SGLT2 Inhibitors vs. GLP-1 Agonists to Treat the Heart, the Kidneys and the Brain
Abstract
:1. Introduction
2. Methods
3. Mechanism of Action and Side Effects
3.1. Mechanism of Action of SGLT2 Inhibitors
3.2. Side Effects of SGLT2 Inhibitors
3.3. Mechanism of Action of GLP-1-R Agonists
3.4. Side Effects of the GLP-1-R Agonists
4. Cardiovascular Outcomes
4.1. SGLT2 Inhibitors in Patients with T2DM
4.2. SGLT2 Inhibitors in Patients with HF
4.3. GLP-1 in Patients with T2DM
- − LEADER;
- − SUSTAIN-6;
- − HARMONY;
- − REWIND;
- − AMPLITUDE-O.
4.4. GLP-1 in Stroke Prevention
5. Renal Outcomes
5.1. SGLT2 Inhibitors
5.2. GLP-1-R Agonists
6. Combination Therapy
7. Position in Guidelines and Recommendations
7.1. T2DM Management
7.2. HF Management
7.3. Stroke Prevention
8. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef] [PubMed]
- Fox, C.S. Cardiovascular Disease Risk Factors, Type 2 Diabetes Mellitus, and the Framingham Heart Study. Trends Cardiovasc. Med. 2010, 20, 90–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Severino, P.; D’Amato, A.; Netti, L.; Pucci, M.; Infusino, F.; Maestrini, V.; Mancone, M.; Fedele, F. Myocardial Ischemia and Diabetes Mellitus: Role of Oxidative Stress in the Connection between Cardiac Metabolism and Coronary Blood Flow. J. Diabetes Res. 2019, 2019, 9489826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.; Loke, Y.K.; Furberg, C.D. Long-Term Risk of Cardiovascular Events with Rosiglitazone: A Meta-Analysis. JAMA 2007, 298, 1189. [Google Scholar] [CrossRef] [PubMed]
- Palmer, S.C.; Tendal, B.; Mustafa, R.A.; Vandvik, P.O.; Li, S.; Hao, Q.; Tunnicliffe, D.; Ruospo, M.; Natale, P.; Saglimbene, V.; et al. Sodium-Glucose Cotransporter Protein-2 (SGLT-2) Inhibitors and Glucagon-like Peptide-1 (GLP-1) Receptor Agonists for Type 2 Diabetes: Systematic Review and Network Meta-Analysis of Randomised Controlled Trials. BMJ 2021, 372, m4573. [Google Scholar] [CrossRef] [PubMed]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Hilliard, M.E.; Isaacs, D.; Johnson, E.L.; et al. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Care in Diabetes—2023. Diabetes Care 2023, 46, S140–S157. [Google Scholar] [CrossRef] [PubMed]
- Nagahisa, T.; Saisho, Y. Cardiorenal Protection: Potential of SGLT2Inhibitors and GLP-1 Receptor Agonists in the Treatment of Type 2 Diabetes. Diabetes Ther. 2019, 10, 1733–1752. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Kleindorfer, D.O.; Towfighi, A.; Chaturvedi, S.; Cockroft, K.M.; Gutierrez, J.; Lombardi-Hill, D.; Kamel, H.; Kernan, W.N.; Kittner, S.J.; Leira, E.C.; et al. 2021 Guideline for the Prevention of Stroke in Patients with Stroke and Transient Ischemic Attack: A Guideline from the American Heart Association/American Stroke Association. Stroke 2021, 52, 375. [Google Scholar] [CrossRef]
- Jung, C.H.; Jang, J.E.; Park, J.-Y. A Novel Therapeutic Agent for Type 2 Diabetes Mellitus: SGLT2 Inhibitor. Diabetes Metab. J. 2014, 38, 261–273. [Google Scholar] [CrossRef] [Green Version]
- Brown, E.; Heerspink, H.J.L.; Cuthbertson, D.J.; Wilding, J.P.H. SGLT2 Inhibitors and GLP-1 Receptor Agonists: Established and Emerging Indications. Lancet 2021, 398, 262–276. [Google Scholar] [CrossRef] [PubMed]
- Tentolouris, A.; Vlachakis, P.; Tzeravini, E.; Eleftheriadou, I.; Tentolouris, N. SGLT2 Inhibitors: A Review of Their Antidiabetic and Cardioprotective Effects. Int. J. Environ. Res. Public Health 2019, 16, 2965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravindran, S.; Munusamy, S. Renoprotective Mechanisms of Sodium-Glucose Co-Transporter 2 (SGLT2) Inhibitors against the Progression of Diabetic Kidney Disease. J. Cell. Physiol. 2022, 237, 1182–1205. [Google Scholar] [CrossRef]
