing maintains better blood oxygenation and reduces sympathetic activation in hypoxic conditions |
Bernardi et al. 2007 | n = 75; 12 Caucasian yoga trainees, 12 control sea-level residents, 38 active lifestyle high altitude natives and 13 high altitude residents performing yoga like respiratory exercises | Yoga | Ventilatory, cardiovascular and hematological parameters | hypoxic ventilatory response (HVR), red blood cell count, hematocrit, blood pressure, RR interval, minute ventilation | Yoga pre-conditioning leads to few hematological changes, maintains oxygen and induces respiratory adaptations to cope up with altitude-induced hypoxia in sea-level residents |
Bilo et al. 2012 | n = 67; 39 at 4559 m and 28 at 5440 m | Slow deep breathing | Oxygen saturation, pulmonary and systemic hemodynamics | Minute ventilation or pulmonary CO diffusion, Spo2, systematic, and pulmonary arterial pressure | Slow deep breathing increases SpO2, which improves ventilation efficiency and reduces systematic and pulmonary arterial pressure at high altitude |
Himashree et al. 2016 | n = 200 Indian army soldiers; 100 performed physical training and 100 Yoga at 3445 m | Yoga | Physiological and biochemical status | Height and Weight, body fat percentage, heart rate, respiratory rate, systolic and diastolic blood pressure, peripheral saturation of oxygen, end tidal CO2, pulmonary functions, hematological variables lipid profile serum urea, creatinine, liver enzymes, blood glucose, and anxiety scores. | Significant improvement in health indices and performance was observed in yoga group as compared to control group at high altitude |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anand, A.; Kaur, G.; Bammidi, S.; Mathur, D.; Battu, P.; Sharma, K.; Tyagi, R.; Pannu, V.; Bhanushali, D.; Limaye, N. Primer for Mainstreaming Mind-Body Techniques for Extreme Climates-Insights and Future Directions. Medicines 2020, 7, 12. https://doi.org/10.3390/medicines7030012
Anand A, Kaur G, Bammidi S, Mathur D, Battu P, Sharma K, Tyagi R, Pannu V, Bhanushali D, Limaye N. Primer for Mainstreaming Mind-Body Techniques for Extreme Climates-Insights and Future Directions. Medicines. 2020; 7(3):12. https://doi.org/10.3390/medicines7030012
Chicago/Turabian StyleAnand, Akshay, Gurkeerat Kaur, Sridhar Bammidi, Deepali Mathur, Priya Battu, Kanupriya Sharma, Rahul Tyagi, Viraaj Pannu, Disha Bhanushali, and Nitin Limaye. 2020. "Primer for Mainstreaming Mind-Body Techniques for Extreme Climates-Insights and Future Directions" Medicines 7, no. 3: 12. https://doi.org/10.3390/medicines7030012
APA StyleAnand, A., Kaur, G., Bammidi, S., Mathur, D., Battu, P., Sharma, K., Tyagi, R., Pannu, V., Bhanushali, D., & Limaye, N. (2020). Primer for Mainstreaming Mind-Body Techniques for Extreme Climates-Insights and Future Directions. Medicines, 7(3), 12. https://doi.org/10.3390/medicines7030012