Wen Dan Tang: A Potential Jing Fang Decoction for Headache Disorders?
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Inclusion Criteria
3. Results
4. Discussion
4.1. Alkaloids
4.2. Phenols
4.3. Isoflavonoids
4.4. Liquiritin, Liquiritingenin, and Isoliquiritigenin
4.5. Triterpenes
4.6. Organic Acids
4.7. Polysaccharides
4.8. Alternative Therapies
4.8.1. Acupuncture
4.8.2. Topical Medicines
4.9. Western Medicine
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- NATCM. 2018. Available online: http://kjs.satcm.gov.cn/zhengcewenjian/2018-04-16/7107.html (accessed on 14 September 2020).
- Zhang, B.; Qi, D.; Deng, X.; Ma, Z.; Wu, Y.; Xue, Z.; Kebebe, D.; Lu, P.; Pi, J.; Guo, P. Quantification of nineteen bioactive components in the ancient classical Chinese medicine formula of Wen-Dan decoction and its commercial preparations by UHPLC-QQQ-MS/MS. Molecules 2019, 24, 2031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, T.; Tan, Y.; Tsui, M.-S.; Yi, H.; Fu, X.-Q.; Li, T.; Chan, C.L.; Guo, H.; Li, Y.-X.; Zhu, P.-L.; et al. Metabolomics reveals the mechanisms for the cardiotoxicity of Pinelliae Rhizoma and the toxicity-reducing effect of processing. Sci. Rep. 2016, 6, 34692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seok, J.K.; Kwak, J.Y.; Seo, H.H.; Suh, H.J.; Boo, Y.C. Effects of Bambusae caulis in Taeniam extract on the UVB-induced cell death, oxidative stress and matrix metalloproteinase 1 expression in keratinocytes. J. Soc. Cosmet. Sci. Korea 2015, 41, 9–20. [Google Scholar]
- Kim, A.; Im, M.; Yim, N.-H.; Jung, Y.P.; Ma, J.Y. Aqueous extract of Bambusae Caulis in Taeniam inhibits PMA-induced tumor cell invasion and pulmonary metastasis: Suppression of NF-κB activation through ROS signaling. PLoS ONE 2013, 8, e78061. [Google Scholar] [CrossRef]
- Fang, Y.-S.; Shan, D.-M.; Liu, J.-W.; Xu, W.; Li, C.-L.; Wu, H.-Z.; Ji, G. Effect of constituents from Fructus Aurantii Immaturus and Radix Paeoniae Alba on gastrointestinal movement. Planta Med. 2009, 75, 24–31. [Google Scholar] [CrossRef]
- Tan, W.; Li, Y.; Wang, Y.; Zhang, Z.; Wang, T.; Zhou, Q.; Wang, X. Anti-coagulative and gastrointestinal motility regulative activities of Fructus Aurantii Immaturus and its effective fractions. Biomed. Pharmacother. 2017, 90, 244–252. [Google Scholar] [CrossRef]
- Shi, Q.; Liu, Z.; Yang, Y.; Geng, P.; Zhu, Y.; Zhang, Q.; Bai, F.; Bai, G. Identification of anti-asthmatic compounds in Pericarpium citri reticulatae and evaluation of their synergistic effects. Acta Pharmacol. Sin. 2009, 30, 567–575. [Google Scholar] [CrossRef] [Green Version]
- Luo, M.; Luo, H.; Hu, P.; Yang, Y.; Wu, B.; Zheng, G. Evaluation of chemical components in Citri Reticulatae Pericarpium of different cultivars collected from different regions by GC–MS and HPLC. Food Sci. Nutr. 2018, 6, 400–416. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Chen, L.; Li, F.; Liu, S.; Chen, H.; Liu, Y. The increase of flavonoids in Pericarpium Citri Reticulatae (PCR) induced by fungi promotes the increase of antioxidant activity. Evid.-Based Complement. Altern. Med. 2018, 2018, 2506037. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Guo, J.; Zhu, K.Y.; Tao, W.; Chen, Y.; Liu, P.; Hua, Y.; Tang, Y.; Duan, J.-A. How impaired efficacy happened between Gancao and Yuanhua: Compounds, targets and pathways. Sci. Rep. 2017, 7, 3828. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Zhou, T.; Wu, F.; Wang, R.; Zhao, Q.; Zhang, J.-Q.; Yang, B.-C.; Ma, B.-L. Pharmacokinetic mechanisms underlying the detoxification effect of Glycyrrhizae Radix et Rhizoma (Gancao): Drug metabolizing enzymes, transporters, and beyond. Expert Opin. Drug Metab. Toxicol. 2019, 15, 167–177. [Google Scholar] [CrossRef]
- Ríos, J.-L. Chemical constituents and pharmacological properties of Poria cocos. Planta Med. 2011, 77, 681–691. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Huang, C.; Zhao, Y.; Wang, L.; Yang, Y.; Wang, A.; Zhang, Y.; Hu, G.; Jia, J. Comparative studies on polysaccharides, triterpenoids, and essential oil from fermented mycelia and cultivated sclerotium of a medicinal and edible mushroom, Poria Cocos. Molecules 2020, 25, 1269. [Google Scholar] [CrossRef] [Green Version]
- Chrubasik, S.; Pittler, M.H.; Roufogalis, B.D. Zingiberis rhizoma: A comprehensive review on the ginger effect and efficacy profiles. Phytomedicine 2005, 12, 684–701. [Google Scholar] [CrossRef]
- Dong, Y.; Yao, K.-W.; Wang, J. Pharmacological effects and clinical applications of Zingiber officinale and its processed products. China J. Chin. Mater. Med. 2018, 43, 2020–2024. [Google Scholar]
- Lam, C.T.W.; Chan, P.H.; Lee, P.S.C.; Lau, K.M.; Kong, A.Y.Y.; Gong, A.G.W.; Xu, M.L.; Lam, K.Y.C.; Dong, T.T.X.; Lin, H. Chemical and biological assessment of Jujube (Ziziphus jujuba)-containing herbal decoctions: Induction of erythropoietin expression in cultures. J. Chromatogr. B 2016, 1026, 254–262. [Google Scholar] [CrossRef]
- Chen, J.; Liu, X.; Li, Z.; Qi, A.; Yao, P.; Zhou, Z.; Dong, T.T.X.; Tsim, K.W.K. A review of dietary Ziziphus jujuba fruit (Jujube): Developing health food supplements for brain protection. Evid.-Based Complement. Altern. Med. 2017, 2017, 3019568. [Google Scholar] [CrossRef] [Green Version]
- Deng, H.; Xu, J. Wendan decoction (Traditional Chinese medicine) for schizophrenia. Cochrane Database Syst. Rev. 2017. [Google Scholar] [CrossRef]
- Chen, J.K.; Chen, T.T. Chinesische Pharmakologie II. Rezepturen und Therapiestrategien; John, K., Ed.; Verlag Systemische Medizin: Bad Kötzting, Germany, 2009. [Google Scholar]
- Song, Y.; Li, F.; Liu, Y.; Ma, J.; Mao, M.; Wu, F. Effects of Wen Dan Tang on insomnia-related anxiety and levels of the brain-gut peptide Ghrelin. Neural Regen. Res. 2014, 9, 205. [Google Scholar] [CrossRef]
- Wang, Y.-N.; Hou, Y.-Y.; Sun, M.-Z.; Zhang, C.-Y.; Bai, G.; Zhao, X. Behavioural screening of zebrafish using neuroactive traditional Chinese medicine prescriptions and biological targets. Sci. Rep. 2014, 4, 5311. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Yang, F.; Kang, J.; Gan, H.; Lai, X.; Gao, Y. Metabolomic investigation into molecular mechanisms of a clinical herb prescription against metabolic syndrome by a systematic approach. RSC Adv. 2017, 7, 55389–55399. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Zhao, K. Treatment of insomnia with traditional chinese herbal medicine. Int. Rev. Neurobiol. 2017, 135, 97–115. [Google Scholar] [CrossRef]
- Huang, Y.-M.; Xu, J.-H.; Ling, W.; Li, Y.; Zhang, X.-X.; Dai, Z.-K.; Sui, Y.; Zhao, H.-L. Efficacy of the wen dan decoction, a Chinese herbal formula, for metabolic syndrome. Altern. Ther. Health Med. 2015, 21, 54–67. [Google Scholar]
- Ling, W.; Huang, Y.; Xu, J.-H.; Li, Y.; Huang, Y.-M.; Ling, H.-B.; Sui, Y.; Zhao, H.-L. Consistent Efficacy of Wendan Decoction for the Treatment of Digestive Reflux Disorders. Am. J. Chin. Med. 2015, 43, 893–913. [Google Scholar] [CrossRef]
- Yan, X.; Wang, Y.; Li, X.; Li, Z.; Zhang, Y.; Cai, X.; Wang, D. Wendan decoction for primary insomnia: Protocol for a systematic review and meta-analysis. Medicine 2017, 96, e8906. [Google Scholar] [CrossRef]
- Lan, T.-H.; Zhang, L.-L.; Wang, Y.-H.; Wu, H.-L.; Xu, D.-P. Systems Pharmacology Dissection of Traditional Chinese Medicine Wen-Dan Decoction for Treatment of Cardiovascular Diseases. Evid.-Based Complement. Altern. Med. 2018, 2018, 5170854. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-E.; Lim, C.; Lee, M.; Kim, C.-H.; Kim, H.; Lee, B.; Cho, S. Assessing Neuroprotective Effects of Glycyrrhizae Radix et Rhizoma Extract Using a Transient Middle Cerebral Artery Occlusion Mouse Model. J. Vis. Exp. 2018, 142, e58454. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Song, Y.; Li, F.; He, X.; Ma, J.; Feng, T.; Guan, B.; Wang, L.; Li, S.; Liu, X.; et al. Wen-dan decoction improves negative emotions in sleep-deprived rats by regulating orexin-a and leptin expression. Evid.-Based Complement. Altern. Med. 2014, 2014, 872547. [Google Scholar] [CrossRef]
- Feng, W.; Ye, X.; Lv, H.; Hou, C.; Chen, Y. Wendan decoction for dyslipidemia: Protocol for a systematic review and meta-analysis. Medicine 2019, 98, e14159. [Google Scholar] [CrossRef]
- Xu, J.-H.; Huang, Y.-M.; Ling, W.; Li, Y.; Wang, M.; Chen, X.-Y.; Sui, Y.; Zhao, H.-L. Wen Dan Decoction for hemorrhagic stroke and ischemic stroke. Complement. Ther. Med. 2015, 23, 298–308. [Google Scholar] [CrossRef]
- Min, L.; Liang, Y. Sun Simiao, super physician of the Tang Dynasty. J. Tradit. Chin. Med. Sci. 2015, 2, 69–70. [Google Scholar] [CrossRef] [Green Version]
- Unschuld, P.U. Der Chinesische “Arzneikönig” Sun Simiao Geschichte—Legende—Ikonographie Zur Plausibilität Naturkundlicher und Übernatürlicher Erklärungsmodelle. Monum. Serica 1994, 42, 217–257. [Google Scholar] [CrossRef]
- Shen, X.; Zheng, W.; Ma, M.; Zhang, Z. The classification method of syndromes in the Bei ji qian jin yao fang (essential recipes for emergent use worth a thousand gold). Zhonghua Yi Shi Za Zhi Beijing China 2014, 44, 77–80. [Google Scholar]
- Dr. Noyer. AG/TCM., Dr Noyer. Available online: https://www.drnoyertcm.com/de/tcm-arzneimittel/dr-noyer-tcm-tropfen (accessed on 12 August 2020).