- Li, D.; Wang, T.; Shen, S.; Fang, Z.; Dong, Y.; Tang, H. Urinary Tract and Genital Infections in Patients with Type 2 Diabetes Treated with Sodium-Glucose Co-Transporter 2 Inhibitors: A Meta-Analysis of Randomized Controlled Trials. Diabetes Obes. Metab. 2017, 19, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Dave, C.V.; Schneeweiss, S.; Kim, D.; Fralick, M.; Tong, A.; Patorno, E. Sodium–Glucose Cotransporter-2 Inhibitors and the Risk for Severe Urinary Tract Infections. Ann. Intern. Med. 2019, 171, 248–256. [Google Scholar] [CrossRef]
- Okerson, T.; Chilton, R.J. The Cardiovascular Effects of GLP-1 Receptor Agonists. Cardiovasc. Ther. 2012, 30, e146–e155. [Google Scholar] [CrossRef] [Green Version]
- Helmstädter, J.; Keppeler, K.; Küster, L.; Münzel, T.; Daiber, A.; Steven, S. Glucagon-like Peptide-1 (GLP-1) Receptor Agonists and Their Cardiovascular Benefits—The Role of the GLP-1 Receptor. Br. J. Pharmacol. 2022, 179, 659–676. [Google Scholar] [CrossRef]
- Wilding, J.P.H.; Batterham, R.L.; Calanna, S.; Davies, M.; Van Gaal, L.F.; Lingvay, I.; McGowan, B.M.; Rosenstock, J.; Tran, M.T.D.; Wadden, T.A.; et al. Once-Weekly Semaglutide in Adults with Overweight or Obesity. N. Engl. J. Med. 2021, 384, 989–1002. [Google Scholar] [CrossRef]
- Kelly, A.S.; Auerbach, P.; Barrientos-Perez, M.; Gies, I.; Hale, P.M.; Marcus, C.; Mastrandrea, L.D.; Prabhu, N.; Arslanian, S. A Randomized, Controlled Trial of Liraglutide for Adolescents with Obesity. N. Engl. J. Med. 2020, 382, 2117–2128. [Google Scholar] [CrossRef]
- Rubino, D.M.; Greenway, F.L.; Khalid, U.; O’Neil, P.M.; Rosenstock, J.; Sørrig, R.; Wadden, T.A.; Wizert, A.; Garvey, W.T.; STEP 8 Investigators; et al. Effect of Weekly Subcutaneous Semaglutide vs Daily Liraglutide on Body Weight in Adults with Overweight or Obesity without Diabetes: The STEP 8 Randomized Clinical Trial. JAMA 2022, 327, 138. [Google Scholar] [CrossRef]
- Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Engl. J. Med. 2015, 373, 2117–2128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiviott, S.D.; Raz, I.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Silverman, M.G.; Zelniker, T.A.; Kuder, J.F.; Murphy, S.A.; et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2019, 380, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Neal, B.; Perkovic, V.; Mahaffey, K.W.; de Zeeuw, D.; Fulcher, G.; Erondu, N.; Shaw, W.; Law, G.; Desai, M.; Matthews, D.R. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N. Engl. J. Med. 2017, 377, 644–657. [Google Scholar] [CrossRef] [PubMed]
- Cannon, C.P.; Pratley, R.; Dagogo-Jack, S.; Mancuso, J.; Huyck, S.; Masiukiewicz, U.; Charbonnel, B.; Frederich, R.; Gallo, S.; Cosentino, F.; et al. Cardiovascular Outcomes with Ertugliflozin in Type 2 Diabetes. N. Engl. J. Med. 2020, 383, 1425–1435. [Google Scholar] [CrossRef]
- Perkovic, V.; Jardine, M.J.; Neal, B.; Bompoint, S.; Heerspink, H.J.L.; Charytan, D.M.; Edwards, R.; Agarwal, R.; Bakris, G.; Bull, S.; et al. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N. Engl. J. Med. 2019, 380, 2295–2306. [Google Scholar] [CrossRef] [Green Version]
- Zelniker, T.A.; Wiviott, S.D.; Raz, I.; Im, K.; Goodrich, E.L.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Furtado, R.H.M.; et al. SGLT2 Inhibitors for Primary and Secondary Prevention of Cardiovascular and Renal Outcomes in Type 2 Diabetes: A Systematic Review and Meta-Analysis of Cardiovascular Outcome Trials. Lancet 2019, 393, 31–39. [Google Scholar] [CrossRef]
