Sexually Transmitted Neisseria gonorrhoeae Infections—Update on Drug Treatment and Vaccine Development
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Historical and Current Antibiotic Regimens for Treating Gonorrhea
3.2. Vaccine Development: Clinical Trials, Human Challenge Trials, and Observational Human Studies
3.3. Current Status of Neisseria gonorrhoeae Antigens for Vaccine Development
Target | Study Design | Functional Role | Immunogenic Effect or Drug Binding Potential | Candidate Antigen Attributes | References |
---|---|---|---|---|---|
Adherence and Invasion of Mucosal Epithelial Cells | |||||
Porin (PorB) | In vitro cell-based studies |
| Ability to form self-aggregating micellular structures (adjuvant effect); antibodies not cross-protective against heterologous strains | Antigenically variable surface-exposed sequences | [42,43,45] |
Type IV pilin | In vitro cell-based studies, immunization |
| Antibodies generated against synthetic peptides representing gonococcal pilin sequences blocked GC adhesion | Phase and antigenically variable | [40] |
Opacity associated (Opa) protein | In vitro cell-based studies, immunization |
| Bactericidal antibodies generated to linear hypervariable (HV2) Opa loop peptides | Phase variable | [41,44,54] |
Interaction of pilin-linked glycan with terminal galactose | Peptide library screening, in vitro cell-based studies |
| Methyldopa and carbamazepine blocked pilin glycan–CR3 I-domain interaction (host-targeted therapy) | Increased efficacy compared to ceftriaxone in curing cervical infection ex vivo | [62] |
Iron Acquisition | |||||
TbpA/B | Genetic chimera approach, mice |
| Elicited bactericidal Tbp-specific antibodies against homologous and heterologous strains | Conserved Tbp epitopes | [46] |
Immune Evasion and Virulence | |||||
MtrE | In vitro cell-based studies |
| Elicited bactericidal antibodies | Highly conserved, surface exposed | [49,50] |
NspA | In vitro cell-based studies, immunization |
| Elicited NspA-specific IgG and IgA antibodies with bactericidal and opsonic activities | Highly conserved, surface exposed | [47,48] |
Peptide mimic of glycan epitope (2C7) of GC LOS | Mouse model, in vitro cell-based studies |
| Elicited Th1-biased and bactericidal anti-LOS IgG antibodies | Conserved | [63,64,65] |
Peptide mimic of glycan epitope (2C7) of GC LOS | Preclinical experimental infection model |
| Elicited bactericidal antibodies and reduced duration/burden of gonococcal cervicovaginal colonization in mice | Conserved, immunogenic | [66] |
Vaccine/Drug Antigens Identified by In Silico and Proteomic Approaches | |||||
YP_208704.1 (DapD) | Codon biasing, subtractive genomics |
| Docking study indicated binding of ligand/drug molecule ZINC06311339 (C18H22N6S3) to active site | Essential, cytosolic | [67] |
NGO0690 | Reverse vaccinology, bioinformatics |
| Anti-NGO0690 antibodies bactericidal against all 4 diverse gonococcal strains tested (low bactericidal titers) | Largely conserved with a small range of allelic variability | [68] |
NGO0948 | Reverse vaccinology, bioinformatics |
| Anti-NGO0948 antibodies bactericidal against all 4 diverse gonococcal strains tested (low bactericidal titers) | Largely conserved with a small range of allelic variability | [68] |
NGO1043 | Reverse vaccinology, bioinformatics |
| Anti-NGO1043 antibodies exhibited low-titered bactericidal activity against 3/4 diverse gonococcal strains tested | Largely conserved with a small range of allelic variability | [68] |
NGO1701 | Reverse vaccinology, bioinformatics |
| Anti-NGO1701 antibodies bactericidal against all 4 diverse gonococcal strains tested (low bactericidal titers) | Largely conserved with a small range of allelic variability | [68] |
LptD (NGO1715) | Proteomics-driven reverse vaccinology |
| Elicited bactericidal antibodies | Highly conserved, surface exposed | [59] |
BamA (NGO1801) | Proteomics-driven reverse vaccinology |
| Elicited bactericidal antibodies | Highly conserved, surface exposed | [59] |
TamA (NGO1956) | Proteomics-driven reverse vaccinology |
| Elicited bactericidal antibodies | Highly conserved, surface exposed | [59] |
MetQ (NGO2139) | Proteomics-driven reverse vaccinology, bioinformatics, mouse model |
| Elicited bactericidal antibodies MetQ formulated with CpG (rMetQ-CpG) accelerated GC clearance from challenged mice and induced a protective immune response in mice | Highly conserved, surface exposed | [39,59,61] |
NGO2054 | Proteomics-driven reverse vaccinology |
| Elicited bactericidal antibodies | Highly conserved, surface exposed | [59] |
NGO0282 NGO0439 NGO1688 NGO1889 NGO2105 | Quantitative proteomic profiling of WHO reference strains † and FA6140 |
| ND | Conserved, localized to cell envelope or outer membrane fraction | [39] |
Metabolism and Oxidative Stress Protection | |||||
AniA | Mice, in vitro cell-based studies |
| Antibodies block nitrite reductase function in a whole-cell assay | Conserved, surface exposed | [51] |
MsrA/B | Mice, in vitro cell-based studies |
| Anti-MsrA/B antibodies mediate bactericidal and opsonophagocytic killing of GC; capable of functional blocking of MsrA/B activity | Highly conserved, surface exposed | [35] |
Lysogenic Phage | |||||
Filamentous bacteriophage (NgoΦfil) proteins | Rabbits, in vitro cell-based studies |
| Anti-phage IgG and IgA bound to surface of GC cells; sera exhibited bactericidal activity and blocked GC adherence to cervical epithelial cells | Phage genes present in all sequenced GC strains; phage proteins are surface exposed | [52] |
Inactivated Whole Cells | |||||
Inactivated whole-cell N. gonorrhoeae strain CDC-F62 | Nanotechnology, mouse model, in vitro cell-based studies |
| Induced antigen-specific IgG and antigen-specific adaptive cellular immunity (CD4 and CD8 lymphocytes) in mice | Immunogenic epitopes preserved | [33] |
Meningococcal Vaccines | |||||
Meningococcal serogroup B outer membrane vesicle (OMV) vaccine MeNZB | Retrospective case–control study |
| Associated with decreased rates of gonorrhea; vaccinated individuals were less likely to contract gonorrhea than unvaccinated controls | High genome identity between MEN and GC | [36] |
Meningococcal serogroup B OMV | Observational; analysis of public health statistics (1970–2017) |
| VA-MENGOC-BC could induce moderate cross-protection against N. gonorrhoeae infection | High genome identity between MEN and GC | [37] |
MeNZB OMV + 3 recombinant antigens (NadA, fHbp, NHBA) | Bioinformatics, polyclonal rabbit sera, human sera |
| Anti-gonococcal antibodies induced by MeNZB OMV; strong immune reactivity of anti-NHBA antibodies to GC | Diverse GC strains contain NHBA homolog; surface exposed | [38] |
3.4. Repurposed Drugs, Novel Drug Targets for Gonorrhea Treatment, and Nanomaterials as Drug Adjuvants
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Rice, P.A.; Shafer, W.M.; Ram, S.; Jerse, A.E. Neisseria gonorrhoeae: Drug resistance, mouse models, and vaccine development. Annu. Rev. Microbiol. 2017, 71, 665–686. [Google Scholar] [CrossRef] [Green Version]
- WHO. World Health Organization. WHO Guidelines for the Treatment of Neisseria Gonorrhoeae; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- Rowley, J.; Hoorn, S.V.; Korenromp, E.; Low, N.; Unemo, M.; Abu-Raddad, L.J.; Chico, R.M.; Smolak, A.; Newman, L.; Gottlieb, S.; et al. Chlamydia, gonorrhea, trichomoniasis and syphilis: Global prevalence and incidence estimates, 2016. Bull. World Health Organ. 2019, 97, 548–562. [Google Scholar] [CrossRef]
- Edwards, J.L.; Jennings, M.P.; Apicella, M.A.; Seib, K.L. Is gonococcal disease preventable? The importance of understanding immunity and pathogenesis in vaccine development. Crit. Rev. Microbiol. 2016, 42, 928–941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unemo, M.; Seifert, H.S.; Hook III, E.W.; Hawkes, S.; Ndowa, F.; Dillon, J.A.R. Gonorrhoea. Nat. Rev. Dis. Primers 2019, 5, 1–23. [Google Scholar] [CrossRef] [PubMed]
- CDC. Center for Disease Control and Prevention. Sexually Transmitted Disease Surveillance 2018; U.S. Department of Health and Human Services: Atlanta, GA, USA, 2019.
