Effects of Finerenone on Cardiovascular and Chronic Kidney Diseases: A New Weapon against Cardiorenal Morbidity and Mortality—A Comprehensive Review
Abstract
:1. Introduction
2. Methods
3. Chronic Kidney Disease and Cardiovascular Disease: A Dangerous Association
4. Renin-Angiotensin-Aldosterone System and Mineralocorticoid Receptor Antagonists (MRAs)
5. Finerenone: From Biochemical Characteristics to Experimental Studies
6. Finerenone: From Bench to Bedside
7. Strengths and Limitations
8. Conclusions
9. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Ter Maaten, J.M.; Damman, K.; Verhaar, M.C.; Paulus, W.J.; Duncker, D.J.; Cheng, C.; van Heerebeek, L.; Hillege, H.L.; Lam, C.S.P.; Navis, G.; et al. Connecting heart failure with preserved ejection fraction and renal dysfunction: The role of endothelial dysfunction and inflammation. Eur. J. Heart Fail. 2016, 18, 588–598. [Google Scholar] [CrossRef] [PubMed]
- van der Pol, A.; van Gilst, W.H.; Voors, A.; van der Meer, P. Treating oxidative stress in heart failure: Past, present and future. Eur. J. Heart Fail. 2019, 21, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Manjunath, G.; Tighiouart, H.; Ibrahim, H.; MacLeod, B.; Salem, D.N.; Griffith, J.L.; Coresh, J.; Levey, A.S.; Sarnak, M.J. Level of kidney function as a risk factor for atherosclerotic cardiovascular outcomes in the community. J. Am. Coll. Cardiol. 2003, 41, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Vallianou, N.G.; Mitesh, S.; Gkogkou, A.; Geladari, E. Chronic Kidney Disease and Cardiovascular Disease: Is there Any Relationship? Curr. Cardiol. Rev. 2019, 15, 55–63. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Damman, K.; Gori, M.; Claggett, B.; Jhund, P.S.; Senni, M.; Lefkowitz, M.P.; Prescott, M.F.; Shi, V.C.; Rouleau, J.L.; Swedberg, K.; et al. Renal Effects and Associated Outcomes during Angiotensin-Neprilysin Inhibition in Heart Failure. JACC Heart Fail. 2018, 6, 489–498. [Google Scholar] [CrossRef] [PubMed]
- McMurray, J.J.; Packer, M.; Desai, A.S.; Gong, J.; Lefkowitz, M.P.; Rizkala, A.R.; Rouleau, J.L.; Shi, V.C.; Solomon, S.D.; Swedberg, K.; et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N. Engl. J. Med. 2014, 371, 993–1004. [Google Scholar] [CrossRef]
- Salvatore, T.; Galiero, R.; Caturano, A.; Rinaldi, L.; Di Martino, A.; Albanese, G.; Di Salvo, J.; Epifani, R.; Marfella, R.; Docimo, G.; et al. An Overview of the Cardiorenal Protective Mechanisms of SGLT2 Inhibitors. Int. J. Mol. Sci. 2022, 23, 3651. [Google Scholar] [CrossRef]
- Nusca, A.; Piccirillo, F.; Viscusi, M.M.; Giannone, S.; Mangiacapra, F.; Melfi, R.; Ricottini, R.; Ussia, G.P.; Grigioni, F. Contrast-induced Acute Kidney Injury in Diabetic Patients and SGLT-2 Inhibitors: A Preventive Opportunity or Promoting Element? J. Cardiovasc. Pharmacol. 2022, 80, 661–671. [Google Scholar] [CrossRef]
- Herrington, W.G.; Stapli, N.; Wanner, C.; Green, J.B.; Hauske, S.J.; Emberson, J.R.; Preiss, D.; Judge, P.; Mayne, K.J.; Ng, S.Y.A.; et al. Empagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2023, 388, 117–127. [Google Scholar]
- Patel, S.; Rauf, A.; Khan, H.; Abu-Izneid, T. Renin-angiotensin-aldosterone (RAAS): The ubiquitous system for homeostasis and pathologies. Biomed. Pharmacother. 2017, 94, 317–325. [Google Scholar] [CrossRef]
- Rico-Mesa, J.S.; White, A.; Ahmadian-Tehrani, A.; Anderson, A.S. Mineralocorticoid Receptor Antagonists: A Comprehensive Review of Finerenone. Curr. Cardiol. Rep. 2020, 22, 140. [Google Scholar] [CrossRef] [PubMed]
- Lerma, E.; White, W.B.; Bakris, G. Effectiveness of nonsteroidal mineralocorticoid recept or antagonists in patients with diabetic kidney disease. Postgrad. Med. 2022, 135, 224–233. [Google Scholar] [CrossRef]
- Delcayre, C.; Swynghedauw, B. Molecular mechanisms of myocardial remodeling. The role of aldosterone. J. Mol. Cell Cardiol. 2002, 34, 1577–1584. [Google Scholar] [CrossRef]
- Piccirillo, F.; Carpenito, M.; Verolino, G.; Chello, C.; Nusca, A.; Lusini, M.; Spadaccio, C.; Nappi, V.; Di Sciascio, G.; Nenna, A. Changes of the coronary arteries and cardiac microvasculature with aging: Implications for translational research and clinical practice. Mech. Ageing Dev. 2019, 184, 111161. [Google Scholar] [CrossRef]
- Kolkhof, P.; Delbeck, M.; Kretschmer, A.; Steinke, W.; Hartmann, E.; Bärfacker, L.; Eitner, F.; Albrecht-Küpper, B.; Schäfer, S. Finerenone, a novel selective nonsteroidal mineralocorticoid receptor antagonist protects from rat cardiorenal injury. J. Cardiovasc. Pharmacol. 2014, 64, 69–78. [Google Scholar] [CrossRef]
- Bakris, G.L.; Agarwal, R.; Anker, S.D.; Pitt, B.; Ruilope, L.M.; Rossing, P.; Kolkhof, P.; Nowack, C.; Schloemer, P.; Joseph, A. Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2020, 383, 2219–2229. [Google Scholar] [CrossRef] [PubMed]
- Pitt, B.; Filippatos, G.; Pitt, B.; Anker, S.D.; Rossing, P.; Joseph, A.; Kolkhof, P.; Nowack, C.; Gebel, M.; Ruilope, L.M.; et al. Cardiovascular Events with Finerenone in Kidney Disease and Type 2 Diabetes. N. Engl. J. Med. 2021, 385, 2252–2263. [Google Scholar] [CrossRef]
- Jankowski, J.; Floege, J.; Fliser, D.; Böhm, M.; Marx, N. Cardiovascular Disease in Chronic Kidney Disease: Pathophysiological Insights and Therapeutic Options. Circulation 2021, 143, 1157–1172. [Google Scholar] [CrossRef] [PubMed]
- Kampmann, J.D.; Goya Heaf, J.; Backer Mogensen, C.; Ronja Petersen, S.; Lykke Wolff, D.; Mickley, H.; Brandt, F. Rate and Risk Factors of Acute Myocardial Infarction after Debut of Chronic Kidney Disease-Results from the KidDiCo. J. Cardiovasc. Dev. Dis. 2022, 9, 387. [Google Scholar] [CrossRef]
- Zewinger, S.; Kleber, M.E.; Rohrer, L.; Lehmann, M.; Triem, S.; Jennings, R.T.; Petrakis, J.; Dressel, A.; Lepper, P.M.; Scharnagl, H. Symmetric dimethylarginine, high-density lipoproteins and cardiovascular disease. Eur. Heart J. 2017, 38, 1597–1607. [Google Scholar] [CrossRef]
- Speer, T.; Zewinger, S.; Fliser, D. Uraemic dyslipidaemia revisited: Role of high-density lipoprotein. Nephrol. Dial. Transplant. 2013, 28, 2456–2463. [Google Scholar] [CrossRef]
- Nusca, A.; Mangiacapra, F.; Sticchi, A.; Polizzi, G.; D’Acunto, G.; Ricottini, E.; Melfi, R.; Gallo, P.; Miglionico, M.; Giannone, S. Usefulness of Adding Pre-procedural Glycemia to the Mehran Score to Enhance Its Ability to Predict Contrast-induced Kidney Injury in Patients Undergoing Percutaneous Coronary Intervention Development and Validation of a Predictive Model. Am. J. Cardiol. 2021, 155, 16–22. [Google Scholar] [CrossRef]
- Piccirillo, F.; Miano, N.; Goffredo, C.; Nusca, A.; Mangiacapra, F.; Khazrai, Y.M.; De Gara, L.; Ussia, G.P.; Grigioni, F. Impact of Mediterranean diet on metabolic and inflammatory status of patients with polyvascular atherosclerotic disease. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Nusca, A.; Viscusi, M.M.; Piccirillo, F.; De Filippis, A.; Nenna, A.; Spadaccio, C.; Nappi, F.; Chello, C.; Mangiacapra, F.; Grigioni, F. In Stent Neo-Atherosclerosis: Pathophysiology, Clinical Implications, Prevention, and Therapeutic Approaches. Life 2022, 12, 393. [Google Scholar] [CrossRef] [PubMed]
- Stenvinkel, P.; Carrero, J.J.; Jonas, A.; Bengt, L.; Heimburger, O.; Massy, Z. Emerging biomarkers for evaluating cardiovascular risk in the chronic kidney disease patient: How do new pieces fit into the uremic puzzle? Clin. J. Am. Soc. Nephrol. 2008, 3, 505–521. [Google Scholar] [CrossRef]
- Go, A.S.; Chertow, G.M.; Fan, D.; McCulloch, C.E.; Hsu, C. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N. Engl. J. Med. 2004, 351, 1296–1305. [Google Scholar] [CrossRef]
- Manjunath, G.; Tighiouart, H.; Coresh, J.; Macleod, B.; Salem, B.N.; Griffith, J.L.; Levey, J.S.; Sarnak, M.J. Level of kidney function as a risk factor for cardiovascular outcomes in the elderly. Kidney Int. 2003, 63, 1121–1129. [Google Scholar] [CrossRef]