- Stovner, L.J.; Nichols, E.; Steiner, T.J.; Abd-Allah, F.; Abdelalim, A.; Al-Raddadi, R.M. Global, regional, and national burden of migraine and tension-type headache, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018, 17, 954–976. [Google Scholar] [CrossRef] [Green Version]
- Sokolovic, E.; Riederer, F.; Szucs, T.; Agosti, R.; Sándor, P.S. Self-reported headache among the employees of a Swiss university hospital: Prevalence, disability, current treatment, and economic impact. J. Headache Pain 2013, 26, 14–29. [Google Scholar] [CrossRef] [Green Version]
- Arnold, M. Headache classification committee of the international headache society (ihs) the international classification of headache disorders. Cephalalgia 2018, 38, 1–211. [Google Scholar]
- Pradhan, S.K. Komplementärmedizinische Behandlung von Kopfschmerz am Beispiel der Akupunktur. Schweiz. Z. Für Psychiatr. Neurol. 2020, 3, 42–43. [Google Scholar]
- Wang, Q.; Yang, J.; Gao, S. The Teaching of Acupuncture and Moxibustion. In Tou Teng (Headache); Zhong Guo Zho Yi Yao Chu Ban She: Beijing, China, 2007. [Google Scholar]
- Rizzoli, P.; Mullally, W.J. Headache. Am. J. Med. 2018, 131, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Jing, F.; Shi, Y.; Shou, C. Jing Fang User Manual, 2nd ed.; Zhong Guo Zho Yi Yao Chu Ban She: Beijing, China, 2015; pp. 116–117. [Google Scholar]
- Li, J.; Wang, Y.; He, D.; Fang, J.X. Prescriptions of Chinese Materia Medica; Zhong Guo Zho Yi Yao Chu Ban She: Beijing, China, 2022. [Google Scholar]
- Giovanni, M. The Foundations of Chinese Medicine: A Comprehensive Text for Acupuncturists and Herbalists; Churchill Livingstone: Edinburgh, UK, 1989. [Google Scholar]
- Alam, M.A.; Subhan, N.; Rahman, M.M.; Uddin, S.J.; Reza, H.M.; Sarker, S.D. Effect of citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action. Adv. Nutr. 2014, 5, 404–417. [Google Scholar] [CrossRef]
- Cui, G.; Zhang, W.; Wang, Q.; Zhang, A.; Mu, H.; Bai, H. Extraction optimization, characterization and immunity activity of polysaccharides from Fructus Jujubae. Carbohydr. Polym. 2014, 111, 245–255. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, S.; Li, P.; Lu, X.; Wang, J.; Zhao, L. Effect of aurantii fructus immaturus flavonoid on the contraction of isolated gastric smooth muscle strips in rats. Evid.-Based Complement. Altern. Med. 2016, 2016, 5616905. [Google Scholar] [CrossRef] [Green Version]
- Martins, L.B.; Rodrigues, A.M.D.S.; Rodrigues, D.F.; Dos Santos, L.C.; Teixeira, A.L.; Ferreira, A.V.M. Double-blind placebo-controlled randomized clinical trial of ginger (Zingiber officinale Rosc.) addition in migraine acute treatment. Cephalalgia 2019, 39, 68–76. [Google Scholar] [CrossRef]
- Lin, S.; Nie, B.; Song, K.; Ye, R.; Yuan, Z. Pinelliae Rhizoma Praeparatum cum Alumine extract: Sedative and hypnotic effects in mice and component compounds. BioMed Res. Int. 2019, 2019, 6198067. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Wang, X.; Xu, X.; Zhang, X. Purification, antitumor and anti-inflammation activities of an alkali-soluble and carboxymethyl polysaccharide CMP33 from Poria cocos. Int. J. Biol. Macromol. 2019, 127, 39–47. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, J.-C. In vitro anti-inflammatory efficacy of Bambusae Caulis in Taeniam extract loaded in monoolein cubosomes. J. Ind. Eng. Chem. 2019, 77, 189–197. [Google Scholar] [CrossRef]
- A.C.D./ChemSketch. ChemSketch; Advanced Chemistry Development, Inc.: Toronto, ON, Canada, 2022. [Google Scholar]
- Hussain, G.; Rasul, A.; Anwar, H.; Aziz, N.; Razzaq, A.; Wei, W.; Ali, M.; Li, J.; Li, X. Role of Plant Derived Alkaloids and Their Mechanism in Neurodegenerative Disorders. Int. J. Biol. Sci. 2018, 14, 341–357. [Google Scholar] [CrossRef] [Green Version]
- Kukula-Koch, W.A.; Widelski, J. Alkaloids. In Pharmacognosy; Badal, S., Delgoda, R., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 163–198. [Google Scholar]
- Stohs, S.J.; Ratamess, N.A. Effects of p-synephrine in combination with caffeine: Review. Nutr. Diet. Suppl. 2017, 9, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Stohs, S.J.; Preuss, H.G.; Shara, M. The safety of Citrus aurantium (bitter orange) and its primary protoalkaloid p-synephrine. Phytother. Res. 2011, 25, 1421–1428. [Google Scholar] [CrossRef]
- Shan, Y. Functional Components of Citrus Peel. In Comprehensive Utilization of Citrus By-Products; Shan, Y., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 1–13. [Google Scholar]
- Stohs, S.J.; Preuss, H.G.; Shara, M. A Review of the Receptor-Binding Properties of p-Synephrine as Related to Its Pharmacological Effects. Oxidative Med. Cell. Longev. 2011, 2011, 482973. [Google Scholar] [CrossRef] [Green Version]
- Chiarugi, A.; Camaioni, A. Update on the pathophysiology and treatment of rhinogenic headache: Focus on the ibuprofen/pseudoephedrine combination. Acta Otorhinolaryngol. Ital. 2019, 39, 22. [Google Scholar] [CrossRef] [Green Version]
- Berry, M.D. Mammalian central nervous system trace amines. Pharmacologic amphetamines, physiologic neuromodulators. J. Neurochem. 2004, 90, 257–271. [Google Scholar] [CrossRef]
- D’Andrea, G.; Perini, F.; Terrazzino, S.; Nordera, G.P. Contributions of biochemistry to the pathogenesis of primary headaches. Neurological Sciences. Neurol. Sci. 2004, 25, 89–92. [Google Scholar] [CrossRef]
- D’andrea, G.; Nordera, G.P.; Perini, F.; Allais, G.; Granella, F. Biochemistry of neuromodulation in primary headaches: Focus on anomalies of tyrosine metabolism. Neurol. Sci. 2007, 28, 94–96. [Google Scholar] [CrossRef]
- Farooqui, T. Trace Amines and Their Potential Role in Primary Headaches: An Overview. In Trace Amines and Neurological Disorders; Farooqui, T., Farooqui, A.A., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 349–366. [Google Scholar]
- Lafontan, M.; Berlan, M. Fat cell adrenergic receptors and the control of white and brown fat cell function. J. Lipid Res. 1993, 34, 1057–1091. [Google Scholar] [CrossRef]
- Guo, S.; Olesen, J.; Ashina, M. Phosphodiesterase 3 inhibitor cilostazol induces migraine-like attacks via cyclic AMP increase. Brain 2014, 137, 2951–2959. [Google Scholar] [CrossRef] [Green Version]
