Benefits from Implementing Low- to High-Intensity Inspiratory Muscle Training in Patients Undergoing Cardiac Surgery: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Sources and Search Strategies
2.3. Eligibility Criteria
2.4. Data Extraction
The Data Extraction Was Based on PICO Framework
2.5. Quality Assessment
3. Results
3.1. Selection and Study Characteristics
3.2. Methodological Quality
3.3. Characteristics of Included Studies
3.4. IMT Programs
3.5. Outcome Measures
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sanders, J.; Cooper, J.; Mythen, M.G.; Montgomery, H.E. Predictors of total morbidity burden on days 3, 5 and 8 after cardiac surgery. Perioper. Med. 2017, 6, 2. [Google Scholar] [CrossRef] [PubMed]
- Herdy, A.H.; Marcchi, P.L.; Vila, A.; Tavares, C.; Collaço, J.; Niebauer, J.; Ribeiro, J.P. Pre- and postoperative cardiopulmonary rehabilitation in hospitalized patients undergoing coronary artery bypass surgery: A randomized controlled trial. Am. J. Phys. Med. Rehabil. 2008, 87, 714–719. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.O.; Brotons, F.; Briant, A.R.; Suehiro, K.; Gozdzik, W.; Sponholz, C.; Kirkeby-Garstad, I.; Joosten, A.; Nigro Neto, C.; Kunstyr, J.; et al. Postoperative Pulmonary Complications After Cardiac Surgery: The VENICE International Cohort Study. J. Cardiothorac. Vasc. Anesth. 2022, 36 Pt A, 2344–2351. [Google Scholar] [CrossRef] [PubMed]
- Shahood, H.; Pakai, A.; Kiss, R.; Eva, B.; Szilagyi, N.; Sandor, A.; Verzar, Z. Effectiveness of Preoperative Chest Physiotherapy in Patients Undergoing Elective Cardiac Surgery, a Systematic Review and Meta-Analysis. Medicina 2022, 58, 911. [Google Scholar] [CrossRef] [PubMed]
- Vorona, S.; Sabatini, U.; Al-Maqbali, S.; Bertoni, M.; Dres, M.; Bissett, B.; Van Haren, F.; Martin, A.D.; Urrea, C.; Brace, D.; et al. Inspiratory Muscle Rehabilitation in Critically Ill Adults. A Systematic Review and Meta-Analysis. Ann. Am. Thorac. Soc. 2018, 15, 735–744. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.J.; McElfresh, J.; Hall, B.; Bloom, R.; Farrell, K. Inspiratory muscle training in patients with heart failure: A systematic review. Cardiopulm. Phys. Ther. J. 2012, 23, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Maher, C.G.; Sherrington, C.; Herbert, R.D.; Moseley, A.M.; Elkins, M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys. Ther. 2003, 83, 713–721. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, J.E.; Brennan, S.E.; Ryan, R.E.; Thomson, J.H.; Johnston, V.R.; Thomas, J. Defining the criteria for including studies and how they will be grouped for the synthesis. In Cochrane Handbook for Systematic Reviews of Interventions; Higgins, J.P.T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M.J., Welch, V.A., Eds.; Wiley-Blackwell: Chichester, UK, 2019; pp. 33–65. [Google Scholar]
- Brown, D. A Review of the PubMed PICO Tool: Using Evidence-Based Practice in Health Education. Health Promot. Pract. 2020, 21, 496–498. [Google Scholar] [CrossRef]
- Matheus, G.B.; Dragosavac, D.; Trevisan, P.; Costa, C.E.; Lopes, M.M.; Ribeiro, G.C. Inspiratory muscle training improves tidal volume and vital capacity after CABGs surgery. Braz. J. Cardiovasc. Surg. 2012, 27, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Kodric, M.; Trevisan, R.; Torregiani, C.; Cifaldi, R.; Longo, C.; Cantarutti, F.; Confalonieri, M. Inspiratory muscle training for diaphragm dysfunction after cardiac surgery. J. Thorac. Cardiovasc. Surg. 2013, 145, 819–823. [Google Scholar] [CrossRef] [PubMed]
- Sobrinho, M.T.; Guirado, G.N.; Silva, M.A. Preoperative therapy restores ventilatory parameters and reduces length of stay in patients undergoing myocardial revascularization. Braz. J. Cardiovasc. Surg. 2014, 29, 221–228. [Google Scholar] [PubMed]
- Hermes, B.M.; Cardoso, D.M.; Gomes, T.J.; Santos, T.D.; Vicente, M.S.; Pereira, S.N.; Barbosa, V.A.; Albuquerque, I.M. Short-term inspiratory muscle training potentiates the benefits of aerobic and resistance training in patients undergoing CABG in phase II cardiac rehabilitation program. Braz. J. Cardiovasc. Surg. 2015, 30, 474–481. [Google Scholar] [PubMed]
- Cordeiro, A.L.; de Melo, T.A.; Neves, D.; Luna, J.; Esquivel, M.S.; Guimarães, A.R.; Borges, D.L.; Petto, J. Inspiratory Muscle Training and Functional Capacity in Patients Undergoing Cardiac Surgery. Braz. J. Cardiovasc. Surg. 2016, 31, 140–144. [Google Scholar] [PubMed]
- Turky, K.; Afify, A.M.A. Effect of Preoperative Inspiratory Muscle Training on Alveolar-Arterial Oxygen Gradients After Coronary Artery Bypass Surgery. J. Cardiopulm. Rehabil. Prev. 2017, 37, 290–294. [Google Scholar] [CrossRef] [PubMed]
- Elmarakby, A. Effect of Threshold Inspiratory Muscle Training on Maximal Inspiratory Pressure and Pulmonary Gas Exchange in Patients Undergoing Coronary Artery Bypass Graft Surgery. Crit. Rev. ™ Phys. Rehabil. Med. 2016, 28, 249–261. [Google Scholar] [CrossRef]
- Miozzo, A.P.; Stein, C.; Marcolino, M.Z.; Sisto, I.R.; Hauck, M.; Coronel, C.C.; Plentz, R.D.M. Effects of High-Intensity Inspiratory Muscle Training Associated with Aerobic Exercise in Patients Undergoing CABG: Randomized Clinical Trial. Braz. J. Cardiovasc. Surg. 2018, 33, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Zanini, M.; Nery, R.M.; de Lima, J.B.; Buhler, R.P.; da Silveira, A.D.; Stein, R. Effects of Different Rehabilitation Protocols in Inpatient Cardiac Rehabilitation After Coronary Artery Bypass Graft Surgery: A Randomized Clinical trial. J. Cardiopulm. Rehabil. Prev. 2019, 39, E19–E25. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, T.D.; Pereira, S.N.; Portela, L.O.C.; Cardoso, D.M.; Lago, P.D.; Dos Santos, G.N.; Moresco, R.N.; Pereira, M.B.; de Albuquerque, I.M. Moderate-to-high intensity inspiratory muscle training improves the effects of combined training on exercise capacity in patients after coronary artery bypass graft surgery: A randomized clinical trial. Int. J. Cardiol. 2019, 279, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Cargnin, C.; Karsten, M.; Guaragna, J.C.V.D.C.; Dal Lago, P. Inspiratory Muscle Training After Heart Valve Replacement Surgery Improves Inspiratory Muscle Strength, Lung Function, and Functional Capacity: A Randomized Controlled Trial. J. Cardiopulm. Rehabil. Prev. 2019, 39, E1–E7. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Hou, L.; Zhang, Y.; Liu, X.; Shao, B.; Yuan, B.; Li, J.; Li, M.; Cheng, H.; Teng, L.; et al. The effects of five days of intensive preoperative inspiratory muscle training on postoperative complications and outcome in patients having cardiac surgery: A randomized controlled trial. Clin. Rehabil. 2019, 33, 913–922. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, A.L.L.; Mascarenhas, H.C.; Landerson, L.; Araújo, J.D.S.; Borges, D.L.; Melo, T.A.; Guimarães, A.; Petto, J. Inspiratory Muscle Training Based on Anaerobic Threshold on the Functional Capacity of Patients After Coronary Artery Bypass Grafting: Clinical Trial. Braz. J. Cardiovasc. Surg. 2020, 35, 942–949. [Google Scholar] [CrossRef] [PubMed]
- Fortes, J.V.S.; Borges, M.G.B.; Marques, M.J.S.; Oliveira, L.R.; De Rocha, R.L.; De Castro, M.E.; Esquivel, S.M.; Borges, L.D. Effects of Inspiratory Muscle Training Using an Electronic Device on Patients Undergoing Cardiac Surgery: A Randomized Controlled Trial. Int. J. Cardiovasc. Sci. 2021, 34, 44–52. [Google Scholar] [CrossRef]
- Hegazy, F.A.; Mohamed, K.S.M.; Abdelhamid, A.S.; Aboelnasr, E.A.; Elshazly, M.; Hassan, A.M. Effect of postoperative high load long duration inspiratory muscle training on pulmonary function and functional capacity after mitral valve replacement surgery: A randomized controlled trial with follow-up. PLoS ONE 2021, 16, e0256609. [Google Scholar] [CrossRef] [PubMed]
- Dsouza, F.V.; Amaravadi, S.K.; Samuel, S.R.; Raghavan, H.; Ravishankar, N. Effectiveness of Inspiratory Muscle Training on Respiratory Muscle Strength in Patients Undergoing Cardiac Surgeries: A Systematic Review with Meta-Analysis. Ann. Rehabil. Med. 2021, 45, 264–273. [Google Scholar] [CrossRef] [PubMed]
- Gomes, N.M.; Martinez, B.P.; Reis, H.F.; Carvalho, V.O. Pre- and postoperative inspiratory muscle training in patients undergoing cardiac surgery: Systematic review and meta-analysis. Clin. Rehabil. 2017, 31, 454–464. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, B.; Meng, X.; Zuo, H.; Hu, D. The effects of Inspiratory Muscle Training (IMT) on patients undergoing Coronary Artery Bypass Grafts (CABG) surgery: A Systematic Review and Meta-Analysis. Rev. Cardiovasc. Med. 2023, 24, 16. [Google Scholar] [CrossRef]
- Batiha, A.-M.; Al-Zaru, I.; AL-Shaarani, M.S.; Alhalaiqa, F. Pulmonary Complications After Open Heart Surgery: A Retrospective Study. Int. J. Emerg. Trends Health Sci. 2021, 5, 1–12. [Google Scholar] [CrossRef]
- Hauck, K.; Zhao, X. How dangerous is a day in hospital? A model of adverse events and length of stay for medical inpatients. Med. Care 2011, 49, 1068–1075. [Google Scholar] [CrossRef] [PubMed]
- D’Arx, A.; Freene, N.; Bowen, S.; Bissaker, P.; McKay, G.; Bissett, B. What is the prevalence of inspiratory muscle weakness in preoperative cardiac surgery patients? An observational study. Heart Lung 2020, 49, 909–914. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.J.; Mendes, V.; Ferreira, P.E.; Xavier, M.A.; Augusto, V.S.; Bassetto, S.; Evora, P.R. Preoperative respiratory muscle dysfunction is a predictor of prolonged invasive mechanical ventilation in cardiorespiratory complications after heart valve surgery. Eur. J. Cardio Thorac. Surg. 2011, 39, 662–666. [Google Scholar] [CrossRef] [PubMed]