- Lovett, A.; Duncan, J.A. Human immune responses and the natural history of Neisseria gonorrhoeae infection. Front. Immunol. 2019, 9, 3187. [Google Scholar] [CrossRef]
- Stevens, J.S.; Criss, A.K. Pathogenesis of Neisseria gonorrhoeae in the female reproductive tract: Neutrophilic host response, sustained infection, and clinical sequelae. Curr. Opin. Hematol. 2018, 25, 13–21. [Google Scholar] [CrossRef]
- Woods, C.R. Gonococcal infections in neonates and young children. Semin. Ped. Infect. Dis. 2005, 16, 258–270. [Google Scholar] [CrossRef] [PubMed]
- Hook, E.W.; Hansfield, H.H. Gonococcal infection in the adult. In Sexually Transmitted Diseases; Holmes, K.K., Ed.; McGraw-Hill: New York, NY, USA, 2008; pp. 627–645. [Google Scholar]
- Fleming, D.T.; Wasserheit, J.N. From epidemiological synergy to public health policy and practice: The contribution of other sexually transmitted diseases to sexual transmission of HIV infection. Sex. Transm. Infect. 1999, 75, 3–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hedges, S.R.; Mayo, M.S.; Mestecky, J.; Hook, E.W., III; Russell, M.W. Limited local and systemic antibody responses to Neisseria gonorrhoeae during uncomplicated genital infections. Infect. Immun. 1999, 67, 3937–3946. [Google Scholar] [CrossRef] [Green Version]
- Apicella, M.A.; Westerink, M.A.; Morse, S.A.; Schneider, H.; Rice, P.A.; Griffiss, J.M. Bactericidal antibody response of normal human serum to the lipooligosaccharide of Neisseria gonorrhoeae. J. Infect. Dis. 1986, 153, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, R.; Maruyama, T.; Yabe, U.; Asuka, S. Normal human sera contain bactericidal IgG that binds to the oligosaccharide epitope expressed within lipooligosaccharides of Neisseria gonorrhoeae. J. Biochem. 2005, 137, 487–494. [Google Scholar] [CrossRef]
- Russell, M.W.; Jerse, A.E.; Gray-Owen, S.D. Progress toward a gonococcal vaccine: The way forward. Front. Immunol. 2019, 10, 2417. [Google Scholar] [CrossRef] [Green Version]
- Parsons, N.J.; Andrade, J.R.C.; Patel, P.V.; Cole, J.A.; Smith, H. Sialylation of lipopolysaccharide and loss of absorption of bactericidal antibody during conversion of gonococci to serum resistance by CMP-N-acetylneuraminic acid. Microb. Pathog. 1989, 7, 63–72. [Google Scholar] [CrossRef]
- Mandrell, R.E.; Apicella, M.A. Lipo-oligosaccharides (LOS) of mucosal pathogens: Molecular mimicry and host-modification of LOS. Immunobiology 1993, 187, 382–402. [Google Scholar] [CrossRef]
- Rice, P.A.; Vayo, H.E.; Tan, M.R.; Blake, M.S. Immunoglobulin G antibodies directed against protein III block killing of serum-resistant Neisseria gonorrhoeae by immune serum. J. Exp. Med. 1986, 164, 1735–1748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Islam, E.A.; Jarvis, G.A.; Gray-Owen, S.D.; Russell, M.W. Neisseria gonorrhoeae selectively suppresses the development of Th1 and Th2 cells, and enhances Th17 cell responses, through TGF-beta-dependent mechanisms. Mucosal Immunol. 2012, 5, 320–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Liu, W.; Russell, M.W. Suppression of host adaptive immune responses by Neisseria gonorrhoeae: Role of interleukin 10 and type 1 regulatory T cells. Mucosal Immunol. 2014, 7, 165–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Russell, M.W. Diversion of the immune response to Neisseria gonorrhoeae from Th17 to Th1/Th2 by treatment with anti-transforming growth factor beta antibody generates immunological memory and protective immunity. mBio 2011, 2, e00095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barry, P.M.; Klausner, J.D. The use of cephalosporins for gonorrhea: The impending problem of resistance. Expert Opin. Pharmacother. 2009, 10, 555–577. [Google Scholar] [CrossRef] [Green Version]