- Marilly, E.; Cottin, J.; Cabrera, N.; Cornu, C.; Boussageon, R.; Moulin, P.; Lega, J.-C.; Gueyffier, F.; Cucherat, M.; Grenet, G. SGLT2 Inhibitors in Type 2 Diabetes: A Systematic Review and Meta-Analysis of Cardiovascular Outcome Trials Balancing Their Risks and Benefits. Diabetologia 2022, 65, 2000–2010. [Google Scholar] [CrossRef]
- Bhatt, D.L.; Szarek, M.; Pitt, B.; Cannon, C.P.; Leiter, L.A.; McGuire, D.K.; Lewis, J.B.; Riddle, M.C.; Inzucchi, S.E.; Kosiborod, M.N.; et al. Sotagliflozin in Patients with Diabetes and Chronic Kidney Disease. N. Engl. J. Med. 2021, 384, 129–139. [Google Scholar] [CrossRef]
- Kurczyński, D.; Hudzik, B.; Jagosz, M.; Zabierowski, J.; Nowak, J.; Tomasik, A.; Badziński, A.; Rozentryt, P.; Gąsior, M. Sodium-Glucose Cotransporter-2 Inhibitors-from the Treatment of Diabetes to Therapy of Chronic Heart Failure. JCDD 2022, 9, 225. [Google Scholar] [CrossRef]
- McMurray, J.J.V.; Solomon, S.D.; Inzucchi, S.E.; Køber, L.; Kosiborod, M.N.; Martinez, F.A.; Ponikowski, P.; Sabatine, M.S.; Anand, I.S.; Bělohlávek, J.; et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N. Engl. J. Med. 2019, 381, 1995–2008. [Google Scholar] [CrossRef] [Green Version]
- Packer, M.; Anker, S.D.; Butler, J.; Filippatos, G.; Pocock, S.J.; Carson, P.; Januzzi, J.; Verma, S.; Tsutsui, H.; Brueckmann, M.; et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N. Engl. J. Med. 2020, 383, 1413–1424. [Google Scholar] [CrossRef] [PubMed]
- Anker, S.D.; Butler, J.; Filippatos, G.; Ferreira, J.P.; Bocchi, E.; Böhm, M.; Brunner–La Rocca, H.-P.; Choi, D.-J.; Chopra, V.; Chuquiure-Valenzuela, E.; et al. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N. Engl. J. Med. 2021, 385, 1451–1461. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.D.; McMurray, J.J.V.; Claggett, B.; De Boer, R.A.; DeMets, D.; Hernandez, A.F.; Inzucchi, S.E.; Kosiborod, M.N.; Lam, C.S.P.; Martinez, F.; et al. Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. N. Engl. J. Med. 2022, 387, 1089–1098. [Google Scholar] [CrossRef]
- Bhatt, D.L.; Szarek, M.; Steg, P.G.; Cannon, C.P.; Leiter, L.A.; McGuire, D.K.; Lewis, J.B.; Riddle, M.C.; Voors, A.A.; Metra, M.; et al. Sotagliflozin in Patients with Diabetes and Recent Worsening Heart Failure. N. Engl. J. Med. 2021, 384, 117–128. [Google Scholar] [CrossRef]
- Vaduganathan, M.; Docherty, K.F.; Claggett, B.L.; Jhund, P.S.; De Boer, R.A.; Hernandez, A.F.; Inzucchi, S.E.; Kosiborod, M.N.; Lam, C.S.P.; Martinez, F.; et al. SGLT2 Inhibitors in Patients with Heart Failure: A Comprehensive Meta-Analysis of Five Randomised Controlled Trials. Lancet 2022, 400, 757–767. [Google Scholar] [CrossRef]
- Marso, S.P.; Daniels, G.H.; Brown-Frandsen, K.; Kristensen, P.; Mann, J.F.E.; Nauck, M.A.; Nissen, S.E.; Pocock, S.; Poulter, N.R.; Ravn, L.S.; et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 311–322. [Google Scholar] [CrossRef] [Green Version]
- Marso, S.P.; Bain, S.C.; Consoli, A.; Eliaschewitz, F.G.; Jódar, E.; Leiter, L.A.; Lingvay, I.; Rosenstock, J.; Seufert, J.; Warren, M.L.; et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 1834–1844. [Google Scholar] [CrossRef] [Green Version]
- Green, J.B.; Hernandez, A.F.; D’Agostino, R.B.; Granger, C.B.; Janmohamed, S.; Jones, N.P.; Leiter, L.A.; Noronha, D.; Russell, R.; Sigmon, K.; et al. Harmony Outcomes: A Randomized, Double-Blind, Placebo-Controlled Trial of the Effect of Albiglutide on Major Cardiovascular Events in Patients with Type 2 Diabetes Mellitus—Rationale, Design, and Baseline Characteristics. Am. Heart J. 2018, 203, 30–38. [Google Scholar] [CrossRef]
- Gerstein, H.C.; Colhoun, H.M.; Dagenais, G.R.; Diaz, R.; Lakshmanan, M.; Pais, P.; Probstfield, J.; Riesmeyer, J.S.; Riddle, M.C.; Rydén, L.; et al. Dulaglutide and Cardiovascular Outcomes in Type 2 Diabetes (REWIND): A Double-Blind, Randomised Placebo-Controlled Trial. Lancet 2019, 394, 121–130. [Google Scholar] [CrossRef]
- Gerstein, H.C.; Sattar, N.; Rosenstock, J.; Ramasundarahettige, C.; Pratley, R.; Lopes, R.D.; Lam, C.S.P.; Khurmi, N.S.; Heenan, L.; Del Prato, S.; et al. Cardiovascular and Renal Outcomes with Efpeglenatide in Type 2 Diabetes. N. Engl. J. Med. 2021, 385, 896–907. [Google Scholar] [CrossRef]
- Husain, M.; Birkenfeld, A.L.; Donsmark, M.; Dungan, K.; Eliaschewitz, F.G.; Franco, D.R.; Jeppesen, O.K.; Lingvay, I.; Mosenzon, O.; Pedersen, S.D.; et al. Oral Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2019, 381, 841–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holman, R.R.; Bethel, M.A.; Mentz, R.J.; Thompson, V.P.; Lokhnygina, Y.; Buse, J.B.; Chan, J.C.; Choi, J.; Gustavson, S.M.; Iqbal, N.; et al. Effects of Once-Weekly Exenatide on Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2017, 377, 1228–1239. [Google Scholar] [CrossRef]
- Pfeffer, M.A.; Claggett, B.; Diaz, R.; Dickstein, K.; Gerstein, H.C.; Køber, L.V.; Lawson, F.C.; Ping, L.; Wei, X.; Lewis, E.F.; et al. Lixisenatide in Patients with Type 2 Diabetes and Acute Coronary Syndrome. N. Engl. J. Med. 2015, 373, 2247–2257. [Google Scholar] [CrossRef]
- Rosenstock, J.; Buse, J.B.; Azeem, R.; Prabhakar, P.; Kjems, L.; Huang, H.; Baron, M.A. Efficacy and Safety of ITCA 650, a Novel Drug-Device GLP-1 Receptor Agonist, in Type 2 Diabetes Uncontrolled with Oral Antidiabetes Drugs: The FREEDOM-1 Trial. Diabetes Care 2018, 41, 333–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.M.Y.; Kristensen, S.L.; Gerstein, H.C.; McMurray, J.J.V.; Sattar, N. Cardiovascular and Mortality Outcomes with GLP-1 Receptor Agonists in Patients with Type 2 Diabetes: A Meta-Analysis with the FREEDOM Cardiovascular Outcomes Trial. Diabetes Metab. Syndr. Clin. Res. Rev. 2022, 16, 102382. [Google Scholar] [CrossRef] [PubMed]
- Sattar, N.; Lee, M.M.Y.; Kristensen, S.L.; Branch, K.R.H.; Del Prato, S.; Khurmi, N.S.; Lam, C.S.P.; Lopes, R.D.; McMurray, J.J.V.; Pratley, R.E.; et al. Cardiovascular, Mortality, and Kidney Outcomes with GLP-1 Receptor Agonists in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomised Trials. Lancet Diabetes Endocrinol. 2021, 9, 653–662. [Google Scholar] [CrossRef]
- Li, J.; Ji, C.; Zhang, W.; Lan, L.; Ge, W. Effect of New Glucose-Lowering Drugs on Stroke in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. J. Diabetes Complicat. 2023, 37, 108362. [Google Scholar] [CrossRef]
- Darsalia, V.; Larsson, M.; Nathanson, D.; Klein, T.; Nyström, T.; Patrone, C. Glucagon-Like Receptor 1 Agonists and DPP-4 Inhibitors: Potential Therapies for the Treatment of Stroke. J. Cereb. Blood Flow Metab. 2015, 35, 718–723. [Google Scholar] [CrossRef]
- Goldenberg, R.M.; Cheng, A.Y.Y.; Fitzpatrick, T.; Gilbert, J.D.; Verma, S.; Hopyan, J.J. Benefits of GLP-1 (Glucagon-Like Peptide 1) Receptor Agonists for Stroke Reduction in Type 2 Diabetes: A Call to Action for Neurologists. Stroke 2022, 53, 1813–1822. [Google Scholar] [CrossRef]
- Nizari, S.; Basalay, M.; Chapman, P.; Korte, N.; Korsak, A.; Christie, I.N.; Theparambil, S.M.; Davidson, S.M.; Reimann, F.; Trapp, S.; et al. Glucagon-like Peptide-1 (GLP-1) Receptor Activation Dilates Cerebral Arterioles, Increases Cerebral Blood Flow, and Mediates Remote (Pre)Conditioning Neuroprotection against Ischaemic Stroke. Basic Res. Cardiol. 2021, 116, 32. [Google Scholar] [CrossRef]
