Quick Roadmap for Exposure Assessment of Contaminants in Food
Abstract
:1. Introduction
2. Road Map to Exposure Assessment
3. Food Consumption Data
3.1. Population-Level Data
3.2. Household-Level Data
3.3. Individual-Level Data
3.4. General Considerations for Food Consumption Data Collection and Use
4. Concentration Data
5. Approaches and General Considerations to Exposure Assessment
5.1. Types of Exposure Assessments
5.2. Deterministic or Probabilistic Exposure Assessment
5.3. General Considerations to Exposure Assessment
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- FAO; WHO. Codex Alimentarius Commission Procedural Manual, 18th ed.; Food and Agriculture Organization of the United Nations, Codex Alimentarius Commission: Rome, Italy, 2008. [Google Scholar]
- European Commission. Regulation (EC) No 178/2002 of the European Parliament and of the Council of 28 January 2002 Laying down the General Principles and Requirements of Food Law, Establishing the European Food Safety Authority and Laying down Procedures in Matters of Food Safety; European Commission: Brussels, Belgium, 2002; p. 24. [Google Scholar]
- Yates, A.A.; Schlicker, S.A.; Suitor, C.W. Dietary reference intakes: The new basis for recommendations for calcium and related nutrients, B vitamins, and choline. J. Am. Diet. Assoc. 1998, 98, 699–706. [Google Scholar] [CrossRef]
- FAO; WHO. Consultations and Workshops: Dietary Exposure Assessment of Chemicals in Food: Report of a Joint FAO/WHO Consultation, Annapolis, Maryland, USA, 2–6 May 2005; WHO: Geneva, Switzerland, 2005; p. 88. Available online: https://iris.who.int/handle/10665/44027 (accessed on 22 November 2023).
- FAO; WHO. Dietary exposure assessment for chemicals in food. In Environmental Health Criteria 240: Principles and Methods for the Risk Assessment of Chemicals in Food; World Health Organization: Geneva, Switzerland, 2020; p. 141. [Google Scholar]
- Alexander, J.; Benford, D.; Boobis, A.; Eskola, M.; Fink-Gremmels, J.; Fürst, P.; Heppner, C.; Schlatter, J.; van Leeuwen, R. Risk assessment of contaminants in food and feed. EFSA J. 2012, 10, s1004. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, V.; Shahzad, B.; Tanveer, M.; Sidhu, G.P.S.; Handa, N.; Kohli, S.K.; Yadav, P.; Bali, A.S.; Parihar, R.D.; et al. Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci. 2019, 1, 1446. [Google Scholar] [CrossRef]
- Anand, A.; Hosanagar, A. Drug Misuse in the Veterinary Setting: An Under-recognized Avenue. Curr. Psychiatry Rep. 2021, 23, 3. [Google Scholar] [CrossRef] [PubMed]
- Pons-Hernandez, M.; Wyatt, T.; Hall, A. Investigating the illicit market in veterinary medicines: An exploratory online study with pet owners in the United Kingdom. Trends Organ. Crime 2023, 26, 308–328. [Google Scholar] [CrossRef]
- Manning, L.; Soon, J.M. Food Safety, Food Fraud, and Food Defense: A Fast Evolving Literature. J. Food Sci. 2016, 81, R823–R834. [Google Scholar] [CrossRef]
- EFSA. Overview of the procedures currently used at EFSA for the assessment of dietary exposure to different chemical substances. EFSA J. 2011, 9, 2490. [Google Scholar] [CrossRef]
- Ioannidou, S.; Cascio, C.; Gilsenan, M.B. European Food Safety Authority open access tools to estimate dietary exposure to food chemicals. Environ. Int. 2021, 149, 106357. Available online: https://www.sciencedirect.com/science/article/pii/S0160412020323126 (accessed on 16 November 2023). [CrossRef]
- FAO; WHO. Principles and Methods for the Risk Assessment of Chemicals in Food; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Kroes, R.; Müller, D.; Lambe, J.; Löwik, M.R.H.; Van Klaveren, J.; Kleiner, J.; Massey, R.; Mayer, S.; Urieta, I.; Verger, P.; et al. Assessment of intake from the diet. Food Chem. Toxicol. 2002, 40, 327–385. [Google Scholar] [CrossRef]
- EFSA. Risk assessment of aflatoxins in food. EFSA J. 2020, 18, e06040. [Google Scholar] [CrossRef]
- FAO. FAOSTAT. 2024. Available online: https://www.fao.org/faostat/en/#data (accessed on 22 December 2023).
