Phospholamban p.Leu39* Cardiomyopathy Compared with Other Sarcomeric Cardiomyopathies: Age-Matched Patient Cohorts and Literature Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. PLN Cohort
3.2. Genotype-Phenotype Correlation and PNL-Other Sarcomeric Gene Comparison
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maron, B.J.; Shirani, J.; Poliac, L.C.; Mathenge, R.; Roberts, W.C.; Mueller, F.O. Sudden death in young competitive athletes. Clinical, demographic, and pathological profiles. JAMA 1996, 276, 199–204. [Google Scholar] [CrossRef]
- Weintraub, R.G.; Semsarian, C.; Macdonald, P. Dilated cardiomyopathy. Lancet 2017, 390, 400–414. [Google Scholar] [CrossRef]
- Gerull, B.; Klaassen, S.; Brodehl, A. The Genetic Landscape of Cardiomyopathies. In Genetic Causes of Cardiac Disease; Springer: Cham, Switzerland, 2019; pp. 45–91. [Google Scholar]
- Meldolesi, J.; Pozzan, T. The endoplasmic reticulum Ca2+ store: A view from the lumen. Trends Biochem. Sci. 1998, 23, 10–14. [Google Scholar] [CrossRef]
- Frank, K.; Kranias, E.G. Phospholamban and cardiac contractility. Ann. Med. 2000, 32, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Koss, K.L.; Kranias, E.G. Phospholamban: A prominent regulator of myocardial contractility. Circ. Res. 1996, 79, 1059–1063. [Google Scholar] [CrossRef] [PubMed]
- Simmerman, H.K.; Jones, L.R. Phospholamban: Protein structure, mechanism of action, and role in cardiac function. Physiol. Rev. 1998, 78, 921–947. [Google Scholar] [CrossRef] [PubMed]
- Sanoudou, D.; Kolokathis, F.; Arvanitis, D.; Al-Shafai, K.; Krishnamoorthy, N.; Buchan, R.J.; Walsh, R.; Tsiapras, D.; Barton, P.J.R.; Cook, S.A.; et al. Genetic modifiers to the PLN L39X mutation in a patient with DCM and sustained ventricular tachycardia? Glob. Cardiol. Sci. Pract. 2015, 2015, 29. [Google Scholar] [CrossRef] [PubMed]
- Haghighi, K.; Kolokathis, F.; Pater, L.; Lynch, R.A.; Asahi, M.; Gramolini, A.O.; Fan, G.C.; Tsiapras, D.; Hahn, H.S.; Adamopoulos, S.; et al. Human phospholamban null results in lethal dilated cardiomyopathy revealing a critical difference between mouse and human. J. Clin. Investig. 2003, 111, 869–876. [Google Scholar] [CrossRef] [PubMed]
- Chiu, C.; Tebo, M.; Ingles, J.; Yeates, L.; Arthur, J.W.; Lind, J.M.; Semsarian, C. Genetic screening of calcium regulation genes in familial hypertrophic cardiomyopathy. J. Mol. Cell. Cardiol. 2007, 43, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Walsh, R.; Thomson, K.L.; Ware, J.S.; Funke, B.H.; Woodley, J.; McGuire, K.J.; Mazzarotto, F.; Blair, E.; Seller, A.; Taylor, J.C.; et al. Reassessment of Mendelian gene pathogenicity using 7855 cardiomyopathy cases and 60,706 reference samples. Genet. Med. 2017, 19, 192–203. [Google Scholar] [CrossRef] [PubMed]
- Landstrom, A.P.; Adekola, B.A.; Bos, J.M.; Ommen, S.R.; Ackerman, M.J. PLN-encoded phospholamban mutation in a large cohort of hypertrophic cardiomyopathy cases: Summary of the literature and implications for genetic testing. Am. Heart J. 2011, 161, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Alfares, A.A.; Kelly, M.A.; McDermott, G.; Funke, B.H.; Lebo, M.S.; Baxter, S.B.; Shen, J.; McLaughlin, H.M.; Clark, E.H.; Babb, L.J.; et al. Results of clinical genetic testing of 2912 probands with hypertrophic cardiomyopathy: Expanded panels offer limited additional sensitivity. Genet. Med. 2015, 17, 880–888. [Google Scholar] [CrossRef] [PubMed]
- Mellor, G.; Laksman, Z.W.M.; Tadros, R.; Roberts, J.D.; Gerull, B.; Simpson, C.S.; Klein, G.J.; Champagne, J.; Talajic, M.; Gardner, M.; et al. Genetic Testing in the Evaluation of Unexplained Cardiac Arrest: From the CASPER (Cardiac Arrest Survivors with Preserved Ejection Fraction Registry). Circ. Cardiovasc. Genet. 2017, 10, e001686. [Google Scholar] [CrossRef] [PubMed]
- Arbelo, E.; Protonotarios, A.; Gimeno, J.R.; Arbustini, E.; Barriales-Villa, R.; Basso, C.; Bezzina, C.R.; Biagini, E.; Blom, N.A.; de Boer, R.A.; et al. 2023 ESC Guidelines for the management of cardiomyopathies. Eur. Heart J. 2023, 44, 3503–3626. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, J.P.; Kamisago, M.; Asahi, M.; Li, G.H.; Ahmad, F.; Mende, U.; Kranias, E.G.; MacLennan, D.H.; Seidman, J.G.; Seidman, C.E. Dilated Cardiomyopathy and Heart Failure Caused by a Mutation in Phospholamban. Science 2003, 299, 1410–1413. [Google Scholar] [CrossRef] [PubMed]
- Medin, M.; Hermida-Prieto, M.; Monserrat, L.; Laredo, R.; Rodriguez-Rey, J.C.; Fernandez, X.; Castro-Beiras, A. Mutational screening of phospholamban gene in hypertrophic and idiopathic dilated cardiomyopathy and functional study of the PLN–42 C>G mutation. Eur. J. Heart Fail. 2007, 9, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Fujii, J.; Zarain-Herzberg, A.; Willard, H.F.; Tada, M.; MacLennan, D.H. Structure of the rabbit phospholamban gene, cloning of the human cDNA, and assignment of the gene to human chromosome 6. J. Biol. Chem. 1991, 266, 11669–11675. [Google Scholar] [CrossRef]
- Te Rijdt, W.P.; Asimaki, A.; Jongbloed, J.D.H.; Hoorntje, E.T.; Lazzarini, E.; van der Zwaag, P.A.; de Boer, R.A.; van Tintelen, J.P.; Saffitz, J.E.; Berg, M.P.v.D.; et al. Distinct molecular signature of phospholamban p.Arg14del arrhythmogenic cardiomyopathy. Cardiovasc. Pathol. 2019, 40, 2–6. [Google Scholar] [CrossRef]