- Mann, J.F.; Gerstein, H.C.; Pogue, J.; Bosch, J.; Yusuf, S. Renal insufficiency as a predictor of cardiovascular outcomes and the impact of ramipril: The HOPE randomized trial. Ann. Intern. Med. 2001, 134, 629–636. [Google Scholar] [CrossRef]
- Ruilope, L.M.; Antonio Salvetti, A.; Jamerson, K.; Hansson, L.; Warnold, I.; Wedel, H.; Zanchetti, A. Renal function and intensive lowering of blood pressure in hypertensive participants of the hypertension optimal treatment (HOT) study. J. Am. Soc. Nephrol. 2001, 12, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Yun, H.R.; Joo, Y.S.; Kim, H.W.; Park, J.T.; Chang, T.I.; Son, N.H.; Yoo, T.H.; Kang, S.W.; Sung, S.; Lee, K.B.; et al. Coronary Artery Calcification Score and the Progression of Chronic Kidney Disease. J. Am. Soc. Nephrol. 2022, 33, 1590–1601. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Budoff, M.J.; Reilly, M.P.; Yang, W.; Rosas, S.E.; Rahman, M.; Zhang, X.; Roy, J.A.; Lustigova, E.; Nessel, L.; et al. Coronary Artery Calcification and Risk of Cardiovascular Disease and Death among Patients with Chronic Kidney Disease. JAMA Cardiol. 2017, 2, 635–643. [Google Scholar] [CrossRef]
- Bundy, J.D.; Bundy, J.D.; Cai, X.; Scialla, J.J.; Dobre, M.A.; Chen, J.; Hsu, C.Y.; Leonard, M.B.; Go, A.S.; Rao, P.S.; et al. Serum Calcification Propensity and Coronary Artery Calcification among Patients with CKD: The CRIC (Chronic Renal Insufficiency Cohort) Study. Am. J. Kidney Dis. 2019, 73, 806–814. [Google Scholar] [CrossRef] [PubMed]
- Bundy, J.D.; Chen, J.; Yang, W.; Budoff, M.; Go, A.S.; Grunwald, J.E.; Kallem, R.R.; Post, W.S.; Reilly, M.P.; Ricardo, A.C.; et al. Risk factors for progression of coronary artery calcification in patients with chronic kidney disease: The CRIC study. Atherosclerosis 2018, 271, 53–60. [Google Scholar] [CrossRef]
- Law, J.P.; Pickup, L.; Pavlovic, D.; Townend, J.N.; Ferro, C.J. Hypertension and cardiomyopathy associated with chronic kidney disease: Epidemiology, pathogenesis and treatment considerations. J. Hum. Hypertens. 2023, 37, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, M.; Oktay, A.A.; Stewart, M.H.; Milani, R.V.; Ventura, H.O.; Lavie, C.J. Left ventricular hypertrophy and hypertension. Prog. Cardiovasc. Dis. 2020, 63, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Nardi, E.; Mulè, G.; Giammanco, A.; Mattina, A.; Geraci, G.; Nardi, C.; Averna, M. Left ventricular hypertrophy in chronic kidney disease: A diagnostic criteria comparison. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Zanoli, L.; Lentini, P.; Briet, M.; Castellino, P.; House, A.A.; London, G.M.; Malatino, L.; McCullough, P.A.; Mikhailidis, D.P.; Boutouyrie, P. Arterial Stiffness in the Heart Disease of CKD. J. Am. Soc. Nephrol. 2019, 30, 918–928. [Google Scholar] [CrossRef]
- Kiuchi, M.G.; Ho, J.K.; Nolde, J.M.; Lugo Gavidia, L.M.; Carnagarin, R.; Matthews, V.B.; Schlaich, M.P. Sympathetic Activation in Hypertensive Chronic Kidney Disease—A Stimulus for Cardiac Arrhythmias and Sudden Cardiac Death? Front. Physiol. 2019, 10, 1546. [Google Scholar] [CrossRef]
- Genovesi, S.; Boriani, G.; Covic, A.; Vernooij, R.W.M.; Combe, C.; Burlacu, A.; Davenport, A.; Kanbay, M.; Kirmizis, D. Sudden cardiac death in dialysis patients: Different causes and management strategies. Nephrol. Dial. Transplant. 2021, 36, 396–405. [Google Scholar] [CrossRef]
- Colafella, K.M.M.; Bovée, D.M.; Danser, A.J. The renin-angiotensin-aldosterone system and its therapeutic targets. Exp. Eye Res. 2019, 186, 107680. [Google Scholar] [CrossRef] [PubMed]
- Ames, M.K.; Atkins, C.E.; Pitt, B. The renin-angiotensin-aldosterone system and its suppression. J. Vet. Intern. Med. 2019, 33, 363–382. [Google Scholar] [CrossRef] [PubMed]
- Chaves, A.D.S.; Magalhães, N.S.; Insuela, D.B.R.; Silva, P.M.R.E.; Martins, M.A.; Carvalho, V.F. Effect of the renin-angiotensin system on the exacerbation of adrenal glucocorticoid steroidogenesis in diabetic mice: Role of angiotensin-II type 2 receptor. Front. Endocrinol. 2022, 13, 1040040. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.M.; Wijkman, M.O.; Claggett, B.L.; Shah, A.M.; Ballantyne, C.M.; Coresh, J.; Grams, M.E.; Wang, Z.; Yu, B.; Boer-winkle, E.; et al. Cardiac Structure and Function across the Spectrum of Aldosteronism: The Atherosclerosis Risk in Communities Study. Hypertension 2022, 79, 1984–1993. [Google Scholar] [CrossRef] [PubMed]
- Epstein, M. Reduction of cardiovascular risk in chronic kidney disease by mineralocorticoid receptor antagonism. Lancet Diabetes Endocrinol. 2015, 3, 993–1003. [Google Scholar] [CrossRef] [PubMed]
- Stockand, J.D.; Meszaros, J.G. Aldosterone stimulates proliferation of cardiac fibroblasts by activating Ki-RasA and MAPK1/2 signaling. Am. J. Physiol. Heart Circ. Physiol. 2003, 284, H176–H184. [Google Scholar] [CrossRef]
- Huang, L.L.; Nikolic-Paterson, D.J.; Han, Y.; Ozols, E.; Ma, F.Y.; Young, M.J.; Tesch, G.H. Myeloid mineralocorticoid receptor activation contributes to progressive kidney disease. J. Am. Soc. Nephrol. 2014, 25, 2231–2240. [Google Scholar] [CrossRef]
- Pojoga, L.H.; Yao, T.M.; Opsasnick, L.A.; Siddiqui, W.T.; Reslan, O.M.; Adler, G.K.; Williams, G.H.; Khalil, R.A. Cooperative Role of Mineralocorticoid Receptor and Caveolin-1 in Regulating the Vascular Response to Low Nitric Oxide-High Angiotensin II-Induced Cardiovascular Injury. J. Pharmacol. Exp. Ther. 2015, 355, 32–47. [Google Scholar] [CrossRef]
- Alexandrou, M.E.; Papagianni, A.; Tsapas, A.; Loutradis, C.; Boutou, A.; Piperidou, A.; Papadopoulou, D.; Ruilope, L.; Bakris, G.; Sarafidis, P. Effects of mineralocorticoid receptor antagonists in proteinuric kidney disease: A systematic review and meta-analysis of randomized controlled trials. J. Hypertens. 2019, 37, 2307–2324. [Google Scholar] [CrossRef]
- Struthers, A.; Krum, H.; Williams, G.H. A comparison of the aldosterone-blocking agents eplerenone and spironolactone. Clin. Cardiol. 2008, 31, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Kolkhof, P.; Joseph, A.; Kintscher, U. Nonsteroidal mineralocorticoid receptor antagonism for cardiovascular and renal disorders—New perspectives for combination therapy. Pharmacol. Res. 2021, 172, 105859. [Google Scholar] [CrossRef]
- Pitt, B.; Remme, W.; Zannad, F.; Neaton, J.; Martinez, F.; Roniker, B.; Bittman, R.; Hurley, S.; Kleiman, J.; Gatlin, M.; et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N. Engl. J. Med. 2003, 348, 1309–1321. [Google Scholar] [CrossRef]
- Zannad, F.; McMurray, J.J.; Krum, H.; van Veldhuisen, D.J.; Swedberg, K.; Shi, H.; Vincent, J.; Pocock, S.J.; Pitt, B.; EMPHASIS-HF Study Group. Eplerenone in patients with systolic heart failure and mild symptoms. N. Engl. J. Med. 2011, 364, 11–21. [Google Scholar] [CrossRef]
- Pitt, B.; Pfeffer, M.A.; Assmann, S.F.; Boineau, R.; Anand, I.S.; Claggett, B.; Clausell, N.; Desai, A.S.; Diaz, R.; Fleg, J.L.; et al. Spironolactone for heart failure with preserved ejection fraction. N. Engl. J. Med. 2014, 370, 1383–1392. [Google Scholar] [CrossRef] [PubMed]
- Chung, E.Y.; Ruospo, M.; Natale, P.; Bolignano, D.; Navaneethan, S.D.; Palmer, S.C.; Strippoli, G.F. Aldosterone antagonists in addition to renin angiotensin system antagonists for preventing the progression of chronic kidney disease. Cochrane Database Syst. Rev. 2020, 10, Cd007004. [Google Scholar] [PubMed]
- Edwards, N.C.; Steeds, R.P.; Stewart, P.M.; Ferro, C.J.; Townend, J.N. Effect of spironolactone on left ventricular mass and aortic stiffness in early-stage chronic kidney disease: A randomized controlled trial. J. Am. Coll. Cardiol. 2009, 54, 505–512. [Google Scholar] [CrossRef]
- Quach, K.; Lvtvyn, L.; Baigent, C.; Bueti, J.; Garg, A.X.; Hawley, C.; Haynes, R.; Manns, B.; Perkovic, V.; Rabbat, C.G.; et al. The Safety and Efficacy of Mineralocorticoid Receptor Antagonists in Patients Who Require Dialysis: A Systematic Review and Meta-analysis. Am. J. Kidney Dis. 2016, 68, 591–598. [Google Scholar] [CrossRef]
- Rossignol, P.; Frimat, L.; Zannad, F. The safety of mineralocorticoid antagonists in maintenance hemodialysis patients: Two steps forward. Kidney Int. 2019, 95, 747–749. [Google Scholar] [CrossRef]
- Ito, S.; Itoh, H.; Rakugi, H.; Okuda, Y.; Yoshimura, M.; Yamakawa, S. Double-Blind Randomized Phase 3 Study Comparing Esaxerenone (CS-3150) and Eplerenone in Patients With Essential Hypertension (ESAX-HTN Study). Hypertension 2020, 75, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; Kashihara, N.; Shikata, K.; Nangaku, M.; Wada, T.; Okuda, Y.; Sawanobori, T. Esaxerenone (CS-3150) in Patients with Type 2 Diabetes and Microalbuminuria (ESAX-DN): Phase 3 Randomized Controlled Clinical Trial. Clin. J. Am. Soc. Nephrol. 2020, 15, 1715–1727. [Google Scholar] [CrossRef] [PubMed]
- Heinig, R.; Kimmeskamp-Kirschbaum, N.; Halabi, A.; Lentini, S. Pharmacokinetics of the Novel Nonsteroidal Mineralocorticoid Receptor Antagonist Finerenone (BAY 94-8862) in Individuals with Renal Impairment. Clin. Pharmacol. Drug Dev. 2016, 5, 488–501. [Google Scholar] [CrossRef] [PubMed]
- Heinig, R.; Gerisch, M.; Engelen, A.; Nagelschmitz, J.; Loewen, S. Pharmacokinetics of the Novel, Selective, Non-steroidal Mineralocorticoid Receptor Antagonist Finerenone in Healthy Volunteers: Results from an Absolute Bioavailability Study and Drug-Drug Interaction Studies In Vitro and In Vivo. Eur. J. Drug Metab. Pharmacokinet. 2018, 43, 715–727. [Google Scholar] [CrossRef] [PubMed]
- Gerisch, M.; Heinig, R.; Engelen, A.; Lang, D.; Kolkhof, P.; Radtke, M.; Platzek, J.; Lovis, K.; Rohde, G.; Schwarz, T. Biotransformation of Finerenone, a Novel Nonsteroidal Mineralocorticoid Receptor Antagonist, in Dogs, Rats, and Humans, In Vivo and In Vitro. Drug Metab. Dispos. 2018, 46, 1546–1555. [Google Scholar] [CrossRef]
- Heinig, R.; Gerisch, M.; Bairlein, M.; Nagelschmitz, J.; Loewen, S. Results from Drug-Drug Interaction Studies In Vitro and In Vivo Investigating the Effect of Finerenone on the Pharmacokinetics of Comedications. Eur. J. Drug Metab. Pharmacokinet. 2020, 45, 433–444. [Google Scholar] [CrossRef] [PubMed]
- Kolkhof, P.; Nowack, C.; Eitner, F. Nonsteroidal antagonists of the mineralocorticoid receptor. Curr. Opin. Nephrol. Hypertens. 2015, 24, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Pitt, B.; Kober, L.; Ponikowski, P.; Gheorghiade, M.; Filippatos, G.; Krum, H.; Nowack, C.; Kolkhof, P.; Kim, S.Y.; Zannad, F. Safety and tolerability of the novel non-steroidal mineralocorticoid receptor antagonist BAY 94-8862 in patients with chronic heart failure and mild or moderate chronic kidney disease: A randomized, double-blind trial. Eur. Heart J. 2013, 34, 2453–2463. [Google Scholar] [CrossRef] [PubMed]
- Heinig, R.; Kimmeskamp-Kirschbaum, N.; Halabi, A.; Lentini, S. Pharmacokinetics of the Novel Nonsteroidal Mineralocorticoid Receptor Antagonist Finerenone (BAY 94-8862) in Individuals with Mild or Moderate Hepatic Impairment. Eur. J. Drug Metab. Pharmacokinet. 2019, 44, 619–628. [Google Scholar] [CrossRef]
- Agarwal, R.; Kolkhof, P.; Bakris, G.; Bauersachs, J.; Haller, H.; Wada, T.; Zannad, F. Steroidal and non-steroidal mineralocorticoid receptor antagonists in cardiorenal medicine. Eur. Heart J. 2021, 42, 152–161. [Google Scholar] [CrossRef]
- Amazit, L.; Le Billan, F.; Kolkhof, P.; Lamribet, K.; Viengchareun, S.; Fay, M.R.; Khan, J.A.; Hillisch, A.; Lombès, M.; Raf-estin-Oblin, M.E.; et al. Finerenone Impedes Aldosterone-dependent Nuclear Import of the Mineralocorticoid Receptor and Prevents Genomic Recruitment of Steroid Receptor Coactivator-1. J. Biol. Chem. 2015, 290, 21876–21889. [Google Scholar] [CrossRef]