- Beegle, K.; De Weerdt, J.; Friedman, J.; Gibson, J. Methods of household consumption measurement through surveys: Experimental results from Tanzania. J. Dev. Econ. 2012, 98, 3–18. Available online: https://www.sciencedirect.com/science/article/pii/S0304387811001039 (accessed on 3 December 2023). [CrossRef]
- Murphy, S.; Ruel, M.; Carriquiry, A. Should Household Consumption and Expenditures Surveys (HCES) be used for nutritional assessment and planning? Food Nutr. Bull. 2012, 33 (Suppl. S2), S235–S241. [Google Scholar] [CrossRef] [PubMed]
- Shim, J.S.; Oh, K.; Kim, H.C. Dietary assessment methods in epidemiologic studies. Epidemiol. Health 2014, 36, e2014009. [Google Scholar] [CrossRef] [PubMed]
- Lucassen, D.A.; Willemsen, R.F.; Geelen, A.; Brouwer-Brolsma, E.M.; Feskens, E.J.M. The accuracy of portion size estimation using food images and textual descriptions of portion sizes: An evaluation study. J. Hum. Nutr. Diet. 2021, 34, 945–952. [Google Scholar] [CrossRef]
- Mitry, P.; Wawro, N.; Six-Merker, J.; Zoller, D.; Jourdan, C.; Meisinger, C.; Thierry, S.; Nöthlings, U.; Knüppel, S.; Boeing, H.; et al. Usual Dietary Intake Estimation Based on a Combination of Repeated 24-H Food Lists and a Food Frequency Questionnaire in the KORA FF4 Cross-Sectional Study. Front. Nutr. 2019, 6, 145. Available online: https://www.frontiersin.org/article/10.3389/fnut.2019.00145 (accessed on 28 November 2023). [CrossRef]
- Udovicki, B.; Djekic, I.; Gajdos Kljusuric, J.; Papageorgiou, M.; Skendi, A.; Djugum, J.; Rajkovic, A. Exposure assessment and risk characterization of aflatoxins intake through consumption of maize products in the adult populations of Serbia, Croatia and Greece. Food Addit. Contam. Part A 2019, 36, 940–951. [Google Scholar] [CrossRef]
- Udovicki, B.; Keskic, T.; Aleksic, B.; Smigic, N.; Rajkovic, A. Second order probabilistic assessment of chronic dietary exposure to aflatoxin M1 in Serbia. Food Chem. Toxicol. 2023, 178, 113906. Available online: https://www.sciencedirect.com/science/article/pii/S0278691523003083 (accessed on 28 November 2023). [CrossRef]
- Djekic, I.; Smigic, N.; Tomic, N.; Sredojevic, A.; Stevic, M.; Vrbnicanin, S.; Radusin, K.; Udovicki, B. Exposure Assessment of Young Adults to Pesticides that Have Effects on the Thyroid—A Contribution to “One Health”. Appl. Sci. 2024, 14, 880. [Google Scholar] [CrossRef]
- EFSA. General principles for the collection of national food consumption data in the view of a pan-European dietary survey. EFSA J. 2009, 7, 1435. [Google Scholar] [CrossRef]
- Bailey, R.L. Overview of dietary assessment methods for measuring intakes of foods, beverages, and dietary supplements in research studies. Curr. Opin. Biotechnol. 2021, 70, 91–96. Available online: https://www.sciencedirect.com/science/article/pii/S0958166921000422 (accessed on 11 November 2023). [CrossRef] [PubMed]
- Dodd, K.W.; Guenther, P.M.; Freedman, L.S.; Subar, A.F.; Kipnis, V.; Midthune, D.; Tooze, J.A.; Krebs-Smith, S.M. Statistical Methods for Estimating Usual Intake of Nutrients and Foods: A Review of the Theory. J. Am. Diet. Assoc. 2006, 106, 1640–1650. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0002822306017056 (accessed on 9 August 2019). [CrossRef] [PubMed]