- Madsen, L.; Kristiansen, K. The importance of dietary modulation of cAMP and insulin signaling in adipose tissue and the development of obesity. Ann. N. Y. Acad. Sci. 2010, 1190, 1–14. [Google Scholar] [CrossRef]
- Gutiérrez-Hellín, J.; Del Coso, J. Acute p-synephrine ingestion increases fat oxidation rate during exercise. Br. J. Clin. Pharmacol. 2016, 82, 362–368. [Google Scholar] [CrossRef] [Green Version]
- Mika, A.; Macaluso, F.; Barone, R.; Di Felice, V.; Sledzinski, T. Effect of Exercise on Fatty Acid Metabolism and Adipokine Secretion in Adipose Tissue. Front. Physiol. 2019, 10, 26. [Google Scholar] [CrossRef] [Green Version]
- Stohs, S.J.; Preuss, H.G.; Keith, S.C.; Keith, P.L.; Miller, H.; Kaats, G.R. Effects of p-synephrine alone and in combination with selected bioflavonoids on resting metabolism, blood pressure, heart rate and self-reported mood changes. Int. J. Med. Sci. 2011, 8, 295–301. [Google Scholar] [CrossRef] [Green Version]
- Kaats, G.R.; Miller, H.; Preuss, H.G.; Stohs, S.J. A 60 day double-blind, placebo-controlled safety study involving Citrus aurantium (bitter orange) extract. Food Chem. Toxicol. 2013, 55, 358–362. [Google Scholar] [CrossRef]
- Stohs, S.J.; Badmaev, V. A review of natural stimulant and non-stimulant thermogenic agents. Phytother. Res. 2016, 30, 732–740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shara, M.; Stohs, S.J.; Mukattash, T.L. Cardiovascular safety of oral p-synephrine (bitter orange) in healthy subjects: A randomized placebo-controlled cross-over clinical trial. Phytother. Res. 2016, 30, 842–847. [Google Scholar] [CrossRef] [PubMed]
- Arbo, M.D.; Larentis, E.R.; Linck, V.M.; Aboy, A.L.; Pimentel, A.L.; Henriques, A.T.; Dallegrave, E.; Garcia, S.C.; Leal, M.B.; Limberger, R.P. Concentrations of p-synephrine in fruits and leaves of Citrus species (Rutaceae) and the acute toxicity testing of Citrus aurantium extract and p-synephrine. Food and chemical toxicology. Food Chem. Toxicol. 2008, 46, 2770–2775. [Google Scholar] [CrossRef] [PubMed]
- Arbo, M.D.; Franco, M.T.; Larentis, E.R.; Garcia, S.C.; Sebben, V.C.; Leal, M.B.; Dallegrave, E.; Limberger, R.P. Screening for in vivo (anti) estrogenic activity of ephedrine and p-synephrine and their natural sources Ephedra sinica Stapf.(Ephedraceae) and Citrus aurantium L.(Rutaceae) in rats. Arch. Toxicol. 2009, 83, 95–99. [Google Scholar] [CrossRef]
- Arbo, M.D.; Schmitt, G.C.; Limberger, M.F.; Charão, M.F.; Moro, Â.M.; Ribeiro, G.L.; Dallegrave, E.; Garcia, S.C.; Leal, M.B.; Limberger, R.P. Subchronic toxicity of Citrus aurantium L.(Rutaceae) extract and p-synephrine in mice. Regul. Toxicol. Pharmacol. 2009, 54, 114–117. [Google Scholar] [CrossRef]
- Rossato, L.G.; Costa, V.M.; De Pinho, P.G.; Carvalho, F.; de Lourdes Bastos, M.; Remião, F. Structural isomerization of synephrine influences its uptake and ensuing glutathione depletion in rat-isolated cardiomyocytes. Arch. Toxicol. 2011, 85, 929–939. [Google Scholar] [CrossRef]
- Bond, D.S.; Thomas, J.G.; Lipton, R.B.; Roth, J.; Pavlovic, J.M.; Rathier, L. Behavioral weight loss intervention for migraine: A randomized controlled trial. Obesity 2018, 26, 81–87. [Google Scholar] [CrossRef]
- Kaats, G.R.; Leckie, R.B.; Mrvichin, N.; Stohs, S.J. Increased eating control and energy levels associated with consumption of bitter orange (p-synephrine) extract: A randomized placebo-controlled study. Nutr. Diet. Suppl. 2017, 9, 29. [Google Scholar] [CrossRef] [Green Version]
- Minen, M.T.; De Dhaem, O.B.; Van Diest, A.K.; Powers, S.; Schwedt, T.J.; Lipton, R.; Silbersweig, D. Migraine and its psychiatric comorbidities. J. Neurol. Neurosurg. Psychiatry 2016, 87, 741–749. [Google Scholar] [CrossRef]
- Dindo, L.N.; Recober, A.; Haddad, R.; Calarge, C.A. Comorbidity of migraine, major depressive disorder, and generalized anxiety disorder in adolescents and young adultsAdults. Int. J. Behav. Med. 2017, 24, 528–534. [Google Scholar] [CrossRef]
- Amoozegar, F. Depression comorbidity in migraine. Int. Rev. Psychiatry 2017, 29, 504–515. [Google Scholar] [CrossRef]
- Hung, C.I.; Liu, C.Y.; Yang, C.H.; Wang, S.J. Migraine and greater pain symptoms at 10-year follow-up among patients with major depressive disorder. J. Headache Pain 2018, 19, 56. [Google Scholar] [CrossRef]
- Kim, K.W.; Kim, H.D.; Jung, J.S.; Woo, R.S.; Kim, H.S.; Suh, H.W.; Kim, Y.H.; Song, D.K. Characterization of antidepressant-like effects of p-synephrine stereoisomers. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2001, 364, 21–26. [Google Scholar] [CrossRef]
- Pereira, M.A.O.; Pereira, A., Jr. On the effect of aromatherapy with citrus fragrance in the therapy of major depressive disorder. J. Psychol. Psychother. 2014, 5, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Carvalho-Freitas, M.; Costa, M. Anxiolytic and sedative effects of extracts and essential oil from Citrus aurantium L. Biol. Pharm. Bull. 2002, 25, 1629–1633. [Google Scholar] [CrossRef] [Green Version]
- De Moraes Pultrini, A.; Galindo, L.A.; Costa, M. Effects of the essential oil from Citrus aurantium L. in experimental anxiety models in mice. Life Sci. 2006, 78, 1720–1725. [Google Scholar] [CrossRef]
- Leite, M.P.; Fassin, J., Jr.; Baziloni, E.M.; Almeida, R.N.; Mattei, R.; Leite, J.R. Behavioral effects of essential oil of Citrus aurantium L. inhalation in rats. Rev. Bras. Farmacogn. 2008, 18, 661–666. [Google Scholar] [CrossRef] [Green Version]
- Mannucci, C.; Calapai, F.; Cardia, L.; Inferrera, G.; D’Arena, G.; Di Pietro, M.; Navarra, M.; Gangemi, S.; Spagnolo, E.V.; Calapai, G. Clinical Pharmacology of Citrus aurantium and Citrus sinensis for the Treatment of Anxiety. Evid.-Based Complement. Altern. Med. Ecam 2018, 2018, 3624094. [Google Scholar] [CrossRef] [Green Version]
- Pimenta, F.C.F.; Alves, M.F.; Pimenta, M.B.F.; Melo, S.A.L.; Almeida, A.A.F.D.; Leite, J.R.; Almeida, R.N.D. Anxiolytic effect of Citrus aurantium L. on patients with chronic myeloid leukemia. Phytother. Res. 2016, 30, 613–617. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 996, Phenol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Phenol (accessed on 20 February 2021).
