Virtual Reality for Patient Education about Hypertension: A Randomized Pilot Study
Abstract
:1. Introduction
2. Methods
2.1. Participants and Study Design
2.2. Randomisation and Blinding
2.3. Interventions
2.3.1. Development and Validation of Educational Content
2.3.2. Validation of Audiovisual and VR Content
2.3.3. VR Headset Testing and Reliability
2.3.4. Standardisation of Face-to-Face Training
2.3.5. Interactivity of Educational Sessions
2.3.6. Opportunity to Post-Trial Experience
2.4. Outcomes
2.4.1. Knowledge
2.4.2. Subjective Satisfaction
2.4.3. Responder Analysis
2.4.4. Adverse Effects
2.5. Statistical Analysis
3. Results
3.1. Participant Flow and Baseline Data
3.2. Results-Knowledge
Test of Difference
3.3. Results-Satisfaction
3.4. Responder Analysis
3.5. Subanalysis of Knowledge
3.6. Adverse Events
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kearney, P.M.; Whelton, M.; Reynolds, K.; Muntner, P.; Whelton, P.K.; He, J. Global burden of hypertension: Analysis of worldwide data. Lancet 2005, 365, 217–223. [Google Scholar] [CrossRef]
- Kearney, P.M.; Whelton, M.; Reynolds, K.; Whelton, P.K.; He, J. Worldwide prevalence of hypertension: A systematic review. J. Hypertens. 2004, 22, 11. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.K.; Ding, V.Y.; Ball, R.L.; Dolce, D.L.; Henderson, J.M.; Halpern, C.H. Novel application of virtual reality in patient engagement for deep brain stimulation: A pilot study. Brain Stimul. Basic Transl. Clin. Res. Neuromodul. 2018, 11, 935–937. [Google Scholar] [CrossRef] [PubMed]
- Castellanos, J.M.; Yefimov, A.; Dang, P.N. 360-Degree Virtual Reality Consultation for the Structural Heart Disease Patient. Struct. Heart 2020, 4, 230–235. [Google Scholar] [CrossRef]
- Louis, R.; Cagigas, J.; Brant-Zawadzki, M.; Ricks, M. Impact of Neurosurgical Consultation With 360-Degree Virtual Reality Technology on Patient Engagement and Satisfaction. Neurosurg. Pract. 2020, 1, okaa004. [Google Scholar] [CrossRef]
- Perin, A.; Galbiati, T.F.; Ayadi, R.; Gambatesa, E.; Orena, E.F.; Riker, N.I.; Silberberg, H.; Sgubin, D.; Meling, T.R.; DiMeco, F. Informed consent through 3D virtual reality: A randomized clinical trial. Acta Neurochir. 2021, 163, 301–308. [Google Scholar] [CrossRef]
- Radianti, J.; Majchrzak, T.A.; Fromm, J.; Wohlgenannt, I. A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Comput. Educ. 2020, 147, 103778. [Google Scholar] [CrossRef]
- Barteit, S.; Lanfermann, L.; Bärnighausen, T.; Neuhann, F.; Beiersmann, C. Augmented, mixed, and virtual reality-based head-mounted devices for medical education: Systematic review. JMIR Serious Games 2021, 9, e29080. [Google Scholar] [CrossRef]
- Pandrangi, V.C.; Gaston, B.; Appelbaum, N.P.; Albuquerque, F.C.; Levy, M.M.; Larson, R.A. The Application of Virtual Reality in Patient Education. Ann. Vasc. Surg. 2019, 59, 184–189. [Google Scholar] [CrossRef]
- van der Kruk, S.R.; Zielinski, R.; MacDougall, H.; Hughes-Barton, D.; Gunn, K.M. Virtual reality as a patient education tool in healthcare: A scoping review. Patient Educ. Couns. 2022, 105, 1928–1942. [Google Scholar] [CrossRef]