- Wanner, C.; Inzucchi, S.E.; Lachin, J.M.; Fitchett, D.; Von Eynatten, M.; Mattheus, M.; Johansen, O.E.; Woerle, H.J.; Broedl, U.C.; Zinman, B. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 323–334. [Google Scholar] [CrossRef]
- Heerspink, H.J.L.; Stefánsson, B.V.; Correa-Rotter, R.; Chertow, G.M.; Greene, T.; Hou, F.-F.; Mann, J.F.E.; McMurray, J.J.V.; Lindberg, M.; Rossing, P.; et al. Dapagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2020, 383, 1436–1446. [Google Scholar] [CrossRef]
- Jhund, P.S.; Solomon, S.D.; Docherty, K.F.; Heerspink, H.J.L.; Anand, I.S.; Böhm, M.; Chopra, V.; de Boer, R.A.; Desai, A.S.; Ge, J.; et al. Efficacy of Dapagliflozin on Renal Function and Outcomes in Patients with Heart Failure with Reduced Ejection Fraction. Circulation 2021, 143, 298–309. [Google Scholar] [CrossRef] [PubMed]
- The EMPA-KIDNEY Collaborative Group. Empagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2023, 388, 117–127. [Google Scholar] [CrossRef]
- Nuffield Department of Population Health Renal Studies Group; SGLT2 inhibitor Meta-Analysis Cardio-Renal Trialists’ Consortium. Impact of Diabetes on the Effects of Sodium Glucose Co-Transporter-2 Inhibitors on Kidney Outcomes: Collaborative Meta-Analysis of Large Placebo-Controlled Trials. Lancet 2022, 400, 1788–1801. [Google Scholar] [CrossRef]
- Mann, J.F.E.; Ørsted, D.D.; Brown-Frandsen, K.; Marso, S.P.; Poulter, N.R.; Rasmussen, S.; Tornøe, K.; Zinman, B.; Buse, J.B. Liraglutide and Renal Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2017, 377, 839–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- A Research Study to See How Semaglutide Works Compared to Placebo in People with Type 2 Diabetes and Chronic Kidney Disease (FLOW). Available online: https://Clinicaltrials.Gov/Ct2/Show/NCT03819153 (accessed on 14 April 2023).
- Li, C.; Luo, J.; Jiang, M.; Wang, K. The Efficacy and Safety of the Combination Therapy with GLP-1 Receptor Agonists and SGLT-2 Inhibitors in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Front. Pharmacol. 2022, 13, 838277. [Google Scholar] [CrossRef] [PubMed]
- Jabbour, S.A.; Frías, J.P.; Ahmed, A.; Hardy, E.; Choi, J.; Sjöström, C.D.; Guja, C. Efficacy and Safety Over 2 Years of Exenatide Plus Dapagliflozin in the DURATION-8 Study: A Multicenter, Double-Blind, Phase 3, Randomized Controlled Trial. Diabetes Care 2020, 43, 2528–2536. [Google Scholar] [CrossRef]
- Ali, A.M.; Martinez, R.; Al-Jobori, H.; Adams, J.; Triplitt, C.; DeFronzo, R.; Cersosimo, E.; Abdul-Ghani, M. Combination Therapy with Canagliflozin Plus Liraglutide Exerts Additive Effect on Weight Loss, but Not on HbA1c, in Patients with Type 2 Diabetes. Diabetes Care 2020, 43, 1234–1241. [Google Scholar] [CrossRef]
- Guo, M.; Gu, J.; Teng, F.; Chen, J.; Ma, X.; Chen, Q.; Pu, Y.; Jiang, Z.; Long, Y.; Xu, Y. The Efficacy and Safety of Combinations of SGLT2 Inhibitors and GLP-1 Receptor Agonists in the Treatment of Type 2 Diabetes or Obese Adults: A Systematic Review and Meta-Analysis. Endocrine 2020, 67, 294–304. [Google Scholar] [CrossRef]
- Patoulias, D.; Stavropoulos, K.; Imprialos, K.; Katsimardou, A.; Kalogirou, M.-S.; Koutsampasopoulos, K.; Zografou, I.; Papadopoulos, C.; Karagiannis, A.; Doumas, M. Glycemic Efficacy and Safety of Glucagon-like Peptide-1 Receptor Agonist on Top of Sodium-Glucose Co-Transporter-2 Inhibitor Treatment Compared to Sodium-Glucose Co-Transporter-2 Inhibitor Alone: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Diabetes Res. Clin. Pract. 2019, 158, 107927. [Google Scholar] [CrossRef] [PubMed]
