Stem Cell Clinical Trials in Spinal Cord Injury: A Brief Review of Studies in the United States
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Terminated or Suspended Trials
3.2. Trials Currently in Recruitment
3.3. Active Studies
3.4. Trials in Pre-Recruitment
3.5. Completed Trials
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wyndaele, M.; Wyndaele, J.J. Incidence, prevalence and epidemiology of spinal cord injury: What learns a worldwide literature survey? Spinal Cord 2006, 44, 523–529. [Google Scholar] [CrossRef]
- Witiw, C.D.; Fehlings, M.G. Acute spinal cord injury. J. Spinal Disord. Tech. 2015, 28, 202–210. [Google Scholar] [CrossRef]
- Rowland, J.W.; Hawryluk, G.W.; Kwon, B.; Fehlings, M.G. Current status of acute spinal cord injury pathophysiology and emerging therapies: Promise on the horizon. Neurosurg. Focus 2008, 25, E2. [Google Scholar] [CrossRef]
- National Spinal Cord Injury Statistical Center. Facts and Figures at a Glance; University of Alabama at Birmingham: Birmingham, AL, USA, 2020. [Google Scholar]
- Singh, A.; Tetreault, L.; Kalsi-Ryan, S.; Nouri, A.; Fehlings, M.G. Global prevalence and incidence of traumatic spinal cord injury. Clin. Epidemiol. 2014, 6, 309–331. [Google Scholar]
- Harting, M.T.; Baumgartner, J.E.; Worth, L.L.; Ewing-Cobbs, L.; Gee, A.P.; Day, M.C.; Cox, C.S., Jr. Cell therapies for traumatic brain injury. Neurosurg. Focus 2008, 24, E18. [Google Scholar] [CrossRef]
- Harting, M.T.; Jimenez, F.; Xue, H.; Fischer, U.M.; Baumgartner, J.; Dash, P.K.; Cox, C.S. Intravenous mesenchymal stem cell therapy for traumatic brain injury. J. Neurosurg. 2009, 110, 1189–1197. [Google Scholar] [CrossRef] [Green Version]
- Harting, M.T.; Sloan, L.E.; Jimenez, F.; Baumgartner, J.; Cox, C.S., Jr. Subacute neural stem cell therapy for traumatic brain injury. J. Surg. Res. 2009, 153, 188–194. [Google Scholar] [CrossRef] [Green Version]
- Cox, C.S., Jr.; Baumgartner, J.E.; Harting, M.T.; Worth, L.L.; Walker, P.A.; Shah, S.K.; Ewing-Cobbs, L.; Hasan, K.M.; Day, M.C.; Lee, D.; et al. Autologous bone marrow mononuclear cell therapy for severe traumatic brain injury in children. Neurosurgery 2011, 68, 588–600. [Google Scholar] [CrossRef]
- Liao, G.P.; Harting, M.T.; Hetz, R.A.; Shah, S.K.; Corkins, C.J.; Hughes, T.G.; Jimenez, F.; Kosmach, S.C.; Day, M.C.; Tsao, K.; et al. Autologous bone marrow mononuclear cells reduce therapeutic intensity for severe traumatic brain injury in children. Pediatr. Crit. Care Med. 2015, 16, 245–255. [Google Scholar] [CrossRef] [Green Version]
- Baumgartner, L.S.; Moore, E.; Shook, D.; Messina, S.; Day, M.C.; Green, J.; Nandy, R.; Seidman, M.; Baumgartner, J.E. Safety of Autologous umbilical cord blood therapy for acquired sensorineural hearing loss in children. J. Audiol. Otol. 2018, 22, 209–222. [Google Scholar] [CrossRef]
- Levi, A.D.; Okonkwo, D.O.; Park, P.; Jenkins, A.L., 3rd; Kurpad, S.N.; Parr, A.M.; Ganju, A.; Aarabi, B.; Kim, D.; Casha, S.; et al. Emerging safety of intramedullary transplantation of human neural stem cells in chronic cervical and thoracic spinal cord injury. Neurosurgery 2018, 82, 562–575. [Google Scholar] [CrossRef] [PubMed]