- Agarwal, R.; Rossignol, P.; Romero, A.; Garza, D.; Mayo, M.R.; Warren, S.; Ma, J.; White, W.B.; Williams, B. Patiromer versus placebo to enable spironolactone use in patients with resistant hypertension and chronic kidney disease (AMBER): A phase 2, randomised, double-blind, placebo-controlled trial. Lancet 2019, 394, 1540–1550. [Google Scholar] [CrossRef] [PubMed]
- Bonnard, B.; Pieronne-Deperrois, M.; Djerada, Z.; Elmoghrabi, S.; Kolkhof, P.; Ouvrard-Pascaud, A.; Mulder, P.; Jaisser, F.; Messaoudi, S. Mineralocorticoid receptor antagonism improves diastolic dysfunction in chronic kidney disease in mice. J. Mol. Cell. Cardiol. 2018, 121, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Dutzmann, J.; Musmann, R.J.; Haertlé, M.; Daniel, J.M.; Sonnenschein, K.; Schäfer, A.; Kolkhof, P.; Bauersachs, J.; Sedding, D.G. The novel mineralocorticoid receptor antagonist finerenone attenuates neointima formation after vascular injury. PLoS ONE 2017, 12, e0184888. [Google Scholar] [CrossRef] [PubMed]
- González-Blázquez, R.; Somoza, B.; Gil-Ortega, M.; Martín Ramos, M.; Ramiro-Cortijo, D.; Vega-Martín, E.; Schulz, A.; Ruilope, L.M.; Kolkhof, P.; Kreutz, R.; et al. Finerenone Attenuates Endothelial Dysfunction and Albuminuria in a Chronic Kidney Disease Model by a Reduction in Oxidative Stress. Front. Pharmacol. 2018, 9, 1131. [Google Scholar] [CrossRef] [PubMed]
- Lachaux, M.; Barrera-Chimal, J.; Nicol, L.; Rémy-Jouet, I.; Renet, S.; Dumesnil, A.; Wecker, D.; Richard, V.; Kolkhof, P.; Jaiss-er, F.; et al. Short- and long-term administration of the non-steroidal mineralocorticoid receptor antagonist finerenone opposes metabolic syndrome-related cardio-renal dysfunction. Diabetes Obes. Metab. 2018, 20, 2399–2407. [Google Scholar] [CrossRef]
- Gil-Ortega, M.; Vega-Martín, E.; Martín-Ramos, M.; González-Blázquez, R.; Pulido-Olmo, H.; Ruiz-Hurtado, G.; Schulz, A.; Ruilope, L.M.; Kolkhof, P.; Somoza, B.; et al. Finerenone Reduces Intrinsic Arterial Stiffness in Munich Wistar Frömter Rats, a Genetic Model of Chronic Kidney Disease. Am. J. Nephrol. 2020, 51, 294–303. [Google Scholar] [CrossRef]
- Bakris, G.L.; Agarwal, R.; Chan, J.C.; Cooper, M.E.; Gansevoort, R.T.; Haller, H.; Remuzzi, G.; Rossing, P.; Schmieder, R.E.; Nowack, C.; et al. Effect of Finerenone on Albuminuria in Patients with Diabetic Nephropathy: A Randomized Clinical Trial. JAMA 2015, 314, 884–894. [Google Scholar] [CrossRef]
- Filippatos, G.; Anker, S.D.; Böhm, M.; Gheorghiade, M.; Køber, L.; Krum, H.; Maggioni, A.P.; Ponikowski, P.; Voors, A.A.; Zannad, F.; et al. A randomized controlled study of finerenone vs. eplerenone in patients with worsening chronic heart failure and diabetes mellitus and/or chronic kidney disease. Eur. Heart J. 2016, 37, 2105–2114. [Google Scholar] [CrossRef]
- Filippatos, G.; Bakris, G.L.; Pitt, B.; Agarwal, R.; Rossing, P.; Ruilope, L.M.; Butler, J.; Lam, C.S.P.; Kolkhof, P.; Roberts, L.; et al. Finerenone Reduces New-Onset Atrial Fibrillation in Patients With Chronic Kidney Disease and Type 2 Diabetes. J. Am. Coll. Cardiol. 2021, 78, 142–152. [Google Scholar] [CrossRef]
- Green, J.B.; Mottl, A.K.; Bakris, G.; Heerspink, H.J.L.; Mann, J.F.E.; McGill, J.B.; Nangaku, M.; Rossing, P.; Scott, C.; Gay, A.; et al. Design of the COmbinatioN effect of FInerenone anD EmpaglifloziN in participants with chronic kidney disease and type 2 diabetes using an UACR Endpoint study (CONFIDENCE). Nephrol. Dial. Transplant. 2022, 38, 894–903. [Google Scholar] [CrossRef]
- Nusca, A.; Piccirillo, F.; Bernardini, F.; Filippis, A.D.; Coletti, F.; Mangiacapra, F.; Ricottini, E.; Melfi, R.; Gallo, P.; Cammalleri, V.; et al. Glycaemic Control in Patients Undergoing Percutaneous Coronary Intervention: What Is the Role for the Novel Antidiabetic Agents? A Comprehensive Review of Basic Science and Clinical Data. Int. J. Mol. Sci. 2022, 23, 7261. [Google Scholar] [CrossRef]