- Van der Aart-van der Beek, A.B.; Apperloo, E.; Jongs, N.; Rouw, D.B.; Sjöström, C.D.; Friedli, I.; Johansson, L.; van Raalte, D.H.; Hoogenberg, K.; Heerspink, H.J.L. Albuminuria-Lowering Effect of Dapagliflozin, Exenatide, and Their Combination in Patients with Type 2 Diabetes: A Randomized Cross-over Clinical Study. Diabetes Obes. Metab. 2023, 25, 1758–1768. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.J.; Drexel, H.; Jornayvaz, F.R.; Pataky, Z.; Seferović, P.M.; Wanner, C. Cardiovascular Outcomes Trials: A Paradigm Shift in the Current Management of Type 2 Diabetes. Cardiovasc. Diabetol. 2022, 21, 144. [Google Scholar] [CrossRef]
- Araszkiewicz, A.; Bandurska-Stankiewicz, E.; Borys, S.; Budzyński, A.; Cyganek, K.; Cypryk, K.; Czech, A.; Czupryniak, L.; Drzewoski, J.; Dzida, G.; et al. 2023 Guidelines on the Management of Patients with Diabetes—A Position of Diabetes Poland. Curr. Top. Diabetes 2023, 3, 1–133. [Google Scholar]
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022, 145, 62. [Google Scholar] [CrossRef] [PubMed]
- Severino, P.; D’Amato, A.; Prosperi, S.; Costi, B.; Angotti, D.; Birtolo, L.I.; Chimenti, C.; Lavalle, C.; Maestrini, V.; Mancone, M.; et al. Sodium-Glucose Cotransporter 2 Inhibitors and Heart Failure: The Best Timing for the Right Patient. Heart Fail. Rev. 2023, 28, 709–721. [Google Scholar] [CrossRef] [PubMed]
- Gladstone, D.J.; Lindsay, M.P.; Douketis, J.; Smith, E.E.; Dowlatshahi, D.; Wein, T.; Bourgoin, A.; Cox, J.; Falconer, J.B.; Graham, B.R.; et al. Canadian Stroke Best Practice Recommendations: Secondary Prevention of Stroke Update 2020. Can. J. Neurol. Sci. 2022, 49, 315–337. [Google Scholar] [CrossRef]
- Handelsman, Y.; Anderson, J.E.; Bakris, G.L.; Ballantyne, C.M.; Beckman, J.A.; Bhatt, D.L.; Bloomgarden, Z.T.; Bozkurt, B.; Budoff, M.J.; Butler, J.; et al. DCRM Multispecialty Practice Recommendations for the Management of Diabetes, Cardiorenal, and Metabolic Diseases. J. Diabetes Complicat. 2022, 36, 108101. [Google Scholar] [CrossRef]
- Wei, X.-B.; Wei, W.; Ding, L.-L.; Liu, S.-Y. Comparison of the Effects of 10 GLP-1 RA and SGLT2 Inhibitor Interventions on Cardiovascular, Mortality, and Kidney Outcomes in Type 2 Diabetes: A Network Meta-Analysis of Large Randomized Trials. Prim. Care Diabetes 2021, 15, 208–211. [Google Scholar] [CrossRef]
- Wright, A.K.; Carr, M.J.; Kontopantelis, E.; Leelarathna, L.; Thabit, H.; Emsley, R.; Buchan, I.; Mamas, M.A.; Van Staa, T.P.; Sattar, N.; et al. Primary Prevention of Cardiovascular and Heart Failure Events with SGLT2 Inhibitors, GLP-1 Receptor Agonists, and Their Combination in Type 2 Diabetes. Diabetes Care 2022, 45, 909–918. [Google Scholar] [CrossRef]
Trial | EMPA-REG [21] | DECLARE-TIMI [22] | CANVAS PROGRAM [23] | VERTIS [24] | CREDENCE [25] |
---|---|---|---|---|---|
Intervention | Empagliflozin 10 mg vs. placebo | Dapagliflozin 10 mg vs. placebo | Canagliflozin 100 mg vs. 300 mg vs. placebo | Ertugliflozin 5 mg vs. 15 mg vs. placebo | Canagliflozin 100 mg vs. placebo |
Size of the groups | Empagliflozin: n = 4687 Placebo: n = 2333 | Dapagliflozin: n = 8582 Placebo: n = 8578 | Canagliflozin: n = 5795 Placebo: n = 4347 | Ertugliflozin: n = 5493 Placebo: n = 2745 | Canagliflozin: n = 2202 Placebo: n = 2199 |
Main inclusion criteria | T2DM; Established cardiovascular disease, eGFR > 30 mL/min/1.73 m2 | T2DM; Established ASCVD or multiple risk factors; eGFR > 60 mL/min/1.73 m2 | T2DM; Established ASCVD or multiple risk factors; eGFR > 30 mL/min/1.73 m2 | T2DM; ≥40 years old, established ASCVD | T2DM, ≥30 years old; albuminuric CKD (UACR > 300 to 5000 mg/g) |
Follow-up median (years) | 3.1 | 4.2 | 3.61 | 3.5 | 2.62 |