- Fitzpatrick, L.R.; Woldemariam, T. Small-molecule drugs for the treatment of inflammatory bowel disease. In Comprehensive Medicinal Chemistry III; Chackalamannil, S., Rotella, D., Ward, S.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 495–510. [Google Scholar]
- Semwal, R.B.; Semwal, D.K.; Combrinck, S.; Viljoen, A.M. Gingerols and shogaols: Important nutraceutical principles from ginger. Phytochemistry 2015, 117, 554–568. [Google Scholar] [CrossRef]
- Dugasani, S.; Pichika, M.R.; Nadarajah, V.D.; Balijepalli, M.K.; Tandra, S.; Korlakunta, J.N. Comparative antioxidant and anti-inflammatory effects of [6]-gingerol,[8]-gingerol,[10]-gingerol and [6]-shogaol. J. Ethnopharmacol. 2010, 127, 515–520. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 3473, [6]-Gingerol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/6_-Gingerol (accessed on 20 February 2021).
- Bode, A.M.; Dong, Z. The amazing and mighty ginger. In Herbal Medicine: Biomolecular and Clinical Aspects; CRC Press: Boca Raton, FL, USA, 2011; Volume 2. [Google Scholar]
- Borkum, J.M. The migraine attack as a homeostatic, neuroprotective response to brain oxidative stress: Preliminary evidence for a theory. Headache J. Head Face Pain 2018, 58, 118–135. [Google Scholar] [CrossRef]
- Tripathi, G.M.; Kalita, J.; Misra, U.K. A study of oxidative stress in migraine A study of oxidative stress in migraine with special reference to prophylactic therapy. Int. J. Neurosci. 2018, 128, 318–324. [Google Scholar] [CrossRef]
- Togha, M.; Razeghi Jahromi, S.; Ghorbani, Z.; Ghaemi, A.; Rafiee, P. An investigation of oxidant/antioxidant balance in patients with migraine: A case-control study. BMC Neurol. 2019, 19, 323. [Google Scholar] [CrossRef] [Green Version]
- Aeschbach, R.; Löliger, J.; Scott, B.C.; Murcia, A.; Butler, J.; Halliwell, B.; Aruoma, O.I. Antioxidant actions of thymol, carvacrol, 6-gingerol, zingerone and hydroxytyrosol. Food Chem. Toxicol. 1994, 32, 31–36. [Google Scholar] [CrossRef]
- Ippoushi, K.; Ito, H.; Horie, H.; Azuma, K. Mechanism of Inhibition of Peroxynitrite-Mechanism of inhibition of peroxynitrite-induced oxidation and nitration by [6]-gingerol. Planta Med. 2005, 71, 563–566. [Google Scholar] [CrossRef]
- Ahmad, B.; Rehman, M.U.; Amin, I.; Arif, A.; Rasool, S.; Bhat, S.A.; Afzal, I.; Hussain, I.; Bilal, S. A review on pharmacological properties of zingerone (4-(4-Hydroxy-3-methoxyphenyl)-2-butanone). Sci. World J. 2015, 2015, 816364. [Google Scholar] [CrossRef] [Green Version]
- Gunathilake, K.D.P.P.; Rupasinghe, H.V. Recent perspectives on the medicinal potential of ginger. Bot. Targets Ther. 2015, 5, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Tanveer, S.; Aamir, S.; Masood, S.B.; Muhammad, S. Radical scavenging linked antioxidant comparison and quantification of conventional and supercritical fluid ginger extracts. J. Nutr. Food Sci. 2016, 6. [Google Scholar] [CrossRef]
- Gholamian-Dehkordi, N.; Luther, T.; Asadi-Samani, M.; Mahmoudian-Sani, M.R. An overview on natural antioxidants for oxidative stress reduction in cancers; a systematic review. Immunopathol. Persa 2017, 3, e12. [Google Scholar] [CrossRef]
- Mohd Sahardi, N.F.N.; Makpol, S. Ginger (Zingiber officinale Roscoe) in the prevention of ageing and degenerative diseases: Review of current evidence. Evid.-Based Complement. Altern. Med. 2019, 2019, 5054395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maghbooli, M.; Golipour, F.; Moghimi Esfandabadi, A.; Yousefi, M. Comparison between the efficacy of ginger and sumatriptan in the ablative treatment of the common migraine. Phytother. Res. 2014, 28, 412–415. [Google Scholar] [CrossRef] [PubMed]
- Antonova, M.; Wienecke, T.; Olesen, J.; Ashina, M. Prostaglandin E2 induces immediate migraine-like attack in migraine patients without aura. Cephalalgia 2012, 32, 822–833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonova, M.; Wienecke, T.; Olesen, J.; Ashina, M. Prostaglandins in migraine: Update. Curr. Opin. Neurol. 2013, 26, 269–275. [Google Scholar] [CrossRef]
- Kiuchi, F.; Iwakami, S.; Shibuya, M.; Hanaoka, F.; Sankawa, U. Inhibition of prostaglandin and leukotriene biosynthesis by gingerols and diarylheptanoids. Chem. Pharm. Bull. 1992, 40, 387–391. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, S.; Maier, K.G.; Bruch, D.; Kittur, D.S. Effect of 6-gingerol on pro-inflammatory cytokine production and costimulatory molecule expression in murine peritoneal macrophages. J. Surg. Res. 2007, 138, 209–213. [Google Scholar] [CrossRef]
- Shivashankara, R.; Haniadka, R.; Fayad, P.L.; Palatty, R.; Arora, M.S.; Baliga, A. (Eds.) Chapter 42—Hepatoprotective Effects of Zingiber officinale Roscoe (Ginger): A Review; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Mao, Q.Q.; Xu, X.Y.; Cao, S.Y.; Gan, R.Y.; Corke, H.; Li, H.B. Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe). Foods 2019, 8, 185. [Google Scholar] [CrossRef] [Green Version]
- Duke, C.C.; Roufogalis, B.D.; Heather, A.K.; Li, X.H.; McGrath, K.C.; Tran, V.H.; Li, Y.M. Attenuation of proinflammatory responses by S-[6]-gingerol via inhibition of ROS/NF-kappa B/COX2 activation in HuH7 cells. Evid.-Based Complement. Altern. Med. 2013, 2013, 146142. [Google Scholar] [CrossRef] [Green Version]
- Young, H.Y.; Luo, Y.L.; Cheng, H.Y.; Hsieh, W.C.; Liao, J.C.; Peng, W.H. Analgesic and anti-inflammatory activities of 6-gingerol. J. Ethnopharmacol. 2005, 96, 207–210. [Google Scholar] [CrossRef]
- Pan, M.H.; Hsieh, M.C.; Hsu, P.C.; Ho, S.Y.; Lai, C.S.; Wu, H.; Sang, S.; Ho, C.T. 6-Shogaol suppressed lipopolysaccharide-induced up-expression of iNOS and COX-2 in murine macrophages. Mol. Nutr. Food Res. 2008, 52, 1467–1477. [Google Scholar] [CrossRef]
- Sedighi, S.; Nasiri, B.; Alipoor, R.; Moradi-kor, N. Modulation of 6-gingerolin Antidepressant-like Effects: An Investigation of Serotonergic System in Mice Model. GMJ Med. 2017, 1, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Więdłocha, M.; Marcinowicz, P.; Krupa, R.; Janoska-Jaździk, M.; Janus, M.; Dębowska, W.; Mosiołek, A.; Waszkiewicz, N.; Szulc, A. Effect of antidepressant treatment on peripheral inflammation markers-A meta-analysis. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2018, 80, 217–226. [Google Scholar] [CrossRef]
- Li, Y.; Tran, V.H.; Duke, C.C.; Roufogalis, B.D. Gingerols of Zingiber officinale enhance glucose uptake by increasing cell surface GLUT4 in cultured L6 myotubes. Planta Med. 2012, 78, 1549–1555. [Google Scholar] [CrossRef] [Green Version]
- Habtemariam, S. The chemical and pharmacological basis of ginger (Zingiber officinale Roscoe) as potential therapy for diabetes and metabolic syndrome. In Medicinal Foods as Potential Therapies for Type-2 Diabetes and Associated Diseases; Habtemariam, S., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 639–687. [Google Scholar]
- Ríos, J.L.; Andújar, I.; Schinella, G.R.; Francini, F. Modulation of diabetes by natural products and medicinal plants via incretins. Planta Med. 2019, 85, 825–839. [Google Scholar] [CrossRef] [Green Version]
- Vargas, E.; Joy, N.V.; Carrillo Sepulveda, M.A. (Eds.) Biochemistry, Insulin Metabolic Effects; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Subramanian, S.; Baidal, D. (Eds.) The Management of Type 1 Diabetes; MDText.com, Inc.: South Dartmouth, MA, USA, 2021. [Google Scholar]
- Tokarz, V.L.; MacDonald, P.E.; Klip, A. The cell biology of systemic insulin function. J. Cell Biol. 2018, 217, 2273–2289. [Google Scholar] [CrossRef] [Green Version]
- Bansal, M.; Singh, N.; Pal, S.; Dev, I.; Ansari, K.M. Chemopreventive role of dietary phytochemicals in colorectal cancer. Adv. Mol. Toxicol. 2018, 12, 69–121. [Google Scholar] [CrossRef]
- Reed, M.L.; Fanning, K.M.; Serrano, D.; Buse, D.C.; Lipton, R.B. Persistent frequent nausea is associated with progression to chronic migraine: AMPP study results. Headache J. Head Face Pain 2015, 55, 76–87. [Google Scholar] [CrossRef]