- van der Linde-van den Bor, M.; Slond, F.; Liesdek, O.C.D.; Suyker, W.J.; Weldam, S.W.M. The use of virtual reality in patient education related to medical somatic treatment: A scoping review. Patient Educ. Couns. 2022, 105, 1828–1841. [Google Scholar] [CrossRef]
- Tait, A.R.; Connally, L.; Doshi, A.; Johnson, A.; Skrzpek, A.; Grimes, M.; Becher, A.; Choi, J.E.; Weber, M. Development and evaluation of an augmented reality education program for pediatric research. J. Clin. Transl. Res. 2020, 5, 96–101. [Google Scholar]
- Wake, N.; Rosenkrantz, A.B.; Huang, R.; Park, K.U.; Wysock, J.S.; Taneja, S.S.; Huang, W.C.; Sodickson, D.K.; Chandarana, H. Patient-specific 3D printed and augmented reality kidney and prostate cancer models: Impact on patient education. 3D Print. Med. 2019, 5, 4. [Google Scholar] [CrossRef]
- Iordache, D.D.; Pribeanu, C.; Balog, A. Influence of specific AR capabilities on the learning effectiveness and efficiency. Stud. Inform. Control 2012, 21, 233–240. [Google Scholar] [CrossRef]
- Di Serio, Á.; Ibáñez, M.B.; Kloos, C.D. Impact of an augmented reality system on students’ motivation for a visual art course. Comput. Educ. 2013, 68, 586–596. [Google Scholar] [CrossRef]
- Dunleavy, M.; Dede, C.; Mitchell, R. Affordances and Limitations of Immersive Participatory Augmented Reality Simulations for Teaching and Learning. J. Sci. Educ. Technol. 2008, 18, 7–22. [Google Scholar] [CrossRef]
- Küçük, S.; Kapakin, S.; Göktaş, Y. Learning anatomy via mobile augmented reality: Effects on achievement and cognitive load. Anat. Sci. Educ. 2016, 9, 411–421. [Google Scholar] [CrossRef]
- Wilson, T.D. Role of Image and Cognitive Load in Anatomical Multimedia. In Teaching Anatomy: A Practical Guide; Chan, L.K., Pawlina, W., Eds.; Springer: Cham, Switzerland, 2020; pp. 301–311. [Google Scholar] [CrossRef]
- Zhu, E.; Hadadgar, A.; Masiello, I.; Zary, N. Augmented reality in healthcare education: An integrative review. PeerJ 2014, 2, e469. [Google Scholar] [CrossRef]
- Kamphuis, C.; Barsom, E.; Schijven, M.; Christoph, N. Augmented reality in medical education? Perspect. Med. Educ. 2014, 3, 300–311. [Google Scholar] [CrossRef]
- Smith, A.F.; Mishra, K. Interaction between anaesthetists, their patients, and the anaesthesia team. Br. J. Anaesth. 2010, 105, 60–68. [Google Scholar] [CrossRef]
- Ha, J.F.; Longnecker, N. Doctor-patient communication: A review. Ochsner J. 2010, 10, 38–43. [Google Scholar]
- Balsam, P.; Borodzicz, S.; Malesa, K.; Puchta, D.; Tymińska, A.; Ozierański, K.; Kołtowski, L.; Peller, M.; Grabowski, M.; Filipiak, K.J.; et al. OCULUS study: Virtual reality-based education in daily clinical practice. Cardiol. J. 2019, 26, 260–264. [Google Scholar] [CrossRef]
- Chang, S.-L.; Kuo, M.-J.; Lin, Y.-J.; Chen, S.-A.; Yang, Y.-Y.; Cheng, H.-M.; Yang, L.-Y.; Kao, S.-Y.; Lee, F.-Y. Virtual reality informative aids increase residents’ atrial fibrillation ablation procedures-related knowledge and patients’ satisfaction. J. Chin. Med. Assoc. 2021, 84, 25–32. [Google Scholar] [CrossRef]