- Unemo, M. Current and future antimicrobial treatment of gonorrhoea − the rapidly evolving Neisseria gonorrhoeae continues to challenge. BMC Infect. Dis. 2015, 15, 364. [Google Scholar] [CrossRef] [Green Version]
- Ohnishi, M.; Golparian, D.; Shimuta, K.; Saika, T.; Hoshina, S.; Iwasaku, K.; Nakayama, S.; Kitawaki, J.; Unemo, M. Is Neisseria gonorrhoeae initiating a future era of untreatable gonorrhea?: Detailed characterization of the first strain with high-level resistance to ceftriaxone. Antimicrob. Agents Chemother. 2011, 55, 3538–3545. [Google Scholar] [CrossRef] [Green Version]
- Unemo, M.; Shafer, W. Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: Past, evolution, and future. Clin. Microbiol. Rev. 2014, 27, 587–613. [Google Scholar] [CrossRef] [Green Version]
- Fifer, H.; Natarajan, U.; Jones, L.; Alexander, S.; Hughes, G.; Golparian, D.; Unemo, M. Failure of dual antimicrobial therapy in treatment of gonorrhea. N. Engl. J. Med. 2016, 374, 2504–2546. [Google Scholar] [CrossRef]
- Whiley, D.M.; Jennison, A.; Pearson, J.; Lahra, M.M. Genetic characterization of Neisseria gonorrhoeae resistant to both ceftriaxone and azithromycin. Lancet Infect. Dis. 2018, 18, 717–718. [Google Scholar] [CrossRef]
- Eyre, J.W.H.; Stewart, B.H. The treatment of gonococcus infections by vaccines. Lancet 1909, 174, 76–81. [Google Scholar] [CrossRef] [Green Version]
- Greenberg, L.; Diena, B.B.; Ashton, F.A.; Wallace, R.; Kenny, C.P.; Znamirowski, R.; Ferrari, H.; Atkinson, J. Gonococcal vaccine studies in Inuvik. Can. J. Public Health 1974, 65, 29–33. [Google Scholar] [PubMed]
- Boslego, J.W.; Tramont, E.C.; Chung, R.C.; McChesney, D.G.; Ciak, J.; Sadoff, J.C.; Piziak, M.V.; Brown, J.D.; Brinton, C.C., Jr.; Wood, S.W.; et al. Efficacy trial of a parenteral gonococcal pilus vaccine in men. Vaccine 1991, 9, 154–162. [Google Scholar] [CrossRef]
- Tramont, E.C. Gonococcal vaccines. Clin. Microbiol. Rev. 1989, 2, S74–S77. [Google Scholar] [CrossRef] [PubMed]
- Jiao, H.; Yang, H.; Zhao, D.; Chen, J.; Zhang, Q.; Liang, J.; Yin, Y.; Kong, G.; Li, G. Design and immune characterization of a novel Neisseria gonorrhoeae DNA vaccine using bacterial ghosts as vector and adjuvant. Vaccine 2018, 36, 4532–4539. [Google Scholar] [CrossRef]
- Gala, R.P.; Zaman, R.U.; D’Souza, M.J.; Zughaier, S.M. Novel whole-cell inactivated Neisseria gonorrhoeae microparticles as vaccine formulation in microneedle-based transdermal immunization. Vaccines 2018, 6, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tinsley, C.R.; Nassif, X. Analysis of the genetic differences between Neisseria meningitidis and Neisseria gonorrhoeae: Two closely related bacteria expressing two different pathogenicities. Proc. Natl. Acad. Sci. USA 1996, 93, 11109–11114. [Google Scholar] [CrossRef] [Green Version]