- Tucker, K.L. Assessment of usual dietary intake in population studies of gene–diet interaction. Nutr. Metab. Cardiovasc. Dis. 2007, 17, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Cade, J.; Thompson, R.; Burley, V.; Warm, D. Development, validation and utilisation of food-frequency questionnaires—A review. Public Health Nutr. 2002, 5, 567–587. Available online: https://www.cambridge.org/core/article/development-validation-and-utilisation-of-foodfrequency-questionnaires-a-review/463EFE9970053E8BD922CC88F52E6244 (accessed on 2 January 2007). [CrossRef] [PubMed]
- Haftenberger, M.; Heuer, T.; Heidemann, C.; Kube, F.; Krems, C.; Mensink, G.B.M. Relative validation of a food frequency questionnaire for national health and nutrition monitoring. Nutr. J. 2010, 9, 36. [Google Scholar] [CrossRef] [PubMed]
- Turconi, G.; Guarcello, M.; Berzolari, F.G.; Carolei, A.; Bazzano, R.; Roggi, C. An evaluation of a colour food photography atlas as a tool for quantifying food portion size in epidemiological dietary surveys. Eur. J. Clin. Nutr. 2005, 59, 923–931. [Google Scholar] [CrossRef]
- Chambers, E.; Godwin, S.; Vecchio, F. Cognitive strategies for reporting portion sizes using dietary recall procedures. J. Am. Diet. Assoc. 2000, 100, 891–897. [Google Scholar] [CrossRef]
- Harrington, K.E.; Robson, P.J.; Kiely, M.; Livingstone, M.B.E.; Lambe, J.; Gibney, M.J. The North/South Ireland food consumption survey: Survey design and methodology. Public Health Nutr. 2001, 4, 1037–1042. [Google Scholar] [CrossRef]
- Djekic, I.; Udovicki, B.; Kljusurić, J.G.; Papageorgiou, M.; Jovanovic, J.; Giotsas, C.; Djugum, J.; Tomic, N.; Rajkovic, A. Exposure assessment of adult consumers in Serbia, Greece and Croatia to deoxynivalenol and zearalenone through consumption of major wheat-based products. World Mycotoxin J. 2019, 12, 431–442. Available online: https://www.wageningenacademic.com/doi/10.3920/WMJ2019.2452 (accessed on 5 September 2019). [CrossRef]
- Mitrovic, M.; Tomasevic, I.; Stefanovic, S.; Djordjevic, V.; Djekic, I. Toxic elements in eggs and egg-based products: Occurrence, exposure assessment and risk characterisation for the Serbian population. Int. J. Food Sci. Technol. 2021, 56, 6685–6696. [Google Scholar] [CrossRef]
- Fricker, R.D. The SAGE Handbook of Online Research Methods; SAGE Publications Ltd.: Thousand Oaks, CA, USA, 2017; Available online: https://sk.sagepub.com/reference/the-sage-handbook-of-online-research-methods-2e (accessed on 5 September 2019).
- Israel, G.D. Determining Sample Size; University of Florida Cooperative Extension Service, Institute of Food and Agriculture Sciences: Gainesville, FL, USA, 1992. [Google Scholar]
- CDC. Healthy Weight, Nutrition, and Physical Activity; Body Mass Index (BMI); CDC: Atlanta, GA, USA, 2022. [Google Scholar]
- EFSA. Use of the EFSA Comprehensive European Food Consumption Database in Exposure Assessment. EFSA J. 2011, 9, 2097. Available online: http://doi.wiley.com/10.2903/j.efsa.2011.2097 (accessed on 16 September 2016).
- Rodriguez, R.S.; O’Keefe, T.L.; Froehlich, C.; Lewis, R.E.; Sheldon, T.R.; Haynes, C.L. Sensing Food Contaminants: Advances in Analytical Methods and Techniques. Anal. Chem. 2021, 93, 23–40. [Google Scholar] [CrossRef]
- Tsagkaris, A.S.; Nelis, J.L.; Ross, G.M.S.; Jafari, S.; Guercetti, J.; Kopper, K.; Zhao, Y.; Rafferty, K.; Salvador, J.P.; Migliorelli, D.; et al. Critical assessment of recent trends related to screening and confirmatory analytical methods for selected food contaminants and allergens. TrAC Trends Anal. Chem. 2019, 121, 115688. Available online: https://www.sciencedirect.com/science/article/pii/S0165993619304455 (accessed on 28 November 2023). [CrossRef]
- Fabiansson, S.; Vernazza, F. Preparing the way for accurate calculations of dietary exposure to chemicals. EFSA J. 2012, 10, s1014. [Google Scholar] [CrossRef]
- EFSA Scientific Committee; More, S.J.; Bampidis, V.; Benford, D.; Bennekou, S.H.; Bragard, C.; Halldorsson, T.I.; Hernández-Jerez, A.F.; Koutsoumanis, K.; Naegeli, H.; et al. Guidance on harmonised methodologies for human health, animal health and ecological risk assessment of combined exposure to multiple chemicals. EFSA J. 2019, 17, e05634. [Google Scholar] [PubMed]
- EFSA. Cumulative dietary risk characterisation of pesticides that have chronic effects on the thyroid. EFSA J. 2020, 18, e06088. [Google Scholar] [CrossRef]
- EFSA. Cumulative dietary risk characterisation of pesticides that have acute effects on the nervous system. EFSA J. 2020, 18, e06087. [Google Scholar] [CrossRef]
- Boughattas, I.; Vaccari, F.; Zhang, L.; Bandini, F.; Miras-Moreno, B.; Missawi, O.; Hattab, S.; Mkhinini, M.; Lucini, L.; Puglisi, E.; et al. Co-exposure to environmental microplastic and the pesticide 2, 4-dichlorophenoxyacetic acid (2, 4-D) induce distinctive alterations in the metabolome and microbial community structure in the gut of the earthworm Eisenia andrei. Environ. Pollut. 2024, 344, 123213. [Google Scholar] [CrossRef] [PubMed]
- Kannan, K.; Vimalkumar, K. A Review of Human Exposure to Microplastics and Insights into Microplastics as Obesogens. Front. Endocrinol. 2021, 12, 724989. Available online: https://pubmed.ncbi.nlm.nih.gov/34484127 (accessed on 19 November 2023). [CrossRef] [PubMed]
- Pulvirenti, E.; Ferrante, M.; Barbera, N.; Favara, C.; Aquilia, E.; Palella, M.; Cristaldi, A.; Conti, G.O.; Fiore, M. Effects of Nano and Microplastics on the Inflammatory Process: In Vitro and In Vivo Studies Systematic Review. Front. Biosci.-Landmark 2022, 27, 287. [Google Scholar] [CrossRef] [PubMed]
- Udovicki, B.; Andjelkovic, M.; Cirkovic-Velickovic, T.; Rajkovic, A. Microplastics in food: Scoping review on health effects, occurrence, and human exposure. Int. J. Food Contam. 2022, 9, 7. [Google Scholar] [CrossRef]
- Serraino, A.; Bonilauri, P.; Kerekes, K.; Farkas, Z.; Giacometti, F.; Canever, A.; Zambrini, A.V.; Ambrus, Á. Occurrence of Aflatoxin M1 in Raw Milk Marketed in Italy: Exposure Assessment and Risk Characterization. Front. Microbiol. 2019, 10, 2516. Available online: https://www.frontiersin.org/article/10.3389/fmicb.2019.02516 (accessed on 19 November 2023). [CrossRef]
- Andrade, P.D.; Caldas, E.D. Aflatoxins in cereals: Worldwide occurrence and dietary risk assessment. World Mycotoxin J. 2015, 8, 415–431. [Google Scholar] [CrossRef]
- Jager, A.V.; Tedesco, M.P.; Souto, P.C.M.C.; Oliveira, C.A.F. Assessment of aflatoxin intake in São Paulo, Brazil. Food Control 2013, 33, 87–92. Available online: https://www.sciencedirect.com/science/article/pii/S0956713513000923 (accessed on 20 December 2023). [CrossRef]