- de Rooij, I.J.M.; van de Port, I.G.L.; Meijer, J.W.G. Effect of Virtual Reality Training on Balance and Gait Ability in Patients with Stroke: Systematic Review and Meta-Analysis. Phys. Ther. 2016, 96, 1905–1918. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Liu, S.; Zhang, S.; Wang, Y.; Liang, Z.; Feng, Q.; Hu, M.; Zhang, Q. Pilot Study of a Virtual Reality Educational Intervention for Radiotherapy Patients Prior to Initiating Treatment. J. Cancer Educ. 2022, 37, 578–585. [Google Scholar] [CrossRef] [PubMed]
- Han, S.H.; Park, J.W.; Choi, S.I.; Kim, J.Y.; Lee, H.; Yoo, H.J.; Ryu, J.H. Effect of Immersive Virtual Reality Education Before Chest Radiography on Anxiety and Distress Among Pediatric Patients: A Randomized Clinical Trial. JAMA Pediatr. 2019, 173, 1026–1031. [Google Scholar] [CrossRef] [PubMed]
- Tait, A.R.; Voepel-Lewis, T.; Zikmund-Fisher, B.J.; Fagerlin, A. Presenting research risks and benefits to parents: Does format matter? Anesth. Analg. 2010, 111, 718–723. [Google Scholar] [CrossRef] [PubMed]
- Ruggeri, M.; Lasalvia, A.; Bonetto, C. A new generation of pragmatic trials of psychosocial interventions is needed. Epidemiol. Psychiatr. Sci. 2013, 22, 111–117. [Google Scholar] [CrossRef]
- Schulz, K.F.; Grimes, D.A. Sample size slippages in randomised trials: Exclusions and the lost and wayward. Lancet 2002, 359, 781–785. [Google Scholar] [CrossRef]
- Charles, P.; Giraudeau, B.; Dechartres, A.; Baron, G.; Ravaud, P. Reporting of sample size calculation in randomised controlled trials: Review. BMJ 2009, 338, b1732. [Google Scholar] [CrossRef]
- Laver, K.E.; Lange, B.; George, S.; Deutsch, J.E.; Saposnik, G.; Crotty, M. Virtual reality for stroke rehabilitation. Cochrane Database Syst. Rev. 2017, 11, CD008349. [Google Scholar] [CrossRef] [PubMed]
- Madary, M.; Metzinger, T.K. Real virtuality: A code of ethical conduct. Recommendations for good scientific practice and the consumers of VR-technology. Front. Robot. AI 2016, 3, 3. [Google Scholar] [CrossRef]
- Barsom, E.Z.; Graafland, M.; Schijven, M.P. Systematic review on the effectiveness of augmented reality applications in medical training. Surg. Endosc. 2016, 30, 4174–4183. [Google Scholar] [CrossRef] [PubMed]
- Kyaw, B.M.; Saxena, N.; Posadzki, P.; Vseteckova, J.; Nikolaou, C.K.; George, P.P.; Divakar, U.; Masiello, I.; Kononowicz, A.A.; Zary, N.; et al. Virtual Reality for Health Professions Education: Systematic Review and Meta-Analysis by the Digital Health Education Collaboration. J. Med. Internet Res. 2019, 21, e12959. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Education Method | ||||
---|---|---|---|---|---|
Total Cohort | Physician-Led Education | VR Education | Stats (p=) | ||
Sex | total (N) | 182 | 88 | 94 | |
female (N; %) | 83 (46%) | 40 (45%) | 43 (46%) | 0.969 | |
male (N; %) | 99 (54%) | 48 (55%) | 51 (54%) | ||
Age (years) (median; IQR) | 66 (16) | 66 (16) | 66 (17) | 0.448 | |
Systolic blood pressure (mmHg) (median; IQR) | 131 (17) | 132 (20) | 130 (15) | 0.716 | |