Primary endpoint (95% CI) | MACE | MACE | MACE | MACE | End-stage kidney disease, doubling of the serum creatinine level from baseline, or death from renal or cardiovascular disease. |
0.86 (0.74–0.99) | 0.93 (0.84–1.03) | 0.86 (0.75–0.97) | 0.97 (0.85–1.11) | 0.80 (0.67–0.95) | |
Cardiovascular death; HR (95% CI) | 0.62 (0.49–0.77) | 0.98 (0.82–1.17) | 0.87 (0.72–1.06) | 0.92 (0.77–1.11) | 0.78 (0.61–1.00) |
All-cause death; HR (95% CI) | 0.68 (0.57–0.82) | 0.93 (0.82–1.04) | 0.87 (0.74–1.01) | 0.93 (0.80–1.08) | 0.83 (0.68–1.02) |
Hospitalization for heart failure or death from cardiovascular cause; HR (95% CI) | 0.66 0.55–0.79) | 0.83 (0.73–0.95) | 0.78 (0.67–0.91) | 0.88 (0.75–1.03) | 0.69 (0.57–0.83) |
Hospitalization for heart failure; HR (95% CI) | 0.65 (0.50–0.85) | 0.73 (0.61–0.88) | 0.67 (0.52–0.87) | 0.70 (0.54–0.90) | 0.61 (0.4–0.80) |
Myocardial infarction; HR (95% CI) | 0.87 (0.70–1.09) | 0.89 (0.77–1.01) | 0.89 (0.73–1.09) | 1.04 (0.86–1.26) | - |
Stroke; HR (95% CI) | 1.18 (0.89–1.56) | 1.01 (0.84–1.21) | 0.87 (0.69–1.09) | 1.06 (0.82–1.37) | - |
Trial | DAPA-HF | EMPEROR-REDUCED | DELIVER | EMPEROR-PRESERVED | SOLOIST WHF |
---|---|---|---|---|---|
Intervention | Dapagliflozin 10 mg vs. placebo | Empagliflozin 10 mg vs. placebo | Dapagliflozin 10 mg vs. placebo | Empagliflozin 10 mg vs. placebo | Sotagliflozin 200–400 mg vs. placebo |
Size of the groups | Dapagliflozin: n = 2373 Placebo: n = 2371 | Empagliflozin: n = 1863 Placebo: n = 1867 | Dapagliflozin: n = 3131 Placebo: n = 3132 | Empagliflozin: n = 2997 Placebo: n = 2991 | Sotagliflozin: n = 608 Placebo: n = 614 |
Main inclusion criteria | HFrEF | HFrEF | HfmrEF; HFpEF ≥ 40 years old | HFmrEF; HfpEF | T2DM; hHF with intravenous drug administration |
Follow-up median (years) | 1.52 | 1.33 | 2.3 | 2.18 | 0.75 |
Primary endpoint (HR 95%CI) | Composite of worsening heart failure or death from cardiovascular causes * | Death from cardiovascular causes or hHF | Composite of worsening heart failure or death from cardiovascular causes * | Death from cardiovascular causes or hHF | Death from cardiovascular causes or hHF ^ |
0.74 (0.65–0.85) | 0.76 (0.65–0.86) | 0.82 (0.73–0.92) | 0.79 (0.69–0.90) | 0.67 (0.52 to 0.85) | |
Cardiovascular death; HR (95% CI) | 0.82 (0.69–0.98) | 0.92 (0.75–1.12) | 0.88 (0.74–1.05) | 0.91 (0.76–1.09) | 0.84 (0.58 to 1.22) |
All-cause death; HR (95% CI) | 0.83 (0.71–0.97) | 0.92 (0.77–1.10) | 0.94 (0.83–1.07) | 1.00 (0.87–1.15) | 0.82 (0.59 to 1.14) |
Hospitalization for heart failure or death from cardiovascular cause; HR (95% CI) | 0.75 (0.65–0.85) | - | 0.77 (0.67–0.89) ** | - | 0.72 (0.56 to 0.92) *** |
Hospitalization for heart failure; HR (95% CI) | 0.70 (0.59–0.83) | 0.69 (0.59–0.81) | 0.77 (0.67–0.89) | 0.71 (0.69–0.9) | 0.64 (0.49 to 0.83) **** |
Trial | LEADER [36] | SUSTAIN-6 [37] | HARMONY [38] | REWIND [39] | AMPLITUDE-O [40] | PIONEER 6 [41] | EXSCEL [42] | ELIXA [43] | FREEDOM [44] |
---|---|---|---|---|---|---|---|---|---|
Intervention ** subcutaneous (if not specified otherwise) | Liraglutide 1.8 mg vs. placebo once daily | Semaglutide 0.5 mg vs. 1 mg vs. placebo once weekly | Albiglutide 30 mg vs. placebo once weekly | Dulaglutide 1.5 mg vs. placebo once weekly | Efpeglinatide 4 mg vs. 6 mg vs. placebo once weekly | Semaglutide 14 mg vs. placebo once daily per os | Exenatide 2 mg vs. placebo once weekly | Lixisenatide 20 μg vs. placebo once daily | Exenatide vs. placebo in a continuous subcutaneous infusion |
Size of the groups | Liraglutide: n = 4668 Placebo: n = 4672 | Semaglutide: n = 1648 Placebo: n = 1649 | Albiglutide: n = 4731 Placebo: n = 4732 | Dulaglutide: n = 4949 Placebo: n = 4952 | Efpeglinatide: n = 2717 Placebo: n = 1359 | Semaglutide: n = 1591 Placebo: n = 1592 | Exenatide: n = 7356 Placebo: n = 7396 | Lixisenatide: n = 3034 Placebo: n = 3034 | Exenatide: n = 2075 Placebo: n = 2081 |
Main inclusion criteria | T2DM; ≥50 years old with established CVD, ≥60 years old with at least one risk factor | T2DM; ≥50 years old with established CVD, heart failure or CKD stage ≥ 3; ≥60 years old with at least one risk factor | T2DM; ≥40 years old with established CVD | >50 years old, previous cardiovascular event, CVD or multiple cardiovascular risk factors | T2DM; ≥50 (male)/55 (female) with CKD with at least 1 CV risk factor; ≥18 years old with established CVD | T2DM; ≥50 years old with established CVD or CKD, ≥60 years old with at least one risk factor | T2DM; established CVD (70% of study group) | Acute coronary syndrome at 180 days prior to screening | T2DM; ≥40 years old with established CVD, ≥60 years old with at least one risk factor |
Follow-up median (years) | 3.8 | 2.1 | 1.5 | 5.4 | 1.81 | 1.33 | 3.2 | 2.08 | 1.33 |
Primary endpoint (95% CI) | 3-point MACE | 3-point MACE | 3-point MACE | 3-point MACE | 3-point MACE | 3-point MACE | 3-point MACE | 4-point MACE | 4-point MACE |
0.87; 0.78 to 0.97 | 0.74 (0.58–0.95) | 0.78 (0.68–0.90) | 0.88 (0.79–0.99) | 0.73 (0.58–0.92) | 0.79 (0.57–1.11) | 0.91 (0.83–1.00) | 1.02 (0.89–1.17) | 1.21 (0.90–1.63) | |
Cardiovascular death; HR (95% CI) | 0.78 (0.66–0.93) | 0.98 (0.65–1.48) | 0.93 (0.73–1.19) | 0.91 (0.78–1.06) | 0.72 (0.50–1.03) | 0.49 (0.27–0.92) | 0.88 (0.76–0.97) | 0.98 (0.78–1.22) | 1.22 (0.70–2.12) |
All-cause death; HR (95% CI) | 0.85 (0.74–0.97) | 1.05 (0.74–1.50) | 0.95 (0.79–1.16) | 0.90 (0.80–1.01) | 0.78 (0.58–1.06) | 0.51 (0.31–0.84) | 0.86 (0.77–0.97) | 0.94 (0.78–1.13) | 1.20 (0.79–1.81) |
Hospitalization for heart failure; HR (95% CI) | 0.87 (0.73–0.97) | 1.11 (0.77–1.61) | - | 0.93 (0.77–1.12) | 0.61 (0.38–0.98) | 0.86 (0.48–1.55) | 0.94 (0.78–1.13) | 0.96 (0.75–1.23) | 0.95 (0.48–1.88) |
Myocardial infarction; HR (95% CI) | 0.86 (0.73–1.00) | 0.74 (0.51–1.08) | 0.75 (0.61–0.90) * | 0.96 (0.79–1.15) | 0.75 (0.54–1.05) | 1.18 (0.73–1.90) * | 0.97 (0.85–1.10) | 1.03 (0.87–1.22) | 1.33 (0.82–2.17) * |
Stroke; HR (95% CI) | 0.86 (0.71–1.06) | 0.61 (0.38–0.99) | 0.86 (0.66–1.14) | 0·76 (0·62–0·94) | 0.74 (0.47–1.17) | 0.74 (0.35–1.57) * | 0.85 (0.70–1.03) | 1.12 (0.79–1.58) | 1.00 (0.56–1.79) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rolek, B.; Haber, M.; Gajewska, M.; Rogula, S.; Pietrasik, A.; Gąsecka, A. SGLT2 Inhibitors vs. GLP-1 Agonists to Treat the Heart, the Kidneys and the Brain. J. Cardiovasc. Dev. Dis. 2023, 10, 322. https://doi.org/10.3390/jcdd10080322
Rolek B, Haber M, Gajewska M, Rogula S, Pietrasik A, Gąsecka A. SGLT2 Inhibitors vs. GLP-1 Agonists to Treat the Heart, the Kidneys and the Brain. Journal of Cardiovascular Development and Disease. 2023; 10(8):322. https://doi.org/10.3390/jcdd10080322
Chicago/Turabian StyleRolek, Bartosz, Mateusz Haber, Magdalena Gajewska, Sylwester Rogula, Arkadiusz Pietrasik, and Aleksandra Gąsecka. 2023. "SGLT2 Inhibitors vs. GLP-1 Agonists to Treat the Heart, the Kidneys and the Brain" Journal of Cardiovascular Development and Disease 10, no. 8: 322. https://doi.org/10.3390/jcdd10080322
APA StyleRolek, B., Haber, M., Gajewska, M., Rogula, S., Pietrasik, A., & Gąsecka, A. (2023). SGLT2 Inhibitors vs. GLP-1 Agonists to Treat the Heart, the Kidneys and the Brain. Journal of Cardiovascular Development and Disease, 10(8), 322. https://doi.org/10.3390/jcdd10080322