- Jen, F.E.C.; Semchenko, E.A.; Day, C.J.; Seib, K.L.; Jennings, M.P. The Neisseria gonorrhoeae methionine sulfoxide reductase (MsrA/B) is a surface exposed, immunogenic, vaccine candidate. Front. Immunol. 2019, 10, 137. [Google Scholar] [CrossRef] [PubMed]
- Petousis-Harris, H.; Paynter, J.; Morgan, J.; Saxton, P.; McArdle, B.; Goodyear-Smith, F.; Black, S. Effectiveness of a group B outer membrane vesicle meningococcal vaccine against gonorrhoea in New Zealand: A retrospective case-control study. Lancet 2017, 390, 1603–1610. [Google Scholar] [CrossRef]
- Azze, R.F.O. A meningococcal B vaccine induces cross-protection against gonorrhea. Clin. Exp. Vaccine Res. 2019, 8, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Semchenko, E.A.; Tan, A.; Borrow, R.; Seib, K.L. The serogroup B meningococcal vaccine Bexsero elicits antibodies to Neisseria gonorrhoeae. Clin. Infect. Dis. 2019, 69, 1101–1111. [Google Scholar] [CrossRef]
- El-Rami, F.E.; Zielke, R.A.; Wi, T.; Sikora, A.E.; Unemo, M. Quantitative proteomics of the 2016 WHO Neisseria gonorrhoeae reference strains surveys vaccine candidates and antimicrobial resistance determinants. Mol. Cell. Proteomics 2019, 18, 127–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rothbard, J.B.; Fernandez, R.; Wang, L.; Teng, N.N.H.; Schoolnik, G.K. Antibodies to peptides corresponding to a conserved sequence of gonococcal pilins block bacterial adhesion. Proc. Natl. Acad. Sci. USA 1985, 82, 915–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, T.; Grunert, F.; Medina-Marino, A.; Gotschlich, E.C. Several carcinoembryonic antigens (CD66) serve as receptors for gonococcal opacity proteins. J. Exp. Med 1997, 185, 1557–1564. [Google Scholar] [CrossRef]
- Ram, S.; Cullinane, M.; Blom, A.M.; Gulati, S.; McQuillen, D.P.; Monks, B.G.; O’Connell, C.; Boden, R.; Elkins, C.; Pangburn, M.K.; et al. Binding of C4b-binding protein to porin: A molecular mechanism of serum resistance of Neisseria gonorrhoeae. J. Exp. Med. 2001, 193, 281–296. [Google Scholar] [CrossRef] [Green Version]
- Kuhlewein, C.; Rechner, C.; Meyer, T.F.; Rudel, T. Low-phosphate-dependent invasion resembles a general way for Neisseria gonorrhoeae to enter host cells. Infect. Immun. 2006, 74, 4266–4273. [Google Scholar] [CrossRef] [Green Version]
- Cole, J.G.; Jerse, A.E. Functional characterization of antibodies against Neisseria gonorrhoeae opacity protein loops. PLoS ONE 2009, 4, e8108. [Google Scholar] [CrossRef] [Green Version]
- Yuen, R.; Kuniholm, J.; Lisk, C.; Wetzler, L.M. Neisserial PorB immune enhancing activity and use as a vaccine adjuvant. Hum. Vaccin. Immunother. 2019, 15, 2778–2781. [Google Scholar] [CrossRef]
- Price, G.A.; Masri, H.P.; Hollander, A.M.; Russell, M.W.; Cornelissen, C.N. Gonococcal transferrin binding protein chimeras induce bacteriocidal and growth inhibitory antibodies in mice. Vaccine 2007, 25, 7247–7260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, G.; Jiao, H.; Jiang, G.; Wang, J.; Zhu, L.; Xie, R.; Yan, H.; Chen, H.; Ji, M. Neisseria gonorrhoeae NspA induces specific bactericidal and opsonic antibodies in mice. Clin. Vaccine Immunol. 2011, 18, 1817–1822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, L.A.; Rice, P.A.; Ram, S. Role of gonococcal neisserial surface protein A (NspA) in serum resistance and comparison of its factor H binding properties with those of its meningococcal counterpart. Infect. Immun. 2019, 87, e00658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Handing, J.W.; Ragland, S.A.; Bharathan, U.V.; Criss, A.K. 2018. The MtrCDE efflux pump contributes to survival of Neisseria gonorrhoeae from human neutrophils and their antimicrobial components. Front. Microbiol. 2018, 9, 2688. [Google Scholar] [CrossRef]
- Wang, S.; Xue, J.; Lu, P.; Ni, C.; Cheng, H.; Han, R.; van der Veen, S. Gonococcal MtrE and its surface-expressed loop 2 are immunogenic and elicit bactericidal antibodies. J. Infect. 2018, 77, 191–204. [Google Scholar] [CrossRef]
- Shewell, L.K.; Ku, S.C.; Schulz, B.L.; Jen, F.E.; Mubaiwa, T.D.; Ketterer, M.R.; Apicella, M.A.; Jennings, M.P. Recombinant truncated AniA of pathogenic Neisseria elicits a non-native immune response and functional blocking antibodies. Biochem. Biophys. Res. Commun. 2013, 431, 215–220. [Google Scholar] [CrossRef] [Green Version]
- Kłyż, A.; Piekarowicz, A. Phage proteins are expressed on the surface of Neisseria gonorrhoeae and are potential vaccine candidates. PLoS ONE 2018, 13, e0202437. [Google Scholar] [CrossRef]
- Quillin, S.J.; Seifert, H.S. Neisseria gonorrhoeae host adaptation and pathogenesis. Nat. Rev. Microbiol. 2018, 16, 226–240. [Google Scholar] [CrossRef]
- Virji, M.; Makepeace, K.; Ferguson, D.J.P.; Watt, S. Carcinoembryonic antigens (CD66) on epithelial cells and neutrophils are receptors for Opa proteins of pathogenic Neisseriae. Mol. Microbiol. 1996, 22, 941–950. [Google Scholar] [CrossRef]
- Jerse, A.E.; Sharma, N.D.; Simms, A.N.; Crow, E.T.; Snyder, L.A.; Shafer, W.M. A gonococcal efflux pump system enhances bacterial survival in a female mouse model of genital tract infection. Infect. Immun. 2003, 71, 5576–5582. [Google Scholar] [CrossRef] [Green Version]
- Warner, D.M.; Folster, J.P.; Shafer, W.M.; Jerse, A.E. Regulation of the MtrC-MtrD-MtrE efflux-pump system modulates the in vivo fitness of Neisseria gonorrhoeae. J. Infect. Dis. 2007, 196, 1804–1812. [Google Scholar] [CrossRef] [Green Version]
- Warner, D.M.; Shafer, W.M.; Jerse, A.E. Clinically relevant mutations that cause derepression of the Neisseria gonorrhoeae MtrC-MtrD-MtrE efflux pump system confer different levels of antimicrobial resistance and in vivo fitness. Mol. Microbiol. 2008, 70, 462–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baarda, B.I.; Martinez, F.G.; Sikora, A.E. Proteomics, bioinformatics and structure-function antigen mining for gonorrhea vaccines. Front. Immunol. 2018, 9, 2793. [Google Scholar] [CrossRef] [PubMed]
- Zielke, R.A.; Wierzbicki, I.H.; Baarda, B.I.; Gafken, P.R.; Soge, O.O.; Holmes, K.K.; Jerse, A.E.; Unemo, M.; Sikora, A.E. Proteomics-driven antigen discovery for development of vaccines against gonorrhea. Mol. Cell. Proteomics 2016, 15, 2338–2355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semchenko, E.A.; Day, C.J.; Seib, K.L. MetQ of Neisseria gonorrhoeae is a surface-expressed antigen that elicits bactericidal and functional blocking antibodies. Infect. Immun. 2017, 85, e00898. [Google Scholar] [CrossRef] [Green Version]
- Sikora, A.E.; Gomez, C.; Van, A.L.; Baarda, B.I.; Darnell, S.; Martinez, F.G.; Zielke, R.A.; Bonventre, J.A.; Jerse, A.E. A novel gonorrhea vaccine composed of MetQ lipoprotein formulated with CpG shortens experimental murine infection. Vaccine 2020, 38, 8175–8184. [Google Scholar] [CrossRef]
- Poole, J.; Day, C.J.; Haselhorst, T.; Jen, F.E.C.; Torres, V.J.; Edwards, J.L.; Jennings, M.P. Repurposed drugs that block the gonococcus-complement receptor 3 interaction can prevent and cure gonococcal infection of primary human cervical epithelial cells. mBio 2020, 11, e03046. [Google Scholar] [CrossRef] [Green Version]
- Gulati, S.; McQuillen, D.P.; Mandrell, R.E.; Jani, D.B.; Rice, P.A. Immunogenicity of Neisseria gonorrhoeae lipooligosaccharide epitope 2C7, widely expressed in vivo with no immunochemical similarity to human glycosphingolipids. J. Infect. Dis. 1996, 174, 1223–1237. [Google Scholar] [CrossRef]
- Ngampasutadol, J.; Rice, P.A.; Walsh, M.T.; Gulati, S. Characterization of a peptide vaccine candidate mimicking an oligosaccharide epitope of Neisseria gonorrhoeae and resultant immune responses and function. Vaccine 2006, 24, 157–170. [Google Scholar] [CrossRef] [PubMed]
- Gulati, S.; Zheng, B.; Reed, G.W.; Su, X.; Cox, A.D.; St. Michael, F.; Stupak, J.; Lewis, L.A.; Ram, S.; Rice, P.A. Immunization against a saccharide epitope accelerates clearance of experimental gonococcal infection. PLoS Pathog. 2013, 9, e1003559. [Google Scholar] [CrossRef] [PubMed]
- Gulati, S.; Pennington, M.W.; Czerwinski, A.; Carter, D.; Zheng, B.; Nowak, N.A.; DeOliveira, R.B.; Shaughnessy, J.; Reed, G.W.; Ram, S.; et al. Preclinical efficacy of a lipooligosaccharide peptide mimic candidate gonococcal vaccine. mBio 2019, 10, e02552. [Google Scholar] [CrossRef] [Green Version]
- Tanwer, P.; Kolora, S.R.R.; Babbar, A.; Saluja, D.; Chaudhry, U. Identification of potential therapeutic targets in Neisseria gonorrhoeae by an in-silico approach. J. Theor. Biol. 2020, 490, 110172. [Google Scholar] [CrossRef]
- Zhu, T.; McClure, R.; Harrison, O.B.; Genco, C.; Massari, P. Integrated bioinformatic analyses and immune characterization of new Neisseria gonorrhoeae vaccine antigens expressed during natural mucosal infection. Vaccines 2019, 7, 153. [Google Scholar] [CrossRef] [Green Version]
- Edwards, J.L.; Brown, E.J.; Uk-Nham, S.; Cannon, J.G.; Blake, M.S.; Apicella, M.A. A co-operative interaction between Neisseria gonorrhoeae and complement receptor 3 mediates infection of primary cervical epithelial cells. Cell Microbiol. 2002, 4, 571–584. [Google Scholar] [CrossRef] [PubMed]
- Jennings, M.P.; Jen, F.E.; Roddam, L.F.; Apicella, M.A.; Edwards, J.L. Neisseria gonorrhoeae pilin glycan contributes to CR3 activation during challenge of primary cervical epithelial cells. Cell Microbiol. 2011, 13, 885–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barh, D.; Kumar, A. In silico identification of candidate drug and vaccine targets from various pathways in Neisseria gonorrhoeae. In Silico Biol. 2009, 9, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Otvos, L.; Wade, J.D. Current challenges in peptide-based drug discovery. Front. Chem. 2014, 2, 62. [Google Scholar] [CrossRef]
- Zhan, J.; Jia, H.; Semchenko, E.A.; Bian, Y.; Zhou, A.M.; Li, Z.; Yang, Y.; Wang, J.; Sarkar, S.; Totsika, M.; et al. Self-derived structure-disrupting peptides targeting methionine aminopeptidase in pathogenic bacteria: A new strategy to generate antimicrobial peptides. FASEB J. 2019, 33, 2095–2104. [Google Scholar] [CrossRef] [Green Version]