- Levi, A.D.; Anderson, K.D.; Okonkwo, D.O.; Park, P.; Bryce, T.N.; Kurpad, S.N.; Aarabi, B.; Hsieh, J.; Gant, K. Clinical outcomes from a multi-center study of human neural stem cell transplantation in chronic cervical spinal cord injury. J. Neurotrauma 2019, 36, 891–902. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Henry, R.G.; Strober, J.; Kang, S.M.; Lim, D.A.; Bucci, M.; Caverzasi, E.; Gaetano, L.; Mandelli, M.L.; Ryan, T.; et al. Neural stem cell engraftment and myelination in the human brain. Sci. Transl. Med. 2012, 4, 155ra37. [Google Scholar] [CrossRef] [Green Version]
- Selden, N.R.; Al-Uzri, A.; Huhn, S.L.; Koch, T.K.; Sikora, D.M.; Nguyen-Driver, M.D.; Guillaume, D.J.; Koh, J.L.; Gultekin, S.H.; Anderson, J.C.; et al. Central nervous system stem cell transplantation for children with neuronal ceroid lipofuscinosis. J. Neurosurg. Pediatr. 2013, 11, 643–652. [Google Scholar] [CrossRef] [Green Version]
- Gupta, N.; Henry, R.G.; Kang, S.M.; Strober, J.; Lim, D.A.; Ryan, T.; Perry, R.; Farrell, J.; Ulman, M.; Rajalingam, R.; et al. Long-Term safety, immunologic response, and imaging outcomes following neural stem cell transplantation for pelizaeus-merzbacher disease. Stem Cell Rep. 2019, 13, 254–261. [Google Scholar] [CrossRef] [Green Version]
- Lasala, G.P.; Silva, J.A.; Gardner, P.A.; Minguell, J.J. Combination stem cell therapy for the treatment of severe limb ischemia: Safety and efficacy analysis. Angiology 2010, 61, 551–556. [Google Scholar] [CrossRef]
- Lasala, G.P.; Silva, J.A.; Kusnick, B.A.; Minguell, J.J. Combination stem cell therapy for the treatment of medically refractory coronary ischemia: A Phase I study. Cardiovasc. Revasc. Med. 2011, 12, 29–34. [Google Scholar] [CrossRef]
- Allers, C.; Lasala, G.P.; Minguell, J.J. Presence of osteoclast precursor cells during ex vivo expansion of bone marrow-derived mesenchymal stem cells for autologous use in cell therapy. Cytotherapy 2014, 16, 454–459. [Google Scholar] [CrossRef]
- Lu, P.; Wang, Y.; Graham, L.; McHale, K.; Gao, M.; Wu, D.; Brock, J.; Blesch, A.; Rosenzweig, E.S.; Havton, L.A.; et al. Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell 2012, 150, 1264–1273. [Google Scholar] [CrossRef] [Green Version]
- van Gorp, S.; Leerink, M.; Kakinohana, O.; Platoshyn, O.; Santucci, C.; Galik, J.; Joosten, E.A.; Hruska-Plochan, M.; Goldberg, D.; Marsala, S.; et al. Amelioration of motor/sensory dysfunction and spasticity in a rat model of acute lumbar spinal cord injury by human neural stem cell transplantation. Stem Cell Res. Ther. 2013, 4, 57. [Google Scholar] [CrossRef] [Green Version]
- Glass, J.D.; Hertzberg, V.S.; Boulis, N.M.; Riley, J.; Federici, T.; Polak, M.; Bordeau, J.; Fournier, C.; Johe, K.; Hazel, T.; et al. Transplantation of spinal cord-derived neural stem cells for ALS: Analysis of phase 1 and 2 trials. Neurology 2016, 87, 392–400. [Google Scholar] [CrossRef] [Green Version]
- Riley, J.; Federici, T.; Polak, M.; Kelly, C.; Glass, J.; Raore, B.; Taub, J.; Kesner, V.; Feldman, E.L.; Boulis, N.M. Intraspinal stem cell transplantation in amyotrophic lateral sclerosis: A phase I safety trial, technical note, and lumbar safety outcomes. Neurosurgery 2012, 71, 405–416, discussion 16. [Google Scholar] [CrossRef]
- Curtis, E.; Martin, J.R.; Gabel, B.; Sidhu, N.; Rzesiewicz, T.K.; Mandeville, R.; Van Gorp, S.; Leerink, M.; Tadokoro, T.; Marsala, S.; et al. A first-in-human, phase I study of neural stem cell transplantation for chronic spinal cord injury. Cell Stem Cell 2018, 22, 941–950.e6. [Google Scholar] [CrossRef] [Green Version]
- Weiss, J.N.; Levy, S.; Benes, S.C. Stem Cell Ophthalmology Treatment Study (SCOTS) for retinal and optic nerve diseases: A case report of improvement in relapsing auto-immune optic neuropathy. Neural Regen. Res. 2015, 10, 1507–1515. [Google Scholar]
- Weiss, J.N.; Levy, S.; Malkin, A. Stem Cell Ophthalmology Treatment Study (SCOTS) for retinal and optic nerve diseases: A preliminary report. Neural Regen. Res. 2015, 10, 982–988. [Google Scholar]
- Weiss, J.N.; Benes, S.C.; Levy, S. Stem Cell Ophthalmology Treatment Study (SCOTS): Improvement in serpiginous choroidopathy following autologous bone marrow derived stem cell treatment. Neural Regen. Res. 2016, 11, 1512–1516. [Google Scholar] [CrossRef]
- Weiss, J.N.; Levy, S.; Benes, S.C. Stem Cell Ophthalmology Treatment Study (SCOTS): Bone marrow-derived stem cells in the treatment of Leber’s hereditary optic neuropathy. Neural Regen. Res. 2016, 11, 1685–1694. [Google Scholar]
- Weiss, J.N.; Levy, S.; Benes, S.C. Stem Cell Ophthalmology Treatment Study: Bone marrow derived stem cells in the treatment of non-arteritic ischemic optic neuropathy (NAION). Stem Cell Investig. 2017, 4, 94. [Google Scholar] [CrossRef] [Green Version]
- Weiss, J.N.; Levy, S. Stem Cell Ophthalmology Treatment Study: Bone marrow derived stem cells in the treatment of Retinitis Pigmentosa. Stem Cell Investig. 2018, 5, 18. [Google Scholar] [CrossRef]
- Weiss, J.N.; Levy, S. Stem Cell Ophthalmology Treatment Study (SCOTS): Bone marrow derived stem cells in the treatment of Dominant Optic Atrophy. Stem Cell Investig. 2019, 6, 41. [Google Scholar] [CrossRef]
- Weiss, J.N.; Levy, S. Dynamic light scattering spectroscopy of the retina-a non-invasive quantitative technique to objectively document visual improvement following ocular stem cell treatment. Stem Cell Investig. 2019, 6, 8. [Google Scholar] [CrossRef]
- Weiss, J.N.; Levy, S. Stem Cell Ophthalmology Treatment Study (SCOTS): Bone marrow derived stem cells in the treatment of Usher syndrome. Stem Cell Investig. 2019, 6, 31. [Google Scholar] [CrossRef]
- Kang, S.K.; Shin, M.J.; Jung, J.S.; Kim, Y.G.; Kim, C.H. Autologous adipose tissue-derived stromal cells for treatment of spinal cord injury. Stem Cells Dev. 2006, 15, 583–594. [Google Scholar] [CrossRef]
- Zhang, H.T.; Luo, J.; Sui, L.S.; Ma, X.; Yan, Z.J.; Lin, J.H.; Wang, Y.S.; Chen, Y.Z.; Jiang, X.D.; Xu, R.X. Effects of differentiated versus undifferentiated adipose tissue-derived stromal cell grafts on functional recovery after spinal cord contusion. Cell. Mol. Neurobiol. 2009, 29, 1283–1292. [Google Scholar] [CrossRef]
- Oh, J.S.; Ha, Y.; An, S.S.; Khan, M.; Pennant, W.A.; Kim, H.J.; Yoon, D.H.; Lee, M.; Kim, K.N. Hypoxia-preconditioned adipose tissue-derived mesenchymal stem cell increase the survival and gene expression of engineered neural stem cells in a spinal cord injury model. Neurosci. Lett. 2010, 472, 215–219. [Google Scholar] [CrossRef]
- Oh, J.S.; Kim, K.N.; An, S.S.; Pennant, W.A.; Kim, H.J.; Gwak, S.J.; Yoon, D.H.; Lim, M.H.; Choi, B.H.; Ha, Y. Cotransplantation of mouse neural stem cells (mNSCs) with adipose tissue-derived mesenchymal stem cells improves mNSC survival in a rat spinal cord injury model. Cell Transplant. 2011, 20, 837–849. [Google Scholar] [CrossRef]
- Oh, J.S.; Park, I.S.; Kim, K.N.; Yoon, D.H.; Kim, S.H.; Ha, Y. Transplantation of an adipose stem cell cluster in a spinal cord injury. Neuroreport 2012, 23, 277–282. [Google Scholar] [CrossRef]
- Park, S.S.; Lee, Y.J.; Lee, S.H.; Lee, D.; Choi, K.; Kim, W.H.; Kweon, O.K.; Han, H.J. Functional recovery after spinal cord injury in dogs treated with a combination of Matrigel and neural-induced adipose-derived mesenchymal Stem cells. Cytotherapy 2012, 14, 584–597. [Google Scholar] [CrossRef]
- Dasari, V.R.; Veeravalli, K.K.; Dinh, D.H. Mesenchymal stem cells in the treatment of spinal cord injuries: A review. World J. Stem Cells 2014, 6, 120–133. [Google Scholar] [CrossRef]
- Bydon, M.; Dietz, A.B.; Goncalves, S.; Moinuddin, F.M.; Alvi, M.A.; Goyal, A.; Yolcu, Y.; Hunt, C.L.; Garlanger, K.L.; Del Fabro, A.S.; et al. CELLTOP clinical trial: First report from a phase 1 trial of autologous adipose tissue–derived mesenchymal stem cells in the treatment of paralysis due to traumatic spinal cord injury. Mayo Clin. Proc. 2020, 95, 406–414. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.Y.; Zhou, R.P.; Lu, K.W.; Jin, D.D. Lithium chloride combined with human umbilical cord blood mesenchymal stem cell transplantation for treatment of spinal cord injury in rats. Nan Fang Yi Ke Da Xue Xue Bao 2010, 30, 2436–2439. [Google Scholar]
- Zhu, H.; Poon, W.; Liu, Y.; Leung, G.K.; Wong, Y.; Feng, Y.; Ng, S.C.P.; Tsang, K.S.; Sun, D.T.F.; Yeung, D.K.; et al. Phase I–II clinical trial assessing safety and efficacy of umbilical cord blood mononuclear cell transplant therapy of chronic complete spinal cord injury. Cell Transplant. 2016, 25, 1925–1943. [Google Scholar] [CrossRef] [Green Version]
- Keirstead, H.S.; Nistor, G.; Bernal, G.; Totoiu, M.; Cloutier, F.; Sharp, K.; Steward, O. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J. Neurosci. 2005, 25, 4694–4705. [Google Scholar] [CrossRef]
- Nistor, G.I.; Totoiu, M.O.; Haque, N.; Carpenter, M.K.; Keirstead, H.S. Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia 2005, 49, 385–396. [Google Scholar] [CrossRef]
- Priest, C.A.; Manley, N.C.; Denham, J.; Wirth, E.D., 3rd; Lebkowski, J.S. Preclinical safety of human embryonic stem cell-derived oligodendrocyte progenitors supporting clinical trials in spinal cord injury. Regen. Med. 2015, 10, 939–958. [Google Scholar] [CrossRef] [Green Version]
- Manley, N.C.; Priest, C.A.; Denham, J.; Wirth, E.D., 3rd; Lebkowski, J.S. Human embryonic stem cell-derived oligodendrocyte progenitor cells: Preclinical efficacy and safety in cervical spinal cord injury. Stem Cells Transl. Med. 2017, 6, 1917–1929. [Google Scholar] [CrossRef]
- Nunley, P.D.; Coric, D.; Frank, K.A.; Stone, M.B. Cervical disc arthroplasty: Current evidence and real-world application. Neurosurgery 2018, 83, 1087–1106. [Google Scholar] [CrossRef] [Green Version]
- Van Norman, G.A. Drugs and devices: Comparison of European and U.S. approval processes. JACC Basic Transl. Sci. 2016, 1, 399–412. [Google Scholar] [CrossRef] [Green Version]
Identifier | Trial Name | Status | Intervention | Phase | Intervention Model | N | Inclusion Criteria: Age (Years) | Inclusion Criteria: AIS Scale | Inclusion Criteria: Time from Injury | Transplantation | Primary Outcome |