- Gajria, K.; Lee, L.K.; Flores, N.M.; Aycardi, E.; Gandhi, S.K. Humanistic and economic burden of nausea and vomiting among migraine sufferers. J. Pain Res. 2017, 10, 689–698. [Google Scholar] [CrossRef] [Green Version]
- Pertz, H.H.; Lehmann, J.; Roth-Ehrang, R.; Elz, S. Effects of ginger constituents in the gastrointestinal tract: Role of cholinergic M3 and serotonergic 5-HT3 and 5-HT4 receptors. Planta Med. 2011, 77, 973–978. [Google Scholar] [CrossRef]
- Walstab, J.; Krüger, D.; Stark, T.; Hofmann, T.; Demir, I.E.; Ceyhan, G.O.; Feistel, B.; Schemann, M.; Niesler, B. Ginger and its pungent constituents non-competitively inhibit activation of human recombinant and native 5-HT3 receptors of enteric neurons. Neurogastroenterol. Motil. 2013, 25, 439-e302. [Google Scholar] [CrossRef]
- Jin, Z.; Lee, G.; Kim, S.; Park, C.S.; Park, Y.S.; Jin, Y.H. Ginger and its pungent constituents non-competitively inhibit serotonin currents on visceral afferent neurons. Korean J. Physiol. Pharmacol. 2014, 18, 149–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ullah, I.; Subhan, F.; Ayaz, M.; Shah, R.; Ali, G.; Haq, I.U.; Ullah, S. Anti-emetic mechanisms of zingiber officinale against cisplatin induced emesis in the pigeon; behavioral and neurochemical correlates. BMC Complement. Altern. Med. 2015, 15, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, X.X.; Liu, X.; Chu, Y.; Chen, W.X.; Zhang, K.W.; Wu, H. Antiemetic activity of effective extract and bioactive compounds in ginger. China J. Chin. Mater. Med. 2016, 41, 904–909. [Google Scholar]
- Bossi, P.; Cortinovis, D.; Fatigoni, S.; Rocca, M.C.; Fabi, A.; Seminara, P.; Ripamonti, C.; Alfieri, S.; Granata, R.; Bergamini, C.; et al. A randomized, double-blind, placebo-controlled, multicenter study of a ginger extract in the management of chemotherapy-induced nausea and vomiting (CINV) in patients receiving high-dose cisplatin. Ann. Oncol. 2017, 28, 2547–2551. [Google Scholar] [CrossRef] [PubMed]
- Marx, W.; McCarthy, A.L.; Ried, K.; McKavanagh, D.; Vitetta, L.; Sali, A.; Lohning, A.; Isenring, E. The effect of a standardized ginger extract on chemotherapy-induced nausea-related quality of life in patients undergoing moderately or highly emetogenic chemotherapy: A double blind, randomized, placebo controlled trial. Nutrients 2017, 9, 867. [Google Scholar] [CrossRef] [PubMed]
- Ernst, E.; Pittler, M.H. Efficacy of ginger for nausea and vomiting: A systematic review of randomized clinical trials. Br. J. Anaesth. 2000, 84, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Van Breemen, R.B.; Tao, Y.; Li, W. Cyclooxygenase-2 inhibitors in ginger (Zingiber officinale). Fitoterapia 2011, 82, 38–43. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.R.; Leu, Y.L.; Chan, Y.Y.; Kuo, P.C.; Wu, T.S. Anti-platelet aggregation and vasorelaxing effects of the constituents of the rhizomes of Zingiber officinale. Molecules 2012, 17, 8928–8937. [Google Scholar] [CrossRef]
- Dormán, G.; Flachner, B.; Hajdú, I.; András, C. Target identification and polypharmacology of nutraceuticals. In Nutraceuticals, 2nd ed.; Gupta, R.C., Lall, R., Srivastava, A., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 315–343. [Google Scholar]
- Shah Murad, S.; Niaz, K.K.; Ali, A.; Aslam, A. Ginger and onion: New and novel considerations. Pharm. Pharmacol. Int. J. 2018, 6, 200. [Google Scholar] [CrossRef] [Green Version]
- Saxena, R.; Aneja, R. Chapter 18—Multitalented Ginger and Its Clinical Development for Cancer Treatment. In Role of Nutraceuticals in Cancer Chemosensitization; Academic Press: Cambridge, MA, USA, 2018; pp. 351–370. [Google Scholar] [CrossRef]
- Karunakaran, R.; Sadanandan, S.P. Zingiber officinale: Antiinflammatory actions and potential usage for arthritic conditions. In Bioactive Food as Dietary Interventions for Arthritis and Related Inflammatory; Academic Press: Cambridge, MA, USA, 2019; pp. 233–244. [Google Scholar] [CrossRef]
- Li, L.L.; Cui, Y.; Guo, X.H.; Ma, K.; Tian, P.; Feng, J.; Wang, J.M. Pharmacokinetics and tissue distribution of gingerols and shogaols from ginger (Zingiber officinale Rosc.) in rats by UPLC-Q-Exactive-HRMS. Molecules 2019, 24, 512. [Google Scholar] [CrossRef] [Green Version]
- Zick, S.M.; Djuric, Z.; Ruffin, M.T.; Litzinger, A.J.; Normolle, D.P.; Alrawi, S.; Feng, M.R.; Brenner, D.E. Pharmacokinetics of 6-gingerol, 8-gingerol, 10-gingerol, and 6-shogaol and conjugate metabolites in healthy human subjects. Cancer Epidemiol. Prev. Biomark. 2008, 17, 1930–1936. [Google Scholar] [CrossRef] [Green Version]
- Al-Maharik, N. Isolation of naturally occurring novel isoflavonoids: An update. Nat. Prod. Rep. 2019, 36, 1156–1195. [Google Scholar] [CrossRef]
- Sharma, V.; Ramawat, K.G. Isoflavonoids. In Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1849–1865. [Google Scholar] [CrossRef]
- Lecomte, S.; Demay, F.; Ferrière, F.; Pakdel, F. Phytochemicals targeting estrogen receptors: Beneficial rather than adverse effects? Int. J. Mol. Sci. 2017, 18, 1381. [Google Scholar] [CrossRef] [Green Version]
- Carbonel, A.A.F.; Simões, R.S.; Girão, J.H.C.; Sasso, G.R.D.S.; Bertoncini, C.R.A.; Sorpreso, I.C.E.; Soares Junior, J.M.; Simões, M.J.; Baracat, E.C. Isoflavones in gynecology. Rev. Assoc. Médica Bras. 2018, 64, 560–564. [Google Scholar] [CrossRef]
- Delaruelle, Z.; Ivanova, T.A.; Khan, S.; Negro, A.; Ornello, R.; Raffaelli, B. Male and female sex hormones in primary headaches. J. Headache Pain 2018, 19, 117. [Google Scholar] [CrossRef] [Green Version]
- Burke, B.E.; Olson, R.D.; Cusack, B.J. Randomized, controlled trial of phytoestrogen in the prophylactic treatment of menstrual migraine. Biomed. Pharmacother. 2002, 56, 283–288. [Google Scholar] [CrossRef]
- Lee, H.; Choue, R.; Lim, H. Effect of soy isoflavones supplement on climacteric symptoms, bone biomarkers, and quality of life in Korean postmenopausal women: A randomized clinical trial. Nutr. Res. Pract. 2017, 11, 223–231. [Google Scholar] [CrossRef] [Green Version]
- Ramalingam, M.; Kim, H.; Lee, Y.; Lee, Y.-I. Phytochemical and pharmacological role of liquiritigenin and isoliquiritigenin from radix glycyrrhizae in human health and disease models. Front. Aging Neurosci. 2018, 10, 348. [Google Scholar] [CrossRef] [Green Version]
- Nakatani, Y.; Kobe, A.; Kuriya, M.; Hiroki, Y.; Yahagi, T.; Sakakibara, I.; Matsuzaki, K.; Amano, T. Neuroprotective effect of liquiritin as an antioxidant via an increase in glucose-6-phosphate dehydrogenase expression on B65 neuroblastoma cells. Eur. J. Pharmacol. 2017, 815, 381–390. [Google Scholar] [CrossRef]
- Li, X.Q.; Cai, L.M.; Liu, J.; Ma, Y.L.; Kong, Y.H.; Li, H.; Jiang, M. iquiritin suppresses UVB-induced skin injury through prevention of inflammation, oxidative stress and apoptosis through the TLR4/MyD88/NF-κB and MAPK/caspase signaling pathways. Int. J. Mol. Med. 2018, 42, 1445–1459. [Google Scholar] [CrossRef] [Green Version]
- Zhai, K.F.; Duan, H.; Cui, C.Y.; Cao, Y.Y.; Si, J.L.; Yang, H.J.; Wang, Y.C.; Cao, W.G.; Gao, G.Z.; Wei, Z.J. Liquiritin from Glycyrrhiza uralensis attenuating rheumatoid arthritis via reducing inflammation, suppressing angiogenesis, and inhibiting MAPK signaling pathway. J. Agric. Food Chem. 2019, 67, 2856–2864. [Google Scholar] [CrossRef]
- Liu, H.; Wang, J.; Zhou, W.; Wang, Y.; Yang, L. Systems approaches and polypharmacology for drug discovery from herbal medicines: An example using licorice. J. Ethnopharmacol. 2013, 146, 773–793. [Google Scholar] [CrossRef]
- Wang, L.; Yang, R.; Yuan, B.; Liu, Y.; Liu, C. The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb. Acta Pharm. Sin. B 2015, 5, 310–315. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Wang, Y.; Ji, C.; Ye, J. Determination of liquiritigenin and isoliquiritigenin in Glycyrrhiza uralensis and its medicinal preparations by capillary electrophoresis with electrochemical detection. J. Chromatogr. A 2004, 1042, 203–209. [Google Scholar] [CrossRef]
