Prognostic Significance of Serum Uric Acid and Exercise Capacity in Older Adults Hospitalized for Worsening Cardiovascular Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Study Overview
2.3. CPX Procedure
2.4. Statistical Analysis
3. Results
3.1. Comparison of Patients with Low, Moderate, and High sUA
3.2. Comparison of Exercise Capacity and Prognosis in Patients with Low, Moderate, or High sUA Levels
3.3. Cox proportion Hazard Ratio Analysis
3.4. Comparison of the Patients Stratified by Gender
4. Discussion
- (1)
- When the patients were divided into three groups according to sUA level (<5.3, 5.4–6.9, and >7.0 mg/dL), the highest sUA group showed a significantly worse exercise capacity and composite endpoint (rehospitalization due to worsening CVD and all-cause mortality; p < 0.001) using the Kaplan–Meire method.
- (2)
- Female patients (hazard ratio: 6.12, p < 0.05), but not male patients, showed a significantly higher incidence of the composite endpoint following Cox regression analysis.
- (3)
- A univariate Cox regression analysis, but not a multivariate analysis, revealed that sUA was significantly associated with the composite endpoint (hazard ratio: 1.237; p < 0.001).
4.1. Exercise Capacity
4.2. Prognostic Significance
4.3. Gender Differences
4.4. Clinical Implications
4.5. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gherghina, M.E.; Peride, I.; Tiglis, M.; Neagu, T.P.; Niculae, A.; Checherita, I.A. Uric Acid and Oxidative Stress-Relationship with Cardiovascular, Metabolic, and Renal Impairment. Int. J. Mol. Sci. 2022, 23, 3188. [Google Scholar] [CrossRef] [PubMed]
- El Ridi, R.; Tallima, H. Physiological functions and pathogenic potential of uric acid: A review. J. Adv. Res. 2017, 8, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, Y.; Cheng, J.; Huangfu, N.; Zhao, R.; Xu, Z.; Zhang, F.; Zheng, W.; Zhang, D. Hyperuricemia and Cardiovascular Disease. Curr. Pharm. Des. 2019, 25, 700–709. [Google Scholar] [CrossRef] [PubMed]
- Bos, M.J.; Koudstaal, P.J.; Hofman, A.; Witteman, J.C.; Breteler, M.M. Uric acid is a risk factor for myocardial infarction and stroke: The Rotterdam study. Stroke 2006, 37, 1503–1507. [Google Scholar] [CrossRef]
- Li, M.; Hu, X.; Fan, Y.; Li, K.; Zhang, X.; Hou, W.; Tang, Z. Hyperuricemia and the risk for coronary heart disease morbidity and mortality a systematic review and dose-response meta-analysis. Sci. Rep. 2016, 6, 19520. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Huang, B.; Li, Y.; Huang, Y.; Li, J.; Yao, H.; Jing, X.; Chen, J.; Wang, J. Uric acid and risk of heart failure: A systematic review and meta-analysis. Eur. J. Heart Fail. 2014, 16, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Muiesan, M.L.; Agabiti-Rosei, C.; Paini, A.; Salvetti, M. Uric Acid and Cardiovascular Disease: An Update. Eur. Cardiol. 2016, 11, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Kuwabara, M.; Kodama, T.; Ae, R.; Kanbay, M.; Andres-Hernando, A.; Borghi, C.; Hisatome, I.; Lanaspa, M.A. Update in uric acid, hypertension, and cardiovascular diseases. Hypertens. Res. 2023, 46, 1714–1726. [Google Scholar] [CrossRef] [PubMed]
- Rahimi-Sakak, F.; Maroofi, M.; Rahmani, J.; Bellissimo, N.; Hekmatdoost, A. Serum uric acid and risk of cardiovascular mortality: A systematic review and dose-response meta-analysis of cohort studies of over a million participants. BMC Cardiovasc. Disord. 2019, 19, 218. [Google Scholar] [CrossRef]
- Kannel, W.B.; Castelli, W.P.; McNamara, P.M. The coronary profile: 12-year follow-up in the Framingham study. J. Occup. Med. 1967, 9, 611–619. [Google Scholar]
- Kumagai, T.; Ota, T.; Tamura, Y.; Chang, W.X.; Shibata, S.; Uchida, S. Time to target uric acid to retard CKD progression. Clin. Exp. Nephrol. 2017, 21, 182–192. [Google Scholar] [CrossRef] [PubMed]
- Piani, F.; Cicero, A.F.G.; Borghi, C. Uric Acid and Hypertension: Prognostic Role and Guide for Treatment. J. