Accuracy of Four Different CT Perfusion Thresholds for Ischemic Core Volume and Location Estimation Using IntelliSpace Portal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. CTP Analysis
2.3. MRI Analysis
2.4. Data Registration and Volumetric and Spatial Agreement
2.5. Statistical Analysis
3. Results
3.1. Volumetric Comparison CTP and MRI
3.2. CTP Core Overestimation
3.3. Spatial Agreement
3.4. Incomplete versus Complete Reperfusion
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ackerson, T.; Adeoye, O.M.; Brown, M.; Demaerschalk, B.M.; Hoh, B.; Leslie-mazwi, T.M.; Ovbiagele, B.; Scott, P.A.; Sheth, K.N.; Southerland, A.M.; et al. AHA/ASA Guideline 2018 Guidelines for the Early Management of Patients with Acute Ischemic Stroke. Stroke 2018, 49, e46–e99. [Google Scholar] [CrossRef]
- Turc, G.; Bhogal, P.; Fischer, U.; Khatri, P.; Lobotesis, K.; Mazighi, M.; Schellinger, P.D.; Toni, D.; De Vries, J.; White, P.; et al. European Stroke Organisation (ESO)—European Society for Minimally Invasive Neurological Therapy (ESMINT) Guidelines on Mechanical Thrombectomy in Acute Ischemic Stroke. J. Neurointerv. Surg. 2019, 1–30. [Google Scholar] [CrossRef]
- Campbell, B.C.V.; Lansberg, M.G.; Broderick, J.P.; Derdeyn, C.P.; Khatri, P.; Sarraj, A.; Saver, J.L.; Vagal, A.; Albers, G.W. Acute Stroke Imaging Research Roadmap IV: Imaging Selection and Outcomes in Acute Stroke Clinical Trials and Practice. Stroke 2021, 52, 2723–2733. [Google Scholar] [CrossRef]
- Ma, H.; Campbell, B.C.V.; Parsons, M.W.; Churilov, L.; Levi, C.R.; Hsu, C.; Kleinig, T.J.; Wijeratne, T.; Curtze, S.; Dewey, H.M.; et al. Thrombolysis Guided by Perfusion Imaging up to 9 h after Onset of Stroke. N. Engl. J. Med. 2019, 380, 1795–1803. [Google Scholar] [CrossRef]
- Konstas, A.A.; Goldmakher, G.V.; Lee, T.Y.; Lev, M.H. Theoretic basis and technical implementations of CT perfusion in acute ischemic stroke, part 1: Theoretic basis. Am. J. Neuroradiol. 2009, 30, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Mazzei, M.A.; Sani, E.; Guerrini, S.; Squitieri, N.C.; De Mauro, C.; Mauro, A.; Mazzei, F.G.; Volterrani, L. Differences in perfusion CT parameter values with commercial software upgrades: Algorithm consistency and stability. In Proceedings of the European Congress of Radiology—ECR 2012, Vienna, Austria, 1–5 March 2012; pp. 1–16. [Google Scholar]
- Cereda, C.W.; Christensen, S.; Campbell, B.C.V.V.; Mishra, N.K.; Mlynash, M.; Levi, C.; Straka, M.; Wintermark, M.; Bammer, R.; Albers, W.; et al. A benchmarking tool to evaluate computer tomography perfusion infarct core predictions against a DWI standard. J. Cereb. Blood Flow Metab. 2016, 36, 1780–1789. [Google Scholar] [CrossRef]
- Bivard, A.; Levi, C.; Spratt, N.; Parsons, M. Perfusion CT in Acute Stroke: A Comprehensive Analysis of Infarct and Penumbra. Radiology 2013, 267, 543–550. [Google Scholar] [CrossRef]
- Austein, F.; Riedel, C.; Kerby, T.; Meyne, J.; Binder, A.; Lindner, T.; Huhndorf, M.; Wodarg, F.; Jansen, O. Comparison of Perfusion CT Software to Predict the Final Infarct Volume after Thrombectomy. Stroke 2016, 47, 2311–2317. [Google Scholar] [CrossRef]
- Koopman, M.S.; Berkhemer, O.A.; Geuskens, R.R.E.G.; Emmer, B.J.; Van Walderveen, M.A.A.; Jenniskens, S.F.M.; Van Zwam, W.H.; Van Oostenbrugge, R.J.; Van Der Lugt, A.; Dippel, D.W.J.; et al. Comparison of three commonly used CT perfusion software packages in patients with acute ischemic stroke. J. Neurointerv. Surg. 2019, 11, 1249–1256. [Google Scholar] [CrossRef] [PubMed]
- Hoving, J.W.; Marquering, H.A.; Majoie, C.B.L.M.; Yassi, N.; Sharma, G.; Liebeskind, D.S.; van der Lugt, A.; Roos, Y.B.; van Zwam, W.; van Oostenbrugge, R.J.; et al. Volumetric and Spatial Accuracy of Computed Tomography Perfusion Estimated Ischemic Core Volume in Patients with Acute Ischemic Stroke. Stroke 2018, 49, 2368–2375. [Google Scholar] [CrossRef]
- Hoving, J.W.; Koopman, M.S.; Tolhuisen, M.L.; van Voorst, H.; Brehm, M.; Berkhemer, O.A.; Coutinho, J.M.; Beenen, L.F.M.; Marquering, H.A.; Emmer, B.J.; et al. Accuracy of CT perfusion ischemic core volume and location estimation: A comparison between four ischemic core estimation approaches using syngo.via. PLoS ONE 2022, 17, e0272276. [Google Scholar] [CrossRef]
- Karhi, S.; Tähtinen, O.; Aherto, J.; Matikka, H.; Manninen, H.; Nerg, O.; Taina, M.; Jäkälä, P.; Vanninen, R. Effect of different thresholds for CT perfusion volumetric analysis on estimated ischemic core and penumbral volumes. PLoS ONE 2021, 16, e0249772. [Google Scholar] [CrossRef]
- Kremenova, K.; Lukavsky, J.; Holesta, M.; Peisker, T.; Lauer, D.; Weichet, J.; Malikova, H. CT Brain Perfusion in the Prediction of Final Infarct Volume: A Prospective Study of Different Software Settings for Acute Ischemic Core Calculation. Diagnostics 2022, 12, 2290. [Google Scholar] [CrossRef]
- Kamnitsas, K.; Ledig, C.; Newcombe, V.F.J.; Simpson, J.P.; Kane, A.D.; Menon, D.K.; Rueckert, D.; Glocker, B. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 2017, 36, 61–78. [Google Scholar] [CrossRef]
- Yushkevich, P.A.; Piven, J.; Hazlett, H.C.; Smith, R.G.; Ho, S.; Gee, J.C.; Gerig, G. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage 2006, 31, 1116–1128. [Google Scholar] [CrossRef]
- Purushotham, A.; Campbell, B.C.V.; Straka, M.; Mlynash, M.; Olivot, J.-M.; Bammer, R.; Kemp, S.M.; Albers, G.W.; Lansberg, M.G. Apparent Diffusion Coefficient Threshold for Delineation of Ischemic Core. Int. J. Stroke 2013, 10, 348–353. [Google Scholar] [CrossRef]
- Campbell, B.C.V.; Purushotham, A.; Christensen, S.; Desmond, P.M.; Nagakane, Y.; Parsons, M.W.; Lansberg, M.G.; Mlynash, M.; Straka, M.; De Silva, D.A.; et al. The infarct core is well represented by the acute diffusion lesion: Sustained reversal is infrequent. J. Cereb. Blood Flow Metab. 2012, 32, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.; Staring, M.; Murphy, K.; Viergever, M.A.; Pluim, J.P.W. Elastix: A toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 2009, 29, 196–205. [Google Scholar] [CrossRef]
- Taha, A.A.; Hanbury, A. Metrics for evaluating 3D medical image segmentation: Analysis, selection, and tool. BMC Med. Imaging 2015, 15, 29. [Google Scholar] [CrossRef] [PubMed]
- The CONTRAST Consortium. Available online: https://www.contrast-consortium.nl/ (accessed on 1 April 2023).