- Kao, T.-C.; Wu, C.-H.; Yen, G.-C. Bioactivity and potential health benefits of licorice. J. Agric. Food Chem. 2014, 62, 542–553. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Monographs on Selected Medicinal Plants; World Health Organization: Geneva, Switzerland, 1999. [Google Scholar]
- Farag, M.A.; Porzel, A.; Wessjohann, L.A. Comparative metabolite profiling and fingerprinting of medicinal licorice roots using a multiplex approach of GC-MS, LC-MS and 1D NMR techniques. Phytochemistry 2012, 76, 60–72. [Google Scholar] [CrossRef] [PubMed]
- Størmer, F.C.; Reistad, R.; Alexander, J. Glycyrrhizic acid in liquorice—evaluation of health hazard. Food Chem. Toxicol. 1993, 31, 303–312. [Google Scholar] [CrossRef]
- Sharma, V.; Katiyar, A.; Agrawal, R. Glycyrrhiza glabra: Chemistry and pharmacological activity. Sweeteners 2018, 87. [Google Scholar] [CrossRef]
- Shen, X.-P.; Xiao, P.-G.; Liu, C.-X. Research and application of Radix Glycyrrhizae. Asian J. Pharmacodyn. Pharmacokinet. 2007, 7, 181–200. [Google Scholar]
- Fujii, S.; Morinaga, O.; Uto, T.; Nomura, S.; Shoyama, Y. Development of a monoclonal antibody-based immunochemical assay for liquiritin and its application to the quality control of licorice products. J. Agric. Food Chem. 2014, 62, 3377–3383. [Google Scholar] [CrossRef]
- Ma, C.; Li, G.; Zhang, D.; Liu, K.; Fan, X. One step isolation and purification of liquiritigenin and isoliquiritigenin from Glycyrrhiza uralensis Risch. using high-speed counter-current chromatography. J. Chromatogr. A 2005, 1078, 188–192. [Google Scholar] [CrossRef]
- Wang, H.; Shan, H.; Lü, H. Preparative separation of liquiritigenin and glycyrrhetic acid from Glycyrrhiza uralensis Fisch using hydrolytic extraction combined with high-speed countercurrent chromatography. Biomed. Chromatogr. 2020, 34, e4788. [Google Scholar] [CrossRef]
- Gaur, R.; Yadav, K.S.; Verma, R.K.; Yadav, N.P.; Bhakuni, R.S. In vivo anti-diabetic activity of derivatives of isoliquiritigenin and liquiritigenin. Phytomedicine 2014, 21, 415–422. [Google Scholar] [CrossRef]
- Su, Q.; Tao, W.; Huang, H.; Du, Y.; Chu, X.; Chen, G. Protective effect of liquiritigenin on depressive-like behavior in mice after lipopolysaccharide administration. Psychiatry Res. 2016, 240, 131–136. [Google Scholar] [CrossRef]
- Tao, W.; Dong, Y.; Su, Q.; Wang, H.; Chen, Y.; Xue, W. Liquiritigenin reverses depression-like behavior in unpredictable chronic mild stress-induced mice by regulating PI3K/Akt/mTOR mediated BDNF/TrkB pathway. Behav. Brain Res. 2016, 308, 177–186. [Google Scholar] [CrossRef]
- Wang, W.; Hu, X.; Zhao, Z.; Liu, P.; Hu, Y.; Zhou, J. Antidepressant-like effects of liquiritin and isoliquiritin from Glycyrrhiza uralensis in the forced swimming test and tail suspension test in mice. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2008, 32, 1179–1184. [Google Scholar] [CrossRef]
- Jeong, G.S.; Kang, M.G.; Lee, J.Y.; Lee, S.R.; Park, D.; Cho, M.; Kim, H. Inhibition of Butyrylcholinesterase and Human Monoamine Oxidase-B by the Coumarin Glycyrol and Liquiritigenin Isolated from Glycyrrhiza uralensis. Molecules 2020, 25, 3896. [Google Scholar] [CrossRef]
- Yang, E.-J.; Kim, M.; Woo, J.E.; Lee, T.; Jung, J.-W.; Song, K.-S. The comparison of neuroprotective effects of isoliquiritigenin and its Phase I metabolites against glutamate-induced HT22 cell death: Metabolites against glutamate-induced HT22 cell death. Bioorg. Med. Chem. Lett. 2016, 26, 5639–5643. [Google Scholar] [CrossRef]
- Yang, N.; Patil, S.; Zhuge, J.; Wen, M.C.; Bolleddula, J.; Doddaga, S.; Goldfarb, J.; Sampson, H.A.; Li, X.M. Glycyrrhiza uralensis flavonoids present in anti-asthma formula, ASHMITM, inhibit memory Th2 responses in vitro and in vivo. Phytother. Res. 2013, 27, 1381–1391. [Google Scholar] [CrossRef] [Green Version]
- Straub, I.; Krügel, U.; Mohr, F.; Teichert, J.; Rizun, O.; Konrad, M.; Oberwinkler, J.; Schaefer, M. Flavanones that selectively inhibit TRPM3 attenuate thermal nociception in vivo. Mol. Pharmacol. 2013, 84, 736–750. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Castejon, G.; Brough, D. Understanding the mechanism of IL-1β secretion. Cytokine Growth Factor Rev. 2011, 22, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Chi, J.H.; Seo, G.S.; Cheon, J.H.; Lee, S.H. Isoliquiritigenin inhibits TNF-α-induced release of high-mobility group box 1 through activation of HDAC in human intestinal epithelial HT-29 cells. Eur. J. Pharmacol. 2017, 796, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Zhao, Q.; Chen, M.; Zhang, J.; Ji, L. Liquiritigenin and liquiritin alleviated monocrotaline-induced hepatic sinusoidal obstruction syndrome via inhibiting HSP60-induced inflammatory injury. Toxicology 2019, 428, 152307. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.-X.; Wink, M. Evidence for Anti-Inflammatory Activity of Isoliquiritigenin, 18β Glycyrrhetinic Acid, Ursolic Acid, and the Traditional Chinese Medicine Plants Glycyrrhiza glabra and Eriobotrya japonica, at the Molecular Level. Medicines 2019, 6, 55. [Google Scholar] [CrossRef] [Green Version]
- Vedova, C.D.; Cathcart, S.; Dohnalek, A.; Lee, V.; Hutchinson, M.R.; Immink, M.A. Peripheral interleukin-1β levels are elevated in chronic tension-type headache patients. Pain Res. Manag. 2013, 18, 301–306. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, A.B.; Bachi, A.; Ribeiro, R.T.; Mello, M.T.; Tufik, S.; Peres, M. Unbalanced plasma TNF-α and IL-12/IL-10 profile in women with migraine is associated with psychological and physiological outcomes. J. Neuroimmunol. 2017, 313, 138–144. [Google Scholar] [CrossRef] [Green Version]
- Rambe, A.S.; Sjahrir, H.; Factor-A, M.M.N. Interleukin-1 and Interleukin-6 Serum Levels and Its Correlation with Pain Severity in Chronic Tension-Type Headache Patients: Analysing Effect of Dexketoprofen Administration. Open Access Maced. J. Med. Sci. 2017, 5, 54. [Google Scholar] [CrossRef] [Green Version]
- Zeng, C.; Zhu, D.; You, J.; Dong, X.; Yang, B.; Zhu, H. Liquiritin, as a natural inhibitor of AKR1C1, could interfere with the progesterone metabolism. Front. Physiol. 2019, 10, 833. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, M.; Chen, T. The epidemiology of disabling headache. Adv. Neurol. 1982, 33, 377–390. [Google Scholar]
- Silberstein, S. Sex hormones and headache. Rev. Neurol. 2000, 156, 30–41. [Google Scholar] [CrossRef]
- Lipton, R.B.; Scher, A.I.; Kolodner, K.; Liberman, J.; Steiner, T.J.; Stewart, W.F. Migraine in the United States: Epidemiology and patterns of health care use. Neurology 2002, 58, 885–894. [Google Scholar] [CrossRef]
- Silberstein, S.D.; Merriam, G.R. Sex hormones and headache. J. Pain Symptom Manag. 1993, 8, 98–114. [Google Scholar] [CrossRef]
- Silberstein, S.; Merriam, G. Sex hormones and headache 1999 (menstrual migraine: Sex hormones and headache 1999 (menstrual migraine). Neurology 1999, 53, S3–S13. [Google Scholar]
- Aegidius, K.L.; Zwart, J.A.; Hagen, K.; Dyb, G.; Holmen, T.L.; Stovner, L.J. Increased headache prevalence in female adolescents and adult women with early menarche. The Head-HUNT Studies. Eur. J. Neurol. 2011, 18, 321–328. [Google Scholar] [CrossRef]
- Epstein, M.T.; Hockaday, J.M.; Hockaday, T.D.R. Migraine and reproductive hormones throughout the menstrual cycle. Lancet 1975, 305, 543–548. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, Q.P.; Zhu, J.X.; Cheng, J.; Liu, Q.; Xu, G.H.; Li, C.F.; Yi, L.T. Involvement of FGF-2 modulation in the antidepressant-like effects of liquiritin in mice. Eur. J. Pharmacol. 2020, 881, 173297. [Google Scholar] [CrossRef]
- Ghosh, S. Triterpene structural diversification by plant cytochrome P450 enzymes. Front. Plant Sci. 2017, 8, 1886. [Google Scholar] [CrossRef]
- Hordyjewska, A.; Ostapiuk, A.; Horecka, A.; Kurzepa, J. Betulin and betulinic acid: Triterpenoids derivatives with a powerful biological potential. Phytochem. Rev. 2019, 18, 929–951. [Google Scholar] [CrossRef] [Green Version]