- Desai, N.R.; Navaneethan, S.D.; Nicholas, S.B.; Pantalone, K.M.; Wanner, C.; Hamacher, S.; Gay, A.; Wheeler, D.C. Design and rationale of FINE-REAL: A prospective study of finerenone in clinical practice. J. Diabetes Complicat. 2023, 37, 108411. [Google Scholar] [CrossRef] [PubMed]
Study | Setting | Results |
---|---|---|
Kolkhof et al., 2014 [16] | Sprague-Dawley rats and Wistar rats (two different preclinical rat disease models) | ↓ Cardiac hypertrophy ↓ Plasma prohormone of the brain natriuretic peptide ↓ Proteinuria ↑ Systolic and diastolic left ventricular function ↑ End-organ protection ↓ Risk of electrolyte disturbances |
Dutzmann et al., 2017 [41] | Human coronary artery SMC and human umbilical vein ECs | ↓ Apoptosis of ECs ↓ SMC proliferation ↑ Endothelial healing ↓ Neointima formation of the injured vessels |
Bonnard et al., 2018 [42] | Mice with CKD induced through subtotal nephrectomy | ↑ In systolic and diastolic cardiac function ↑ LV contractility (↑ LV end-systolic pressure–volume relationship-LVESPR) ↓ LV end-diastolic pressure–volume relationship-LVEDPR ↓ (LVEDP) ↓ LV hypertrophy and fibrosis |
González-Bláquez et al., 2018 [43] | Munich Wistar Frömter rats (a genetic model of chronic kidney disease) | ↓ Endothelial dysfunction ↑ NO bioavailability ↓ Superoxide anion levels ↑ SOD activity ↓ Albuminuria |
Lachaux et al., 2018 [44] | Zucker fa/fa rats (a rat model of metabolic syndrome) | Long-term effects =Blood pressure and heart rate ↓ LV end-diastolic pressure and LV end-diastolic pressure–volume relationship =LV end-systolic pressure and LV end-systolic pressure–volume relationship ↓ LV systolic and diastolic diameters ↓ LV weight and LV collagen density ↓ Proteinuria and renal nGAL expression Short-term effects ↓ LV systolic diameter =LV diastolic diameter ↑ Myocardial tissue perfusion ↓ Myocardial reactive oxygen species ↑ Plasma nitrite levels (NO bioavailability) |
Gil-Ortega et al., 2020 [45] | Munich Wistar Frömter rats (a genetic model of chronic kidney disease) | ↓ Intrinsic (mesenteric) arterial stiffness ↓ Albuminuria ↑ Plasma pro-MMP-2 activity ↓ Plasma MMP-2 and MMP-9 activities ↑ NO bioavailability ↓Superoxide anion levels |
Patients | Primary Outcome | Secondary Outcomes | Results | |
---|---|---|---|---|
ARTS (Part A: finerenone vs. placebo; part B: finerenone vs. spironolactone or placebo) 2012 [46] | 65 (part A); 392 (part B) | Change in the serum potassium concentration vs. placebo | (i) Changes in the serum potassium concentration vs. spironolactone (ii) Changes in the biomarkers of the cardiac and renal function or injury, eGFR (MDRD), and albuminuria | - Similar efficacy - Smaller increases the in serum potassium concentration |
ARTS-DN (finerenone vs. placebo) 2015 [47] | 823 | Ratio of the urinary albumin–creatinine ratio (UACR) at day 90 vs. at the baseline | (i) Adverse and serious adverse events (ii) Changes in the serum potassium levels (iii) Incidence of a decrease in eGFR of 30% or more, 40% or more, and 57% or more (iv) Changes in the UACR at day 30 and day 60 relative to the baseline | - Improvement in the UACR - No occurrences of eGFR decreases of at least 57% - No difference in the overall incidence of adverse events - Only a modest reduction in blood pressure at the highest dosage of finerenone |
ARTS-HF (finerenone vs. eplerone) 2016 [48] | 1055 | Efficacy (rate of patients who had a 30% reduction in the NT-proBNP level after 90 days) and safety (i.e., serum potassium concentration, vital signs, biomarkers of organ injury,...) | (i) Composite endpoint of death from any cause, cardiovascular hospitalization, or emergency presentation for worsening chronic HF until day 90 (ii) Change in efficacy biomarkers (BNP, NT-proBNP, galectin 3, and N-terminal procollagen III propeptide) (iii) Change in the scores on health-related quality of life (QoL) questionnaires [the Kansas City Cardiomyopathy Questionnaire (KCCQ) and the five-dimension European Quality of Life Questionnaire (EuroQoL). | - Similar efficacy - Reduction in the composite endpoint of death from any cause, cardiovascular hospitalization, or emergency presentation for worsening chronic HF until day 90 - Similar increase in the serum potassium concentration - Similar changes in the questionnaire mean scores. |
FIDELIO-DKD (finerenone vs. placebo) 2020 [17] | 5674 | Composite of kidney failure, a sustained decrease of at least 40% in the eGFR from the baseline over a period of at least 4 weeks, or death from renal causes (time-to-event analysis). | (i) Composite of death from cardiovascular causes, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure (ii) Death from any cause (iii) Hospitalization for any cause (iv) Change in the UACR from the baseline to month 4 (v) Composite of kidney failure, a sustained decrease of at least 57% in the eGFR from the baseline, or death from renal causes | - Significant reduction in the primary composite outcome - Significantly lower risk of a key secondary outcome event - Similar risk of nonfatal stroke. |
FIGARO-DKD (finerenone vs. placebo) 2021 [18] | 7352 | Composite of death from cardiovascular causes, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure (time-to-event analysis). | (i) Composite of the first occurrence of kidney failure, a sustained decrease from the baseline of at least 40% in the eGFR for a period of at least 4 weeks, or death from renal causes (ii) Hospitalization for any cause (iii) Death from any cause (iv) Change in the UACR from the baseline to month four (v) Kidney composite outcome of the first onset of kidney failure, a sustained decrease from baseline of at least 57% in the eGFR for a period of at least 4 weeks, or death from renal causes | - Significantly lower incidence of the primary composite outcome - Lower incidence of hospitalization for any cause and death for any cause. - No significant between-group difference in the incidence of the first or secondary composite outcome. - Greater reduction in the UACR from the baseline to month four. - Lower incidence of a secondary kidney composite outcome |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piccirillo, F.; Liporace, P.; Nusca, A.; Nafisio, V.; Corlianò, A.; Magarò, F.; Antonelli Incalzi, R.; Ussia, G.P.; Grigioni, F. Effects of Finerenone on Cardiovascular and Chronic Kidney Diseases: A New Weapon against Cardiorenal Morbidity and Mortality—A Comprehensive Review. J. Cardiovasc. Dev. Dis. 2023, 10, 236. https://doi.org/10.3390/jcdd10060236
Piccirillo F, Liporace P, Nusca A, Nafisio V, Corlianò A, Magarò F, Antonelli Incalzi R, Ussia GP, Grigioni F. Effects of Finerenone on Cardiovascular and Chronic Kidney Diseases: A New Weapon against Cardiorenal Morbidity and Mortality—A Comprehensive Review. Journal of Cardiovascular Development and Disease. 2023; 10(6):236. https://doi.org/10.3390/jcdd10060236
Chicago/Turabian StylePiccirillo, Francesco, Paola Liporace, Annunziata Nusca, Vincenzo Nafisio, Andrea Corlianò, Francesca Magarò, Raffaele Antonelli Incalzi, Gian Paolo Ussia, and Francesco Grigioni. 2023. "Effects of Finerenone on Cardiovascular and Chronic Kidney Diseases: A New Weapon against Cardiorenal Morbidity and Mortality—A Comprehensive Review" Journal of Cardiovascular Development and Disease 10, no. 6: 236. https://doi.org/10.3390/jcdd10060236
APA StylePiccirillo, F., Liporace, P., Nusca, A., Nafisio, V., Corlianò, A., Magarò, F., Antonelli Incalzi, R., Ussia, G. P., & Grigioni, F. (2023). Effects of Finerenone on Cardiovascular and Chronic Kidney Diseases: A New Weapon against Cardiorenal Morbidity and Mortality—A Comprehensive Review. Journal of Cardiovascular Development and Disease, 10(6), 236. https://doi.org/10.3390/jcdd10060236