- van der Zwaag, P.A.; van Rijsingen, I.A.W.; de Ruiter, R.; Nannenberg, E.A.; Groeneweg, J.A.; Post, J.G.; Hauer, R.N.; van Gelder, I.C.; van den Berg, M.P.; van der Harst, P.; et al. Recurrent and founder mutations in the Netherlands—Phospholamban p.Arg14del mutation causes arrhythmogenic cardiomyopathy. Neth. Heart J. 2013, 21, 286–293. [Google Scholar] [CrossRef]
- Bailey, R.A.; Stillitano, F.; Turnbull, I.; Haghigi, K.; Fish, K.; Akar, F.; Dubois, N.; Wickramasinghe, N.; Hajjar, R.J.; Gelb, B.D.; et al. Abstract 530: Mechanisms Underlying Phospholamban L39 Stop (PLN L39X) Cardiomyopathy. Circ. Res. 2020, 127 (Suppl. S1), A530. [Google Scholar] [CrossRef]
- Devendran, A.; Bailey, R.; Kar, S.; Stillitano, F.; Turnbull, I.; Fish, K.; Dubois, N.; Wickramasinghe, N.; Hajjar, R.; Costa, K.; et al. Abstract P482: Elucidating and Characterizing the Molecular Mechanistic Role of Phospholamban L39 Stop in the Pathophysiology of Cardiomyopathy Using Patient-derived Human Induced Pluripotent Stem Cells and Humanized Knock-in Mouse Model Systems. Circ. Res. 2021, 129 (Suppl. S1), AP482. [Google Scholar] [CrossRef]
- Nakayama, H.; Otsu, K.; Yamaguchi, O.; Nishida, K.; Date, M.; Hongo, K.; Kusakari, Y.; Toyofuku, T.; Hikoso, S.; Kashiwase, K.; et al. Cardiac-specific overexpression of a high Ca2+ affinity mutant of SERCA2a attenuates in vivo pressure overload cardiac hypertrophy. FASEB J. 2003, 17, 61–63. [Google Scholar] [CrossRef] [PubMed]
- Marian, A.J. Hypertrophic cardiomyopathy: From genetics to treatment. Eur. J. Clin. Investig. 2010, 40, 360–369. [Google Scholar] [CrossRef] [PubMed]
- Arad, M. Phenotypic diversity in hypertrophic cardiomyopathy. Hum. Mol. Genet. 2002, 11, 2499–2506. [Google Scholar] [CrossRef] [PubMed]
- Walsh, R.; Offerhaus, J.A.; Tadros, R.; Bezzina, C.R. Minor hypertrophic cardiomyopathy genes, major insights into the genetics of cardiomyopathies. Nat. Rev. Cardiol. 2022, 19, 151–167. [Google Scholar] [CrossRef] [PubMed]
- Tadros, R.; Francis, C.; Xu, X.; Vermeer, A.M.C.; Harper, A.R.; Huurman, R.; Bisabu, K.K.; Walsh, R.; Hoorntje, E.T.; Rijdt, W.P.T.; et al. Shared genetic pathways contribute to risk of hypertrophic and dilated cardiomyopathies with opposite directions of effect. Nat. Genet. 2021, 53, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Abrams, J.; Pitt, G.; Elemento, O.; Cheung, J.W. Phospholamban mutation leading to recurrent short-coupled polymorphic ventricular tachycardia and fibrillation in patient without apparent structural heart disease. J. Am. Coll. Cardiol. 2023, 81, 2452. [Google Scholar] [CrossRef]