- Jc Furtado, N.A.; Pirson, L.; Edelberg, H.; Miranda, L.M.; Loira-Pastoriza, C.; Preat, V.; Larondelle, Y.; André, C.M. Pentacyclic triterpene bioavailability: An overview of in vitro and in vivo studies. Molecules 2017, 22, 400. [Google Scholar] [CrossRef] [Green Version]
- Tai, T.; Akita, Y.; Kinoshita, K.; Koyama, K.; Takahashi, K.; Watanabe, K. Anti-emetic principles of Poria cocos. Planta Med. 1995, 61, 527–530. [Google Scholar] [CrossRef]
- Gapter, L.; Wang, Z.; Glinski, J.; Ng, K.Y. Induction of apoptosis in prostate cancer cells by pachymic acid from Poria cocos. Biochem. Biophys. Res. Commun. 2005, 332, 1153–1161. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Zhou, R.; Xie, J.; Ye, H.; Liang, X.; Zhong, C.; Shen, B.; Qin, Y.; Zhang, S.; Huang, L. Insights into triterpene acids in fermented mycelia of edible fungus Poria cocos by a comparative study. Molecules 2019, 24, 1331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.C.; Chang, W.L.; Huang, S.F.; Lin, C.Y.; Lin, H.C.; Chang, T.C. Pachymic acid stimulates glucose uptake through enhanced GLUT4 expression and translocation. Eur. J. Pharmacol. 2010, 648, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Split, W.; Szydlowska, M. Headaches in non insulin-dependent diabetes mellitus. Funct. Neurol. 1997, 12, 327–332. [Google Scholar] [PubMed]
- Sun, Y. Biological activities and potential health benefits of polysaccharides from Poria cocos and their derivatives. J. Biol. Macromol. 2014, 68, 131–134. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; He, Y.; Zeng, P.; Liu, Y.; Zhang, M.; Hao, C. Molecular basis for Poria cocos mushroom polysaccharide used as an antitumour drug in China. J. Cell. Mol. Med. 2019, 23, 4–20. [Google Scholar] [CrossRef] [Green Version]
- De Vadder, F.; Mithieux, G. Gut-brain signaling in energy homeostasis: The unexpected role of microbiota-derived succinate. J. Endocrinol. 2018, 236, R105–R108. [Google Scholar] [CrossRef]
- Tretter, L.; Patocs, A.; Chinopoulos, C. Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis. Biochim. Biophys. Acta BBA-Bioenergy 2016, 1857, 1086–1101. [Google Scholar] [CrossRef]
- Levi, M.; Rosselli, M.; Simonetti, M.; Brignoli, O.; Cancian, M.; Masotti, A.; Pegoraro, V.; Cataldo, N.; Heiman, F.; Chelo, M.; et al. Epidemiology of iron deficiency anaemia in four European countries: A population-based study in primary care. Eur. J. Haematol. 2016, 97, 583–593. [Google Scholar] [CrossRef]
- Nowak, A.; Angelillo-Scherrer, A.; Betticher, D.; Dickenmann, M.; Guessous, I.; Juillerat, P. Swiss Delphi study on iron deficiency. Swiss Med. Wkly. 2019, 149, w20097. [Google Scholar] [CrossRef]
- Deen, M.; Hansen, H.D.; Hougaard, A.; Nørgaard, M.; Eiberg, H.; Lehel, S. High brain serotonin levels in migraine between attacks: A 5-HT 4 receptor binding PET study. NeuroImage Clin. 2018, 18, 97–102. [Google Scholar] [CrossRef]
- Gasparini, C.F.; Smith, R.A.; Griffiths, L.R. Genetic and biochemical changes of the serotonergic system in migraine pathobiology. J. Headache Pain 2017, 18, 20. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Wessling-Resnick, M. Iron and mechanisms of emotional behavior. J. Nutr. Biochem. 2014, 25, 1101–1107. [Google Scholar] [CrossRef] [Green Version]
- Gür-Özmen, S.; Karahan-Özcan, R. Iron deficiency anemia is associated with menstrual migraine: A case-control study. Pain Med. 2016, 17, 596–605. [Google Scholar] [CrossRef] [Green Version]
- Tayyebi, A.; Poursadeghfard, M.; Nazeri, M.; Pousadeghfard, T. Is there any correlation between migraine attacks and iron deficiency anemia? A case-control study. Int. J. Hematol.-Oncol. Stem Cell Res. 2019, 13, 164. [Google Scholar] [CrossRef] [Green Version]
- Martínez Francés, A.; Martinez-Bujanda, J.L. Efficacy and tolerability of oral iron protein succinylate: A systematic review of three decades of research. Curr. Med. Res. Opin. 2020, 36, 613–623. [Google Scholar] [CrossRef] [Green Version]
- Maevsky, E.; Peskov, A.; Uchitel, M.; Pogorelov, A.; Saharova, N.Y.; Vihlyantseva, E. A succinate-based composition reverses menopausal symptoms without sex hormone replacement therapy. Adv. Gerontol. Uspekhi Gerontol. 2008, 21, 298–305. [Google Scholar]
- Ullah, S.; Khalil, A.A.; Shaukat, F.; Sources, S.Y. Sources, extraction and biomedical properties of polysaccharides. Foods 2019, 8, 304. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Niu, Y.; Xing, P.; Wang, C. Bioactive polysaccharides from natural resources including Chinese medicinal herbs on tissue repair. Chin. Med. 2018, 13, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-Y.; Chang, H.-M. Antiproliferative and differentiating effects of polysaccharide fraction from fu-ling (Poria cocos) on human leukemic U937 and HL-60 cells. Food Chem. Toxicol. 2004, 42, 759–769. [Google Scholar] [CrossRef]
- Zhang, W.; Cheng, S.; Zhai, X.; Sun, J.; Hu, X.; Pei, H. Green and efficient extraction of polysaccharides from Poria cocos FA Wolf by deep eutectic solvent. Nat. Prod. Commun. 2020, 15, 1934578X19900708. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Hu, M.; Wang, D.; Xu, G.; Yin, X.; Liu, X.; Ding, M.; Han, L. Mixed polysaccharides derived from Shiitake mushroom, Poriacocos, Ginger, and Tangerine peel enhanced protective immune responses in mice induced by inactivated influenza vaccine. Biomed. Pharmacother. 2020, 126, 110049. [Google Scholar] [CrossRef]
- Sun, S.-S.; Wang, K.; Ma, K.; Bao, L.; LIiu, H.-W. An insoluble polysaccharide from the sclerotium of Poria cocos improves hyperglycemia, hyperlipidemia and hepatic steatosis in ob/ob mice via modulation of gut microbiota. Chin. J. Nat. Med. 2019, 17, 3–14. [Google Scholar] [CrossRef]
- Ke, R.; Lin, S.; Chen, Y.; Ji, C.; Shu, Q. Analysis of chemical composition of polysaccharides from Poria cocos Wolf and its anti-tumor activity by NMR spectroscopy. Carbohydr. Polym. 2010, 80, 31–34. [Google Scholar] [CrossRef]
- Bian, C.; Xie, N.; Chen, F. Preparation of bioactive water-soluble pachyman hydrolyzed from sclerotial polysaccharides of Poria cocos by hydrolase. Polym. J. 2010, 42, 256–260. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Liu, D.; Guo, J.; Sun, Y.; Guo, T.; Zhu, X. Molecular mechanism of Poria cocos combined with oxaliplatin on the inhibition of epithelial-mesenchymal transition in gastric cancer cells. Biomed. Pharmacother. 2018, 102, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.-J.; Wang, H.-Y.; Wang, X.-J.; Kaye, D.A.; Sun, Y.-H. Potential beneficial effects of probiotics on human migraine headache: A literature review. Pain Physician 2017, 20, E251–E255. [Google Scholar] [CrossRef]
- Lin, C.-S.; Chang, C.-J.; Lu, C.-C.; Martel, J.; Ojcius, D.M.; Ko, Y.-F. Impact of the gut microbiota, prebiotics, and probiotics on human health and disease. Biomed. J. 2014, 37, 259–268. [Google Scholar] [PubMed]
- Hempel, S.; Taylor, S.L.; Solloway, M.R.; Miake-Lye, I.M.; Beroes, J.M.; Shanman, R.; Booth, M.J.; Siroka, A.M.; Shekelle, P.G. Evidence Map of Acupuncture. In Evidence Map of Acupuncture; Department of Veterans Affairs: Washington, DC, USA, 2014. [Google Scholar]
- Linde, K.; Allais, G.; Brinkhaus, B.; Fei, Y.; Mehring, M.; Shin, B.-C.; Vickers, A.; White, A.R. Acupuncture for the prevention of tension-type headache. Cochrane Database Syst. Rev. 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bäumler, P.; Zhang, W.; Stübinger, T.; Irnich, D. Acupuncture-related adverse events: Systematic review and meta-analyses of prospective clinical studies. BMJ Open 2021, 11, e045961. [Google Scholar] [CrossRef] [PubMed]
- Lipton, R.B.; Bigal, M.E.; Ashina, S.; Burstein, R.; Silberstein, S.; Reed, M.L.; Serrano, D.; Stewart, W.F.; American Migraine Prevalence Prevention Advisory Group. Cutaneous allodynia in the migraine population. Ann. Neurol. 2008, 63, 148–158. [Google Scholar] [CrossRef]
- InformedHealth.org. Using Medication: Topical Medications. Available online: https://www.ncbi.nlm.nih.gov/books/NBK361003/ (accessed on 14 September 2020).