Diastolic blood pressure (mmHg) (median; IQR) | 80 (10) | 80 (10) | 80 (9) | 0.797 | |
Number of antihypertensive drugs (median; IQR) | 2 (1) | 2 (1) | 2 (1) | 0.091 | |
Optimal Home Monitored BP Control (N; %) | 137 (76.1%) | 72 (81.8%) | 65 (70.7%) | 0.079 | |
Hypertension-related Complications (N; %) | 120 (66.7%) | 58 (65.9%) | 62 (67.4%) | 0.833 | |
Diabetes Mellitus (N; %) | 55 (30.6%) | 31 (35.2%) | 24 (26.1%) | 0.183 | |
Dyslipidemia (N; %) | 150 (83.3%) | 76 (86.4%) | 74 (80.4%) | 0.286 |
Knowledge Assessment | Education Method | ||||||
---|---|---|---|---|---|---|---|
Total | Physician | VR | Stats | ||||
N | Median (IQR) | N | Median (IQR) | N | Median (IQR) | p= | |
Total Objective Score | 182 | 12 (4) | 88 | 10 (5) | 94 | 14 (3) | <0.001 |
Satisfaction Level | Education Method | ||||
---|---|---|---|---|---|
Total | Physician | VR | Stats (p=) | ||
N | N (%) | N (%) | |||
Subjective Score | Total | 182 | 88 | 94 | |
1 | 153 | 71 (81%) | 82 (87%) | 0.535 | |
2 | 23 | 13 (15%) | 10 (11%) | ||
3 | 5 | 3 (3%) | 2 (2%) | ||
4 | 1 | 1 (1%) | 0 | ||
5 | 0 | 0 | 0 | ||
mean (SD) | 1.25 (0.61) | 1.15 (0.43) |
Responder Characteristics | Low versus Med-High Total Score Responders | ||||
---|---|---|---|---|---|
Total | Low Responders (Q1 in Each Education Group) | Med-High Responders ((Q2–Q4) in Each Education Group) | Stats (p=) | ||
Sex (N;%) | female | 83 (46%) | 35 (57%) | 48 (40%) | 0.024 |
male | 99 (54%) | 26 (43%) | 73 (60%) | ||
Age (years) (median; IQR) | 66 (16) | 68 (16) | 65 (16) | 0.036 | |
Subjective Score (median; IQR) | 1 (0) | 1 (0) | 1 (0) | 0.295 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiravska Godula, B.; Jiravsky, O.; Matheislova, G.; Kuriskova, V.; Valkova, A.; Puskasova, K.; Dokoupil, M.; Dvorakova, V.; Prifti, A.; Foral, D.; et al. Virtual Reality for Patient Education about Hypertension: A Randomized Pilot Study. J. Cardiovasc. Dev. Dis. 2023, 10, 481. https://doi.org/10.3390/jcdd10120481
Jiravska Godula B, Jiravsky O, Matheislova G, Kuriskova V, Valkova A, Puskasova K, Dokoupil M, Dvorakova V, Prifti A, Foral D, et al. Virtual Reality for Patient Education about Hypertension: A Randomized Pilot Study. Journal of Cardiovascular Development and Disease. 2023; 10(12):481. https://doi.org/10.3390/jcdd10120481
Chicago/Turabian StyleJiravska Godula, Bogna, Otakar Jiravsky, Gabriela Matheislova, Veronika Kuriskova, Alena Valkova, Kristina Puskasova, Martin Dokoupil, Veronika Dvorakova, Arber Prifti, Daniel Foral, and et al. 2023. "Virtual Reality for Patient Education about Hypertension: A Randomized Pilot Study" Journal of Cardiovascular Development and Disease 10, no. 12: 481. https://doi.org/10.3390/jcdd10120481
APA StyleJiravska Godula, B., Jiravsky, O., Matheislova, G., Kuriskova, V., Valkova, A., Puskasova, K., Dokoupil, M., Dvorakova, V., Prifti, A., Foral, D., Jiravsky, F., Hecko, J., Hudec, M., Neuwirth, R., & Miklik, R. (2023). Virtual Reality for Patient Education about Hypertension: A Randomized Pilot Study. Journal of Cardiovascular Development and Disease, 10(12), 481. https://doi.org/10.3390/jcdd10120481