- van der Zwaag, P.A.; van Rijsingen, I.A.W.; Asimaki, A.; Jongbloed, J.D.H.; van Veldhuisen, D.J.; Wiesfeld, A.C.P.; Cox, M.G.; van Lochem, L.T.; de Boer, R.A.; Hofstra, R.M.; et al. Phospholamban R14del mutation in patients diagnosed with dilated cardiomyopathy or arrhythmogenic right ventricular cardiomyopathy: Evidence supporting the concept of arrhythmogenic cardiomyopathy. Eur. J. Heart Fail. 2012, 14, 1199–1207. [Google Scholar] [CrossRef]
- van Rijsingen, I.A.W.; van der Zwaag, P.A.; Groeneweg, J.A.; Nannenberg, E.A.; Jongbloed, J.D.H.; Zwinderman, A.H.; Pinto, Y.M.; Deprez, R.H.L.D.; Post, J.G.; Tan, H.L.; et al. Outcome in Phospholamban R14del Carriers. Circ. Cardiovasc. Genet. 2014, 7, 455–465. [Google Scholar] [CrossRef]
- Vafiadaki, E.; Haghighi, K.; Arvanitis, D.A.; Kranias, E.G.; Sanoudou, D. Aberrant PLN-R14del Protein Interactions Intensify SERCA2a Inhibition, Driving Impaired Ca2+ Handling and Arrhythmogenesis. Int. J. Mol. Sci. 2022, 23, 6947. [Google Scholar] [CrossRef] [PubMed]
- Verstraelen, T.E.; van Lint, F.H.M.; Bosman, L.P.; de Brouwer, R.; Proost, V.M.; Abeln, B.G.S.; Taha, K.; Zwinderman, A.H.; Dickhoff, C.; Oomen, T.; et al. Prediction of ventricular arrhythmia in phospholamban p.Arg14del mutation carriers–reaching the frontiers of individual risk prediction. Eur. Heart J. 2021, 42, 2842–2850. [Google Scholar] [CrossRef] [PubMed]
- Groeneweg, J.A.; van der Zwaag, P.A.; Olde Nordkamp, L.R.A.; Bikker, H.; Jongbloed, J.D.H.; Jongbloed, R.; Wiesfeld, A.C.; Cox, M.G.; van der Heijden, J.F.; Atsma, D.E.; et al. Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy According to Revised 2010 Task Force Criteria With Inclusion of Non-Desmosomal Phospholamban Mutation Carriers. Am. J. Cardiol. 2013, 112, 1197–1206. [Google Scholar] [CrossRef] [PubMed]
- Sepehrkhouy, S.; Gho, J.M.I.H.; van Es, R.; Harakalova, M.; de Jonge, N.; Dooijes, D.; van der Smagt, J.J.; Buijsrogge, M.P.; Hauer, R.N.; Goldschmeding, R.; et al. Distinct fibrosis pattern in desmosomal and phospholamban mutation carriers in hereditary cardiomyopathies. Heart Rhythm. 2017, 14, 1024–1032. [Google Scholar] [CrossRef]
- Fish, M.; Shaboodien, G.; Kraus, S.; Sliwa, K.; Seidman, C.E.; Burke, M.A.; Crotti, L.; Schwartz, P.J.; Mayosi, B.M. Mutation analysis of the phospholamban gene in 315 South Africans with dilated, hypertrophic, peripartum and arrhythmogenic right ventricular cardiomyopathies. Sci. Rep. 2016, 6, 22235. [Google Scholar] [CrossRef]
- van der Heijden, J.F.; Hassink, R.J. The phospholamban p.Arg14del founder mutation in Dutch patients with arrhythmogenic cardiomyopathy. Neth. Heart J. 2013, 21, 284–285. [Google Scholar] [CrossRef]
Characteristic | Pt 1.1 | Pt 1.2 | Pt 2.1 | Pt 2.2 | Pt 2.3 | Pt 3.1 | Pt 4.1 | Pt 4.2 | Pt 5.1 | Pt 6.1 | Pt 6.2 | Pt 7.1 | Pt 8.1 | Pt 9.1 | Pt 10.1 | Pt 11.1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Age | 54 | 59 | 48 | 49 | 17 | 69 | 74 | 42 | 52 | 10 | 50 | 55 | 74 | 37 | 68 | 49 |
Sex | F | M | M | F | M | F | M | F | M | M | M | F | M | F | M | M |
Age at disease onset | 33 | 54 | 47 | - | - | 54 | 62 | 42 | 51 | 4 | - | 54 | 66 | 30 | 57 | 44 |
Family history | ||||||||||||||||
HCM | + | + | - | + | + | - | - | + | - | - | + | - | - | - | - | - |
SCD | - | - | - | - | - | + | - | - | + | - | - | + | - | + | - | - |
Symptoms | ||||||||||||||||
NYHA Class | II | II | II | - | - | II | II | I | I | I | - | II | I | IV | II | III |
Syncope | - | - | - | - | - | - | - | - | - | - | - | + | - | - | - | + |
Palpitations | + | + | + | - | - | - | - | - | - | - | - | - | - | - | + | + |
Chest pain | + | - | + | - | - | + | - | - | - | + | - | + | - | - | - | - |
ECG abnormalities | ||||||||||||||||
High QRS voltage | - | - | - | - | + | + | + | - | + | + | - | - | + | - | - | - |
Low QRS voltage | - | - | - | - | - | - | - | - | - | - | - | - | - | + | + | + |
Repolarization abnormalities | + | + | + | - | - | + | + | - | + | + | + | - | + | - | - | + |
Pathologic Q waves | - | - | - | - | - | - | + | - | - | + | + | - | - | - | + | + |
Other LP/P cardiomyopathy variants | - | - | - | - | - | - | - | - | - | + | - | - | - | - | + | + |
Characteristic | Pt 1.1 | Pt 1.2 | Pt 2.1 | Pt 2.2 | Pt 2.3 | Pt 3.1 | Pt 4.1 | Pt 4.2 | Pt 5.1 | Pt 6.1 | Pt 6.2 | Pt 7.1 | Pt 8.1 | Pt 9.1 | Pt 10.1 | Pt 11.1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Phenotype | hyp | mix | hyp | - | - | hyp | mix | hyp | hyp | hyp | - | hyp | hyp | dil | mix | dil |
ETT | ||||||||||||||||
LVEDD/LVESD (mm) | 46/26 | 45/40 | 41/24 | 38/23 | 42/26 | 44/30 | 57/29 | 37/25 | 41/27 | 28/15 | 38/25 | 44/28 | 51/29 | 52 | 57/51 | 59/43 |
LVEDVi/LVESVi (mL/m2) | 57/19 | 52/31 | 50/18 | 56/37 | 47/17 | 76/29 | 64/24 | 77/29 | 57/44 | 92/72 | 53/40 | |||||
IVS/PW (mm) | 22/11 | 15/14 | 11/10 | 11/9.5 | 10/10 | 18/13 | 22/12 | 13/9 | 16/15 | 26/8 | 10/9 | 16/13 | 18/11 | 15/10 | 9/5 | |
MWT (mm) | 30 | 16 | 16 | 11.5 | 10 | 20 | 22 | 13 | 16 | 28 | 11 | 17 | 18 | 17 | 9 | |
RVWT (mm) | 7 | 6.5 | 7 | 4 | 9 | 8 | 5 | 7 | 8 | 7 | 8 | 6 | 4 | |||
LVEF (%) | 67 | 40 | 70 | 60 | 65 | 70 | 33 | 62 | 62 | 65 | 63 | 62 | 69 | 22 | 21 | 25 |
E/A | 2.1 | 1.2 | 1.1 | 1.7 | 1.2 | 0.8 | 1 | 1.5 | 1.2 | 0.79 | 3.8 | 3.2 | ||||
E/e’ | 21 | 15 | 9.2 | 9 | 7 | 6 | 8.5 | 8 | 4.5 | 13 | 10.9 | 9 | 16.3 | |||
LVOT/mid-cavity peak gradient a | 30 | - | 48 | - | - | 90 | - | - | - | - | - | - | - | - | - | - |
Other ETT findings | AA | AH Cr | AA Cr | tTR | PE | |||||||||||
CMR | ||||||||||||||||
LVEF (%) | 70 | 71 | 34 | 54 | 60 | 58 | 61 | 40 | 27 | |||||||
RVEF (%) | 69 | 69 | 38 | 58 | 65 | 53 | 55 | 39 | ||||||||
LVEDVi (ml/m2) | 70 | 70 | 142 | 73 | 84 | 66 | 66 | 121 | ||||||||
LVESVi (ml/m2) | 20 | 20 | 94 | 34 | 34 | 27 | 26 | 88 | ||||||||
MWT (mm) | 22 | 18 | 20 | 13 | 18 | 23 | 16 | 9 | ||||||||
LGE | + | + | + | - | + | + | + | + | + |
Overall Cohort Characteristics | PLN (n = 16) | MYBPC3/MYH7 (n = 13) | p Value |
---|---|---|---|
Baseline characteristics | data | data | data |
Female gender, n (%) | 10 (62.5) | 7 (53.8) | 0.691 |
Age (years), median (IQR) | 51 (43.5–65.7) | 55 (43–68) | 1.000 |
Family history of SCD, n (%) | 4 (25) | 2 (15.3) | 0.352 |
Family history of HCM, n (%) | 6 (37.5) | 6 (46.1) | 0.216 |
Age at diagnosis (years), median (IQR) | 54 (42.5–65) | 46.0 (32.5–49.5) | 0.342 |
HCM phenotype, n (%) | 8 (50) | 9 (69.2) | |
DCM phenotype, n (%) | 2 (12.5) | 0 (0) | |
Mixed phenotype, n (%) | 3 (18.7) | 4 (30.7) | |
Apical hypertrophy, n (%)Significant coronary artery disease, n (%) | 2 (12.5) | 2 (15.3) | 1.000 |
2 (20.0) | 0 (0) | 0.119 | |
Symptoms | |||
Dyspnea, n (%) | 9 (56.2) | 10 (76.9) | 0.658 |
NYHA class ≥ III, n (%) | 2 (12.5) | 5 (38.4) | 0.185 |
Palpitations, n (%) | 5 (31.2) | 4 (30.7) | 0.680 |
Syncope, n (%) | 2 (12.5) | 4 (30.7) | 0.352 |
Angina, n (%) | 5 (31.2) | 2 (15.3) | 0.185 |
Biomarkers | |||
NTproBNP (pg/mL), mean ± SD | 4893.2 ± 6299.5 | 4815.4 ± 5390.5 | 0.980 |
CK (U/l), mean ± SD | 75 ± 42 | 113.6 ± 37.1 | 0.079 |
CK-MB (U/l), mean ± SD | 28.1 ± 31 | 26.2 ±7.8 | 0.082 |
ECG findings | |||
High QRS voltage, n (%) | 6 (37.5) | 4 (30.7) | 0.680 |
Low QRS voltage, n (%) | 3 (18.7) | 2 (15.3) | 0.619 |
Pathological Q waves, n (%) | 5 (31.2) | 0 (0) | 0.030 |
Repolarization abnormalities, n (%) | 9 (56.2) | 11 84.6() | 0.185 |
LBBB/RBBB morphology, n (%) | 1 (6.2) | 6 (46.1) | 0.047 |
Holter monitoring | |||
Non-sustained VT, n (%) | 5 (31.2) | 0 (0) | 0.027 |
History of Afib, n (%) | 9 (56.2) | 8 (61.5) | 0.680 |
Echocardiographic features | |||
LVEDD (mm), mean ± SD | 45 ± 8.4 | 46 ± 9.6 | 0.934 |
LVESD (mm), median (IQR) | 27 (25–30) | 27.5 (23.5–39) | 0.800 |
IVS (mm), mean ± SD | 15.5 ± 5 | 17.4 ± 5.4 | 0.761 |
PW (mm), mean ± SD | 10.6 ± 2.5 | 11.7 ± 3.1 | 0.481 |
MWT (mm), median (IQR) | 17 ± 6.1 | 18.7 ± 4.9 | 0.930 |
LVEDVi (mL/m2), mean ± SD | 61.8 ± 14.1 | 45.9 ± 19.7 | 0.045 |
LVESVi (mL/m2), mean ± SD | 32.7 ± 15.8 | 21.5 ± 13.9 | 0.050 |
LVEF (%), median (IQR) | 62 (34.7–66.5) | 55 (39–69.5) | 0.614 |
LVEF <50%, n (%) | 5 (31.2) | 4 (30.7) | 0.680 |
Dinamic gradientb > 30 mmHg, n (%) | 3 (18.7) | 2 (15.3) | 0.619 |
LV GLS (%), mean ± SD | 15.1 ± 6.2 | 14.6 ± 5.8 | 0.637 |
E/A ratio, mean ± SD | 1.6 ± 0.9 | 2.7 ± 2.5 | 0.295 |
E/e’ ratio, mean ± SD | 10.5 ± 4.6 | 11.2 ± 8.8 | 0.870 |
LAVi (mL/m2), mean ± SD | 49.8 ± 42.6 | 75.5 ± 29.6 | 0.320 |
RVFW thickness (mm), median (IQR) | 7 (5.5–8) | 6.5 (5–7.5) | 0.497 |
CMR features | |||
LVEDVi (MRI) (mL/m2), median (IQR) | 71.5 (67–111.7) | 72.5 | 0.889 |
LVESVi (MRI) (mL/m2), median (IQR) | 30.5 (21.6–74.7) | 24.5 | 0.296 |
LVEF (MRI) (%), median (IQR) | 59 (37–65.5) | 66.5 (59–66.5) | 0.230 |
RVEF (MRI) (%), mean ± SD | 55.7 ± 12.2 | 61.4 ± 6.8 | 0.370 |
LV LGE, n (%) | 8 (88.8) | 6 (100) | 0.849 |
Scores | |||
HCM Risk SCD score (%), mean ± SD | 4.3 ± 3.2 | 4.7 ± 4.7 | 0.819 |
Treatment | |||
Medication, n (%) | 12 (75) | 13 (100) | 0.308 |
ASA/ Septal myectomy, n (%) | 1 (6.2) | 0 (0) | 0.308 |
ICD, n (%) | 5 (31.2) | 4 (30.7) | 0.680 |
Pacemaker, n (%) | 0 (0) | 1 (7.6) | 0.308 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afana, A.S.; Vasiliu, L.; Sascău, R.; Adam, R.D.; Rădulescu, C.; Onciul, S.; Cinteză, E.; Chirita-Emandi, A.; Jurcuț, R. Phospholamban p.Leu39* Cardiomyopathy Compared with Other Sarcomeric Cardiomyopathies: Age-Matched Patient Cohorts and Literature Review. J. Cardiovasc. Dev. Dis. 2024, 11, 41. https://doi.org/10.3390/jcdd11020041
Afana AS, Vasiliu L, Sascău R, Adam RD, Rădulescu C, Onciul S, Cinteză E, Chirita-Emandi A, Jurcuț R. Phospholamban p.Leu39* Cardiomyopathy Compared with Other Sarcomeric Cardiomyopathies: Age-Matched Patient Cohorts and Literature Review. Journal of Cardiovascular Development and Disease. 2024; 11(2):41. https://doi.org/10.3390/jcdd11020041
Chicago/Turabian StyleAfana, Andreea Sorina, Laura Vasiliu, Radu Sascău, Robert Daniel Adam, Cristina Rădulescu, Sebastian Onciul, Eliza Cinteză, Adela Chirita-Emandi, and Ruxandra Jurcuț. 2024. "Phospholamban p.Leu39* Cardiomyopathy Compared with Other Sarcomeric Cardiomyopathies: Age-Matched Patient Cohorts and Literature Review" Journal of Cardiovascular Development and Disease 11, no. 2: 41. https://doi.org/10.3390/jcdd11020041
APA StyleAfana, A. S., Vasiliu, L., Sascău, R., Adam, R. D., Rădulescu, C., Onciul, S., Cinteză, E., Chirita-Emandi, A., & Jurcuț, R. (2024). Phospholamban p.Leu39* Cardiomyopathy Compared with Other Sarcomeric Cardiomyopathies: Age-Matched Patient Cohorts and Literature Review. Journal of Cardiovascular Development and Disease, 11(2), 41. https://doi.org/10.3390/jcdd11020041