- St Cyr, A.; Chen, A.; Bradley, K.C.; Yuan, H.; Silberstein, S.D.; Young, W.B. Efficacy and tolerability of STOPAIN for a migraine attack. Front. Neurol. 2015, 6, 11. [Google Scholar] [CrossRef] [Green Version]
- Yuan, R.; Zhang, D.; Yang, J.; Wu, Z.; Luo, C.; Han, L.; Yang, F.; Lin, J.; Yang, M. Review of aromatherapy essential oils and their mechanism of action against migraines. J. Ethnopharmacol. 2021, 265, 113326. [Google Scholar] [CrossRef]
- Villella, S. Herbal management of headache and migraine. Aust. J. Med. Herbal. 2002, 14, 56–62. [Google Scholar]
- Kumar, A.; Kadian, R. Migraine Prophylaxis; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Chowdhury, D. Tension type headache. Ann. Indian Acad. Neurol. 2012, 15, S83. [Google Scholar] [CrossRef]
- Fischer, M.A.; Jan, A. Medication-Overuse Headache; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
Species | Function | Reference |
---|---|---|
Pinelliae Rhizoma (Pinellia ternata (Thunb.) 1 Makino) | Ceases cough, dissolves phlegm, dries dampness, stops vomiting, possesses antitumor effects | [3] |
Caulis Bambusae In Taenia sp. (Bambusa tuldoides Munro) 1 | Arrests vomiting, alleviates fever, abdominal pain, diarrhea, chest diaphragm inflammation, has antifatigue attributes, regulates hypertension and hyperlipidemia, reduces aggravation | [4,5] |
Fructus Aurantii Immaturus (Citrus aurantium L.) 1 | Helps gastrointestinal disorders, is anti-coagulation, eliminates food stagnation by guiding the Qi downwards, has antianxiety properties | [6,7] |
Citri reticulate Pericarpium (Citrus reticulata Blanco) 1 | Dissolves phlegm, dries dampness, promotes Qi, strengthens spleen, has antiasthmatic characteristic | [8,9,10] |
Glycyrrhizae Radix et Rhizoma (Glycyrrhiza uralensis Fisch) 1 | Tonifies Qi and the spleen, harmonizes the action of all herbs in a prescription, and eliminates the toxicity of herbs | [11,12] |
Poria Cocos (Poriae sclerotium cocos albae) 1 | Strengthens the spleen and harmonizes the stomach, has antianxiety properties, is calmative, has a soothing diuretic effect | [13,14] |
Zingiberis Rhizoma (Zingiber officinale Roscoe) 1 | Has an antiemetic effect, alleviates pain, harmonizes the stomach and spleen, warms the core and the lungs, removes cold | [15,16] |
Jujubae Fructus (Ziziphus jujuba Mil) 1 | Nurtures the blood, has a calmative effect, promotes Qi, tonifies the stomach and spleen, regulates digestive system, reduces the toxicity of herbs | [17,18] |
References | Title | Syndrome |
---|---|---|
[24] | Treatment of Insomnia with Traditional Chinese Herbal Medicine. | Insomnia |
[27] | Wendan decoction for primary insomnia. | |
[30] | Wen-Dan Decoction Improves Negative Emotions in Sleep-Deprived Rats by Regulating Orexin-A and Leptin Expression. | Negative Emotions |
[26] | Consistent Efficacy of Wendan Decoction for the Treatment of Digestive Reflux Disorders. | Digestive disorder |
[31] | Wendan decoction for dyslipidaemia: Protocol for a systematic review and meta-analysis. | Dyslipidaemia |
[23] | Metabolomic investigation into molecular mechanisms of a clinical herb prescription against metabolic syndrome by a systematic approach. | Metabolic syndrome |
[25] | Efficacy of the wen dan decoction, a Chinese herbal formula, for metabolic syndrome. | |
Psychiatric disorders | ||
[22] | Behavioural screening of zebrafish using neuroactive traditional Chinese medicine prescriptions and biological targets. | Major depressive disorder |
[19] | Wendan decoction (Traditional Chinese medicine) for schizophrenia. | Schizophrenia |
[21] | Effects of Wen Dan Tang on insomnia-related anxiety and levels of the brain-gut peptide Ghrelin. | Anxiety |
[32] | Wen Dan Decoction for haemorrhagic stroke and ischemic stroke. | Stroke |
[28] | Systems Pharmacology Dissection of Traditional Chinese Medicine Wen-Dan Decoction for Treatment of Cardiovascular Diseases. | Cardiovascular Diseases |
No. | Compound | PubChem CID 1 | Chemical Structure 1 |
---|---|---|---|
1 | Synephrine | ||
2 | Succinate | 160419 | |
3 | Liquiritin | 503737 | |
4 | Eriocitrin | 83489 | |
5 | Rutin | 5280805 | |
6 | Narirutin | 442431 | |
7 | Naringin | 442428 | |
8 | Hesperidin | 10621 | |
9 | Neohesperidin | 442439 | |
10 | Liquiritigenin | 114829 | |
11 | Isoliquiritin | 5318591 | |
12 | Didymin | 16760075 | |
13 | Poncirin | 442456 | |
14 | 6-Gingerol | 442793 | |
15 | Tangeretin | 68077 | |
16 | 8-Gingerol | 168114 | |
17 | 10-Gingerol | 168115 | |
18 | Pachymic acid | 5484385 | |
19 | Dehydropachymic acid | 15226717 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pradhan, S.K.; Li, Y.; Gantenbein, A.R.; Angst, F.; Lehmann, S.; Shaban, H. Wen Dan Tang: A Potential Jing Fang Decoction for Headache Disorders? Medicines 2022, 9, 22. https://doi.org/10.3390/medicines9030022
Pradhan SK, Li Y, Gantenbein AR, Angst F, Lehmann S, Shaban H. Wen Dan Tang: A Potential Jing Fang Decoction for Headache Disorders? Medicines. 2022; 9(3):22. https://doi.org/10.3390/medicines9030022
Chicago/Turabian StylePradhan, Saroj K., Yiming Li, Andreas R. Gantenbein, Felix Angst, Susanne Lehmann, and Hamdy Shaban. 2022. "Wen Dan Tang: A Potential Jing Fang Decoction for Headache Disorders?" Medicines 9, no. 3: 22. https://doi.org/10.3390/medicines9030022
APA StylePradhan, S. K., Li, Y., Gantenbein, A. R., Angst, F., Lehmann, S., & Shaban, H. (2022). Wen Dan Tang: A Potential Jing Fang Decoction for Headache Disorders? Medicines, 9(3), 22. https://doi.org/10.3390/medicines9030022