- Pirsaheb, M.; Hadei, M.; Sharafi, K. Human health risk assessment by Monte Carlo simulation method for heavy metals of commonly consumed cereals in Iran- Uncertainty and sensitivity analysis. J. Food Compos. Anal. 2021, 96, 103697. Available online: https://www.sciencedirect.com/science/article/pii/S0889157520314022 (accessed on 20 December 2023). [CrossRef]
- Udovicki, B.; Tomic, N.; Trifunovic, B.S.; Despotovic, S.; Jovanovic, J.; Jacxsens, L.; Rajkovic, A. Risk assessment of dietary exposure to aflatoxin B1 in Serbia. Food Chem. Toxicol. 2021, 151, 112116. Available online: https://www.sciencedirect.com/science/article/pii/S0278691521001496 (accessed on 10 November 2023). [CrossRef] [PubMed]
- Farkas, Z.; Kerekes, K.; Ambrus, Á.; Süth, M.; Peles, F.; Pusztahelyi, T.; Pócsi, I.; Nagy, A.; Sipos, P.; Miklós, G.; et al. Probabilistic modeling and risk characterization of the chronic aflatoxin M1 exposure of Hungarian consumers. Front. Microbiol. 2022, 13, 1000688. Available online: https://www.frontiersin.org/articles/10.3389/fmicb.2022.1000688 (accessed on 10 November 2023). [CrossRef] [PubMed]
- EPA. EPA ExpoBox. 2023. Exposure Assessment Tools by Tiers and Types—Deterministic and Probabilistic Assessments. Available online: https://www.epa.gov/expobox/exposure-assessment-tools-tiers-and-types-deterministic-and-probabilistic-assessments (accessed on 11 November 2023).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.r-project.org/ (accessed on 20 November 2023).
- Pouillot, R.; Delignette-Muller, M.L. Evaluating variability and uncertainty separately in microbial quantitative risk assessment using two R packages. Int. J. Food Microbiol. 2010, 142, 330–340. Available online: https://www.sciencedirect.com/science/article/pii/S0168160510003843 (accessed on 15 December 2023). [CrossRef] [PubMed]
- Robert, C.P.; Casella, G.; Casella, G. Introducing Monte Carlo Methods with r; Springer: Berlin/Heidelberg, Germany, 2010; Volume 18. [Google Scholar]
- Boon, P.E.; van der Voet, H. Probabilistic Dietary Exposure Models: Relevant for Acute and Chronic Exposure Assessment of Adverse Chemicals via Food; Rijksinstituut voor Volksgezondheid en Milieu RIVM: Bilthoven, The Netherlands, 2016. [Google Scholar]
- Zincke, F.; Fischer, A.; Kittelmann, A.; Kraus, C.; Scholz, R.; Michalski, B.; BfR (German Federal Institute for Risk Assessment). First update of the EU database of processing factors for pesticide residues. EFSA Support. Publ. 2022, 19, EN-7453. [Google Scholar] [CrossRef]
- Lancova, K.; Hajslova, J.; Kostelanska, M.; Kohoutkova, J.; Nedelnik, J.; Moravcova, H.; Vanova, M. Fate of trichothecene mycotoxins during the processing: Milling and baking. Food Addit. Contam. Part A 2008, 25, 650–659. [Google Scholar] [CrossRef] [PubMed]
- Pankaj, S.K.; Shi, H.; Keener, K.M. A review of novel physical and chemical decontamination technologies for aflatoxin in food. Trends Food Sci. Technol. 2018, 71, 73–83. Available online: https://www.sciencedirect.com/science/article/pii/S092422441730033X (accessed on 15 December 2023). [CrossRef]
- Suman, M. Last decade studies on mycotoxins’ fate during food processing: An overview. Curr. Opin. Food Sci. 2021, 41, 70–80. Available online: https://www.sciencedirect.com/science/article/pii/S2214799321000370 (accessed on 15 December 2023). [CrossRef]
- Wang, F.; Rideout, K. Impact of Home Preparation and Cooking Methods on Levels of Dioxin and Dioxin-Like Compounds in Foods; National Collaborating Centre for Environmental Health: Vancouver, BC, USA, 2011. [Google Scholar]
- Udovicki, B.; Djekic, I.; Kalogianni, P.E.; Rajkovic, A. Exposure Assessment and Risk Characterization of Aflatoxin M1 Intake through Consumption of Milk and Yoghurt by Student Population in Serbia and Greece. Toxins 2019, 11, 205. [Google Scholar] [CrossRef]
- Petrovic, J.; Jovetic, M.; Štulić, M.; Vujadinović, D.; Lorenzo, J.M.; Iammarino, M.; Djekic, I.V.; Tomasevic, I. Exposure assessment in the Serbian population and occurrence of histamine and heavy metals in fish and seafood. Int. J. Food Sci. Technol. 2022, 57, 7517–7527. [Google Scholar] [CrossRef]
- EFSA. Management of left-censored data in dietary exposure assessment of chemical substances. EFSA J. 2010, 8, 1557. [Google Scholar] [CrossRef]
- Van de Perre, E.; Jacxsens, L.; Lachat, C.; El Tahan, F.; De Meulenaer, B. Impact of maximum levels in European legislation on exposure of mycotoxins in dried products: Case of aflatoxin B1 and ochratoxin A in nuts and dried fruits. Food Chem. Toxicol. 2015, 75, 112–117. Available online: https://www.sciencedirect.com/science/article/pii/S0278691514004499?via%3Dihub (accessed on 7 January 2020). [CrossRef] [PubMed]
- EFSA. Guidance on Uncertainty Analysis in Scientific Assessments. EFSA J. 2018, 16, e05123. [Google Scholar] [CrossRef]
Database | Type/Use | Location | Open Access |
---|---|---|---|
(FAO) Food balance sheets 2010–2021 | Population-based food consumption data | https://www.fao.org/faostat/en/#data/FBS (accessed on 23 February 2024) | Yes |
(EFSA) Comprehensive Food Consumption Database | Individual-level food consumption data | https://www.efsa.europa.eu/en/microstrategy/food-consumption-survey (accessed on 23 February 2024) | For summary statistics only |
(EU) Pesticide residue(s) and maximum residue levels | Maximum residue limits data | https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/start/screen/mrls/searchpr (accessed on 23 February 2024) | Yes |
(WHO) GEMS database | Concentrations of chemicals in food | https://extranet.who.int/gemsfood/?DisplayFormat=1 (accessed on 23 February 2024) | Yes |
Software | |||
Minitab (21.1.0) | Statistical software/general use/Monte Carlo simulation | https://www.minitab.com/en-us/ (accessed on 23 February 2024) | Commercial |
@risk (8.0) | Standalone software/Monte Carlo simulation | https://lumivero.com/software-features/monte-carlo-simulation/ (accessed on 23 February 2024) | Commercial |
R (4.3.3) | Software environment | https://www.r-project.org/ (accessed on 23 February 2024) | Yes |
Tool | |||
(EFSA) PRIMo (3.1) | Pesticide residue chronic/acute intake model | https://www.efsa.europa.eu/en/applications/pesticides/tools (accessed on 23 February 2024) | Yes |
(EFSA) FAIM (2.1) | Chronic exposure to food additives model | https://www.efsa.europa.eu/en/applications/food-improvement-agents/tools (accessed on 23 February 2024) | Registration needed |
(RIVM and EFSA) MRCA (10.0.9.) | Various models | https://mcra.rivm.nl/mcra (accessed on 23 February 2024) | Registration needed |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Udovicki, B.; Djekic, I. Quick Roadmap for Exposure Assessment of Contaminants in Food. Standards 2024, 4, 25-38. https://doi.org/10.3390/standards4010002
Udovicki B, Djekic I. Quick Roadmap for Exposure Assessment of Contaminants in Food. Standards. 2024; 4(1):25-38. https://doi.org/10.3390/standards4010002
Chicago/Turabian StyleUdovicki, Bozidar, and Ilija Djekic. 2024. "Quick Roadmap for Exposure Assessment of Contaminants in Food" Standards 4, no. 1: 25-38. https://doi.org/10.3390/standards4010002
APA StyleUdovicki, B., & Djekic, I. (2024). Quick Roadmap for Exposure Assessment of Contaminants in Food. Standards, 4(1), 25-38. https://doi.org/10.3390/standards4010002