- Gosselink, R.; De Vos, J.; van den Heuvel, S.P.; Segers, J.; Decramer, M.; Kwakkel, G. Impact of inspiratory muscle training in patients with COPD: What is the evidence? Eur. Respir. J. 2011, 37, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Wise, R.A.; Brown, C.D. Minimal Clinically Important Differences in the Six-Minute Walk Test and the Incremental Shuttle Walking Test. COPD 2005, 2, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, R.; Smith, J.M.; Woods, S.E.; Engel, A.M. Predictors and outcomes of extended intensive care unit length of stay in patients undergoing coronary artery bypass graft surgery. J. Card. Surg. 2006, 21, 146–150. [Google Scholar] [CrossRef] [PubMed]
- Bauer, P.D.S.; Teixeira, C.; Leão, B.M.; Rosa, G.R. Predictive factors of functional limitation after cardiac surgery: A retrospective cohort study. Braz. J. Phys. Ther. 2023, 27, 100550. [Google Scholar] [CrossRef] [PubMed]
- Patsaki, I.; Kouvarakos, A.; Vasileiadis, I.; Koumantakis, G.A.; Ischaki, E.; Grammatopoulou, E.; Kotanidou, A.; Magira, E.E. Low-Medium and High-Intensity Inspiratory Muscle Training in Critically Ill Patients: A Systematic Review and Meta-Analysis. Medicina 2024, 60, 869. [Google Scholar] [CrossRef] [PubMed]
- Cook, A.; Smith, L.; Anderson, C.; Ewing, N.; Gammack, A.; Pecover, M.; Sime, N.; Galley, H.F. The effect of Preoperative threshold inspiratory muscle training in adults undergoing cardiac surgery on postoperative hospital stay: A systematic review. Physiother. Theory Pract. 2023, 39, 690–703. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, A.L.L.; Soares, L.O.; Gomes-Neto, M.; Petto, J. Inspiratory Muscle Training in Patients in the Postoperative Phase of Cardiac Surgery: A Systematic Review and Meta-Analysis. Ann. Rehabil. Med. 2023, 47, 162–172. [Google Scholar] [CrossRef] [PubMed]
- Araújo, C.O.; Araújo Alves, C.C.; Dos Santos, F.R.A.; Cahalin, L.P.; Cipriano, G.F.B.; Cipriano, G. Inspiratory Muscle Training in Phase 1 and 2 Postoperative Cardiac Rehabilitation Following Coronary Artery Bypass Graft Surgery: Systematic Review With Meta-Analysis. Phys. Ther. 2024, 104, pzae061. [Google Scholar] [CrossRef] [PubMed]
- Aquino, T.N.; Prado, J.P.; Crisafulli, E.; Clini, E.M.; Galdino, G. Efficacy of Respiratory Muscle Training in the Immediate Postoperative Period of Cardiac Surgery: A Systematic Review and Meta-Analysis. Braz. J. Cardiovasc. Surg. 2024, 39, e20220165. [Google Scholar] [CrossRef] [PubMed]
- Wilimski, R.; Marszałek, M.; Walkowski, B.; Michalski, W.; Eyileten, C.; Przekop, Z.; Małachowska, A.; Grochowska, A.; Sosnowska, M.; Kuśmierczyk, M. The association of body composition assessment with hospital length of stay in off-pump coronary artery bypass patients. Postępy Kardiol. Interwencyjnej 2023, 19, 233–242. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Juliana, N.; Abd Aziz, N.A.S.; Maluin, S.M.; Abu Yazit, N.A.; Azmani, S.; Kadiman, S.; Hafidz, K.M.; Mohd Fahmi Teng, N.I.; Das, S. Nutritional Status and Post-Cardiac Surgery Outcomes: An Updated Review with Emphasis on Cognitive Function. J. Clin. Med. 2024, 13, 4015. [Google Scholar] [CrossRef] [PubMed]
Study (Year) | Procedures–Patients (N) | Intervention Group | Control Group | Outcomes | Results |
---|---|---|---|---|---|
Matheus et al., 2012 [11] Brazil | After CABG IG:23, CG:24 | 40% MIP, 10 rep, twice/day for 3 days | Incentive spirometry, ambulation | MIP, MEP, TV, VC | TV and VC on 3rd postoperative day (p < 0.05) |
Kodric et al., 2013 [12] Italy | Diaphragm paralysis after CABG and valve replacement IG:46, CG:23 | 5′ at 30% MIP 5′ at 70% MIP 5′ at 15% MIP 5′ at 80% MIP, daily | Sham IMT | MIP, MEP, FEV1/VC, TLC MRC dyspnea scale | MIP p < 0.05 at 3, 6 and 12 months MRC: p < 0.05 |
Sobrinho et al., 2014 [13] Brazil | Before CABG IG:35, CG:35 | 40% MIP, 3 set/10 rep, once/day | Usual care | MIP, MEP, MV | NS |
Hermes et al., 2015 [14] Brazil | After CABG IG:12, CG:12 | 30% MIP, 3 set/10 rep | Cardiac rehab program | MIP, MEP, VO2 peak | p < 0.001 |
Cordeiro et al., 2016 [15] Brazil | After heart surgery (CABG, Valve) IG:25, CG:25 | 40% MIP, 3 set/10 rep, twice/day until hospital discharge | Usual care | MIP, 6MWDT | MIP and 6MWDT p < 0.05 |
Turky et al., 2017 [16] Egypt | Before–After CABG IG:20, CG:20 | 30% MIP, 3 set/10 rep, +2% MIP increase, twice/d, 8 days | Chest physiotherapy, mobilization | MIP, A-a gradient | MIP pre and post 8th day p < 0.05 A-a gradient pre NS-post 8th day p < 0.05 SpO2 pre NS-8th day p < 0.05 |
Elmarakby 2016 [17] USA | Before–After CABG IG:17, CG:16 | 30% MIP, 30 breaths Increase 2 cm H2O twice/d | Chest physiotherapy | MIP, A-a gradients | p < 0.0001 |
Miozzo et al., 2018 [18] Brazil | After CABG IG:13, CG:11 | 50% up to 80% MIP, 5 set/10 rep for 12 weeks + aerobic exercise | Aerobic exercise | MIP | NS |
Zanini et al., 2019 [19] Brazil | After CABG 4 groups: 10 patients per group | G1: IMT (8 sets of 10 breaths/20% of MIP) + chest physiotherapy + exercise/mobilization G3: IMT + chest physiotherapy | G2: chest physiotherapy + exercise/mobilization G4: chest physiotherapy | MIP, 6MWDT, FEV1% pred, FVC% pred | 6MWDT: p < 0.05 MIP: NS FEV1% pred: NS FVC% pred: NS |
Dos Santos et al., 2019 [20] Brazil | After CABG IG:12, CG:12 | IMT + resistance and aerobic training IMT: 50% MIP, 5 set/10 rep, up to 80% MIP at 8th week | Sham IMT + resistance and aerobic training Sham IMT (9 cm H2O) | MIP, VO2 peak, 6MWDT | VO2 peak and 6MWT: p < 0.05 |
Cargnin et al., 2019 [21] Brazil | After heart valve replacement IG:12, CG:13 | 30% MIP, 30 cycles, twice/d, 7 d/w, 4 weeks | Sham (9 cm H2O) | MIP, 6MWDT, FEV1, FVC | MIP: p < 0.05, 6MWDT: p < 0.05 |
Chen et al., 2019 [22] China | After heart surgery (CABG, Valve) IG:98, CG:99 | 30% MIP for 20 min, twice/day, 5 d/w | Sham IMT (9% MIP) | MIP, FEV1% pred, FVC% pred-hospitalization length | MIP, FEV1% pred, FVC% pred: p < 0.05, less hospitalization: p < 0.05 |
Cordeiro et al., 2020 [23] Brazil | After CABG IG:21, CG:21 | IMT based on anerobic threshold from 10% MIP up to 80% MIP | 40% MIP, 3 set/15 rep, twice/daily until hospital discharge | MIP, 6MWDT | NS |
Fortes et al., 2021 [24] Brazil | After heart surgery (CABG, Valve) IG:15, CG:15 | 30% MIP, 30 cycles, twice/day for six days | Chest physiotherapy, mobilization | MIP, Peak Insp Flow | MIP: NS PIF: p < 0.05 at 6th postoperative day |
Hegazy et al., 2021 [25] Egypt | After mitral valve replacement surgery IG:50, CG:50 | 40% MIP, +5–10% MIP, 6 set of 5 breaths, twice/daily until hospital discharge-up to 80% at 8th week | Chest physiotherapy, mobilization | MIP, 6MWDT, FEV1, FVC | p < 0.001 |
Study | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Matheus et al., 2012 [11] | x | x | x | x | x | 4/10 | ||||||
Kodric et al., 2013 [12] | x | x | x | x | x | x | x | 6/10 | ||||
Sobrinho et al., 2014 [13] | x | x | x | x | x | x | 5/10 | |||||
Hermes et al., 2015 [14] | x | x | x | x | x | x | x | 6/10 | ||||
Cordeiro et al., 2016 [15] | x | x | x | x | x | 4/10 | ||||||
Turky et al., 2017 [16] | x | x | x | x | x | x | 5/10 | |||||
Elmarakby 2017 [17] | x | x | x | x | x | x | 5/10 | |||||
Miozzo et al., 2018 [18] | x | x | x | x | x | x | 5/10 | |||||
Zanini et al., 2019 [19] | x | x | x | x | x | x | x | x | 7/10 | |||
Dos Santos et al., 2019 [20] | x | x | x | x | x | x | x | 6/10 | ||||
Cargnin et al., 2019 [21] | x | x | x | x | x | x | x | x | x | 8/10 | ||
Chen et al., 2019 [22] | x | x | x | x | x | x | x | 6/10 | ||||
Cordeiro et al., 2020 [23] | x | x | x | x | x | x | 5/10 | |||||
Fortes et al., 2021 [24] | x | x | x | x | x | x | 5/10 | |||||
Hegazy et al., 2021 [25] | x | x | x | x | x | x | x | x | x | 8/10 | ||
Total mean score | 5.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Evangelodimou, A.; Patsaki, I.; Andrikopoulos, A.; Chatzivasiloglou, F.; Dimopoulos, S. Benefits from Implementing Low- to High-Intensity Inspiratory Muscle Training in Patients Undergoing Cardiac Surgery: A Systematic Review. J. Cardiovasc. Dev. Dis. 2024, 11, 380. https://doi.org/10.3390/jcdd11120380
Evangelodimou A, Patsaki I, Andrikopoulos A, Chatzivasiloglou F, Dimopoulos S. Benefits from Implementing Low- to High-Intensity Inspiratory Muscle Training in Patients Undergoing Cardiac Surgery: A Systematic Review. Journal of Cardiovascular Development and Disease. 2024; 11(12):380. https://doi.org/10.3390/jcdd11120380
Chicago/Turabian StyleEvangelodimou, Aphrodite, Irini Patsaki, Alexandros Andrikopoulos, Foteini Chatzivasiloglou, and Stavros Dimopoulos. 2024. "Benefits from Implementing Low- to High-Intensity Inspiratory Muscle Training in Patients Undergoing Cardiac Surgery: A Systematic Review" Journal of Cardiovascular Development and Disease 11, no. 12: 380. https://doi.org/10.3390/jcdd11120380
APA StyleEvangelodimou, A., Patsaki, I., Andrikopoulos, A., Chatzivasiloglou, F., & Dimopoulos, S. (2024). Benefits from Implementing Low- to High-Intensity Inspiratory Muscle Training in Patients Undergoing Cardiac Surgery: A Systematic Review. Journal of Cardiovascular Development and Disease, 11(12), 380. https://doi.org/10.3390/jcdd11120380