---|---|---|---|---|---|---|---|---|---|---|---|
NCT01328860 | Autologous Stem Cells for Spinal Cord Injury (SCI) in Children | Terminated | Autologous Bone Marrow Progenitor cells | 1 | Single Group Assignment | 10 | 1–15 | A–D | 6 months to 4 years | Intravenous | AIS |
NCT01162915 | Transfer of Bone Marrow Derived Stem Cells for the Treatment of Spinal Cord Injury | Suspended | Autologous bone marrow-derived mesenchymal stem cells. | 1 | Single Group Assignment | 10 | 18–65 | A | 2 weeks to 60 months | Intrathecal | Safety |
NCT03308565 | Adipose Stem Cells for Traumatic Spinal Cord Injury (CELLTOP) | Active, not recruiting | Autologous, Adipose derived Mesenchymal Stem Cells | 1 | Single Group Assignment | 10 | >18 | A–B | 2 weeks to 1 year | Intrathecal | Incidence of acute adverse events |
NCT01772810 | Safety Study of Human Spinal Cord-derived Neural Stem Cell Transplantation for the Treatment of Chronic SCI | Recruiting | Human spinal cord-derived neural stem cell | 1 | Single Group Assignment | 8 | 18–65 | A | 1 year to 2 years | Intramedullary | Adverse events and clinically significant laboratory abnormalities |
NCT03225625 | Stem Cell Spinal Cord Injury Exoskeleton and Virtual Reality Treatment Study (SciExVR) | Recruiting | Autologous bone marrow derived stem cells | NA | Parallel Assignment | 40 | >18 | A–D | NR | Paraspinal, Intravenous, Intranasal | AIS |
NCT02163876 | Study of Human Central Nervous System (CNS) Stem Cell Transplantation in Cervical Spinal Cord Injury | Terminated | Human central nervous system stem cell | 2 | Randomized Parallel Assignment | 31 | 18–60 | B–C | >12 weeks | Intramedullary | ISNCSCI upper extremity motor scores |
NCT03979742 | Umbilical Cord Blood Cell Transplant into Injured Spinal Cord with Lithium Carbonate or Placebo Followed by Locomotor Training | Not yet recruiting | Umbilical cord blood mononuclear stem cells | 2 | Randomized Parallel Assignment | 27 | 18–60 | A | >12 months | Intramedullary | Walking Index of Spinal Cord Injury (WISCI II) |
NCT02302157 | Dose Escalation Study of AST-OPC1 in Spinal Cord Injury | Completed | Human embryonic stem cell derived oligodendrocyte progenitor cells | 1/2a | Single Group Assignment | 25 | 18–69 | A–B | 21–42 days | Intramedullary | Adverse events |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Platt, A.; David, B.T.; Fessler, R.G. Stem Cell Clinical Trials in Spinal Cord Injury: A Brief Review of Studies in the United States. Medicines 2020, 7, 27. https://doi.org/10.3390/medicines7050027
Platt A, David BT, Fessler RG. Stem Cell Clinical Trials in Spinal Cord Injury: A Brief Review of Studies in the United States. Medicines. 2020; 7(5):27. https://doi.org/10.3390/medicines7050027
Chicago/Turabian StylePlatt, Andrew, Brian T. David, and Richard G. Fessler. 2020. "Stem Cell Clinical Trials in Spinal Cord Injury: A Brief Review of Studies in the United States" Medicines 7, no. 5: 27. https://doi.org/10.3390/medicines7050027
APA StylePlatt, A., David, B. T., & Fessler, R. G. (2020). Stem Cell Clinical Trials in Spinal Cord Injury: A Brief Review of Studies in the United States. Medicines, 7(5), 27. https://doi.org/10.3390/medicines7050027