- Li, L.H.; Yen, M.Y.; Ho, C.C.; Wu, P.; Wang, C.C.; Maurya, P.K.; Chen, P.S.; Chen, W.; Hsieh, W.Y.; Chen, H.W. Non-cytotoxic nanomaterials enhance antimicrobial activities of cefmetazole against multidrug-resistant Neisseria gonorrhoeae. PLoS ONE 2013, 8, e64794. [Google Scholar] [CrossRef]
- Damelin, L.H.; Fernandes, M.A.; Tiemessen, C.T. Alginate microbead-encapsulated silver complexes for selective delivery of broad-spectrum silver-based microbicides. Int. J. Antimicrob. Agents. 2015, 46, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Gianecini, R.; Oviedo, C.; Stafforini, G.; Galarza, P. Neisseria gonorrhoeae resistant to ceftriaxone and cefixime, Argentina. Emerg. Infect. Dis. 2016, 22, 1139–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lefebvre, B.; Martin, I.; Demczuk, W.; Deshaies, L.; Michaud, S.; Labbé, A.C.; Beaudoin, M.C.; Longtin, J. Ceftriaxone-resistant Neisseria gonorrhoeae, Canada, 2017. Emerg. Infect. Dis. 2018, 24, 381–383. [Google Scholar] [CrossRef] [Green Version]
- Craig, A.P.; Gray, R.T.; Edwards, J.L.; Apicella, M.A.; Jennings, M.P.; Wilson, D.P.; Seib, K.L. The potential impact of vaccination on the prevalence of gonorrhea. Vaccine 2015, 33, 4520–4525. [Google Scholar] [CrossRef]
- Taylor-Robinson, D.; Furr, P.M.; Hetherington, C.M. Neisseria gonorrhoeae colonises the genital tract of oestradiol-treated germ-free female mice. Microb. Pathog. 1990, 9, 369–373. [Google Scholar] [CrossRef]
- Jerse, A.E. Experimental gonococcal genital tract infection and opacity protein expression in estradiol-treated mice. Infect. Immun. 1999, 67, 5699–5708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, W.; Chen, C.J.; Thomas, C.E.; Anderson, J.E.; Sparling, P.F.; Jerse, A.E. Vaccines for gonorrhea: Can we rise to the challenge? Front. Microbiol. 2011, 2, 124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plante, M.; Jerse, A.; Hamel, J.; Couture, F.; Rioux, C.R.; Brodeur, B.R.; Martin, D. Intranasal immunization with gonococcal outer membrane preparations reduces the duration of vaginal colonization of mice by Neisseria gonorrhoeae. J. Infect. Dis. 2000, 182, 848–855. [Google Scholar] [CrossRef]
- Dorr, P.; Westby, M.; Dobbs, S.; Griffin, P.; Irvine, B.; Macartney, M.; Mori, J.; Rickett, G.; Smith-Burchnell, C.; Napier, C.; et al. Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity. Antimicrob. Agents Chemother. 2005, 49, 4721–4732. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jefferson, A.; Smith, A.; Fasinu, P.S.; Thompson, D.K. Sexually Transmitted Neisseria gonorrhoeae Infections—Update on Drug Treatment and Vaccine Development. Medicines 2021, 8, 11. https://doi.org/10.3390/medicines8020011
Jefferson A, Smith A, Fasinu PS, Thompson DK. Sexually Transmitted Neisseria gonorrhoeae Infections—Update on Drug Treatment and Vaccine Development. Medicines. 2021; 8(2):11. https://doi.org/10.3390/medicines8020011
Chicago/Turabian StyleJefferson, Amber, Amanda Smith, Pius S. Fasinu, and Dorothea K. Thompson. 2021. "Sexually Transmitted Neisseria gonorrhoeae Infections—Update on Drug Treatment and Vaccine Development" Medicines 8, no. 2: 11. https://doi.org/10.3390/medicines8020011