- Yang, W.; Hoving, J.W.; Koopman, M.S.; Tolhuisen, M.L.; van Voorst, H.; Berkheme, O.A.; Coutinho, J.M.; Beenen, L.F.M.; Emmer, B.J. Agreement between estimated computed tomography perfusion ischemic core and follow-up infarct on diffusion-weighted imaging. Insights Imaging 2022, 13, 191. [Google Scholar] [CrossRef]
- Psychogios, M.N.; Sporns, P.B.; Ospel, J.; Katsanos, A.H.; Kabiri, R.; Flottmann, F.A.; Menon, B.K.; Horn, M.; Liebeskind, D.S.; Honda, T.; et al. Automated Perfusion Calculations vs. Visual Scoring of Collaterals and CBV-ASPECTS: Has the Machine Surpassed the Eye? Clin. Neuroradiol. 2021, 31, 499–506. [Google Scholar] [CrossRef]
- Wintermark, M.; Maeder, P.; Thiran, J.P.; Schnyder, P.; Meuli, R. Quantitative assessment of regional cerebral blood flows by perfusion CT studies at low injection rates: A critical review of the underlying theoretical models. Eur. Radiol. 2001, 11, 1220–1230. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Liu, N.; Wintermark, M.; Parsons, M.W.; Chen, H.; Lin, L.; Zhou, S.; Hu, G.; Zhang, Y.; Hu, J.; et al. Optimal Delay Time of CT Perfusion for Predicting Cerebral Parenchymal Hematoma after Intra-Arterial tPA Treatment. Front. Neurol. 2018, 9, 680. [Google Scholar] [CrossRef] [PubMed]
- Albers, G.W. Use of Imaging to Select Patients for Late Window Endovascular Therapy. Stroke 2018, 49, 2256–2260. [Google Scholar] [CrossRef]
- Huo, X.; Ma, G.; Tong, X.; Zhang, X.; Pan, Y.; Nguyen, T.N.; Yuan, G.; Han, H.; Chen, W.; Wei, M.; et al. Trial of Endovascular Therapy for Acute Ischemic Stroke with Large Infarct. N. Engl. J. Med. 2023, 388, 1272–1283. [Google Scholar] [CrossRef]
- Sarraj, A.; Hassan, A.E.; Abraham, M.G.; Ortega-Gutierrez, S.; Kasner, S.E.; Hussain, M.S.; Chen, M.; Blackburn, S.; Sitton, C.W.; Churilov, L.; et al. Trial of Endovascular Thrombectomy for Large Ischemic Strokes. N. Engl. J. Med. 2023, 388, 1259–1271. [Google Scholar] [CrossRef] [PubMed]
- Vagal, A.; Wintermark, M.; Nael, K.; Bivard, A.; Parsons, M.; Grossman, A.W.; Khatri, P. Automated CT perfusion imaging for acute ischemic stroke: Pearls and pitfalls for real-world use. Neurology 2019, 93, 888–898. [Google Scholar] [CrossRef] [PubMed]
- Boned, S.; Padroni, M.; Rubiera, M.; Tomasello, A.; Coscojuela, P.; Romero, N.; Muchada, M.; Rodríguez-Luna, D.; Flores, A.; Rodríguez, N.; et al. Admission CT perfusion may overestimate initial infarct core: The ghost infarct core concept. J. Neurointerv. Surg. 2017, 9, 66–69. [Google Scholar] [CrossRef] [PubMed]
- García-Tornel, Á.; Campos, D.; Rubiera, M.; Boned, S.; Olivé-Gadea, M.; Requena, M.; Ciolli, L.; Muchada, M.; Pagola, J.; Rodriguez-Luna, D.; et al. Ischemic Core Overestimation on Computed Tomography Perfusion. Stroke 2021, 52, 1751–1760. [Google Scholar] [CrossRef] [PubMed]
Ischemic Core | |
---|---|
Method 1 | CBV < 1.2 mL/100 g and rMTT > 150% |
Method 2 | CBV < 1.3 mL/100 g and rMTT > 250% |
Method 3 | CBV < 2.0 mL/100 g and rMTT > 150% |
Method 4 | CBV < 1.3 mL/100 g and rTmax > 6 s |
Sample Size (n = 55) | |
---|---|
Patient Characteristics | |
Age (year)—median (IQR) | 71 (58–77) |
Female (%) | 21 (38) |
Baseline NIHSS—median (IQR) | 15 (10–18) |
Time from onset to reperfusion (min)—median (IQR) | 201 (137–296) |
Time from onset to imaging—median (IQR) | 85 (58–189) |
Imaging Characteristics | |
Occlusion location on CTA-n (%) | |
Intracranial ICA | 3 (5) |
ICA-T | 8 (15) |
M1 | 40 (73) |
M2 | 4 (7) |
ASPECTS—median (IQR) | 8 (7–10) |
Ischemic core volume on CTP (mL)—median (IQR) | |
Method 1 | 19 (6–40) |
Method 2 | 11 (2–35) |
Method 3 | 42 (21–90) |
Method 4 | 10 (4–38) |
Sample Size (n = 55) | |
---|---|
Characteristics | |
Functional independence (mRS 0–2) at 90 days-n (%) | 30 (77) |
eTICI score-n (%) | |
2b | 19 (34) |
2c | 7 (13) |
3 | 29 (53) |
DWI volume (mL)—median (IQR) | 10 (5–38) |
Time between CTP and MRI (hrs)—median (IQR) | 23 (18–34) |
Volume Difference in mL—Median (IQR) | Dice—Median (IQR) | Sensitivity—Median (IQR) | Specificity—Median (IQR) | |
---|---|---|---|---|
Method 1 | −2 (−13–9) | 0.17 (0.03–0.31) | 0.22 (0.06–0.36) | 1.00 (0.99–1.00) |
Method 2 | 1 (−5–17) | 0.17 (0.02–0.33) | 0.16 (0.05–0.37) | 1.00 (1.00–1.00) |
Method 3 | −24 (−56–−5) | 0.19 (0.04–0.30) | 0.41 (0.21–0.60) | 0.99 (0.99–1.00) |
Method 4 | 2 (−4–14) | 0.19 (0.03–0.31) | 0.16 (0.02–0.36) | 1.00 (1.00–1.00) |
Method 1 | Method 2 | Method 3 | Method 4 | |
---|---|---|---|---|
Incomplete reperfusion (n = 26) | ||||
Volume difference in mL—median (IQR) | 2 (−11–35) | 3 (0–41) | −10 (−30–21) | 6 (−1–37) |
ICC (95% CI) | 0.26 (−0.12–0.58) | 0.23 (−0.15–0.56) | 0.40 (0.03–0.68) | 0.24 (−0.14–0.57) |
Dice—median (IQR) | 0.15 (0.02–0.32) | 0.13 (0.01–0.33) | 0.23 (0.04–0.32) | 0.12 (0.02–0.33) |
Complete reperfusion (n = 29) | ||||
Volume difference in mL—median (IQR) | −3 (−14–2) | 0 (−6–5) | −34 (−61–−13) | 0 (−8–6) |
ICC (95% CI) | 0.76 (0.55−0.88) | 0.69 (0.45−0.84) | 0.56 (0.01–0.81) | 0.71 (0.48–0.85) |
Dice—median (IQR) | 0.20 (0.09–0.31) | 0.20 (0.08–0.32) | 0.19 (0.04–0.31) | 0.23 (0.04–0.31) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koopman, M.S.; Hoving, J.W.; Tolhuisen, M.L.; Jin, P.; Thiele, F.O.; Bremer-van der Heiden, L.; van Voorst, H.; Berkhemer, O.A.; Coutinho, J.M.; Beenen, L.F.M.; et al. Accuracy of Four Different CT Perfusion Thresholds for Ischemic Core Volume and Location Estimation Using IntelliSpace Portal. J. Cardiovasc. Dev. Dis. 2023, 10, 239. https://doi.org/10.3390/jcdd10060239
Koopman MS, Hoving JW, Tolhuisen ML, Jin P, Thiele FO, Bremer-van der Heiden L, van Voorst H, Berkhemer OA, Coutinho JM, Beenen LFM, et al. Accuracy of Four Different CT Perfusion Thresholds for Ischemic Core Volume and Location Estimation Using IntelliSpace Portal. Journal of Cardiovascular Development and Disease. 2023; 10(6):239. https://doi.org/10.3390/jcdd10060239
Chicago/Turabian StyleKoopman, Miou S., Jan W. Hoving, Manon L. Tolhuisen, Peng Jin, Frank O. Thiele, Linda Bremer-van der Heiden, Henk van Voorst, Olvert A. Berkhemer, Jonathan M. Coutinho, Ludo F. M. Beenen, and et al. 2023. "Accuracy of Four Different CT Perfusion Thresholds for Ischemic Core Volume and Location Estimation Using IntelliSpace Portal" Journal of Cardiovascular Development and Disease 10, no. 6: 239. https://doi.org/10.3390/jcdd10060239
APA StyleKoopman, M. S., Hoving, J. W., Tolhuisen, M. L., Jin, P., Thiele, F. O., Bremer-van der Heiden, L., van Voorst, H., Berkhemer, O. A., Coutinho, J. M., Beenen, L. F. M., Marquering, H. A., Emmer, B. J., & Majoie, C. B. L. M. (2023). Accuracy of Four Different CT Perfusion Thresholds for Ischemic Core Volume and Location Estimation Using IntelliSpace Portal. Journal of Cardiovascular Development and Disease, 10(6), 239. https://doi.org/10.3390/jcdd10060239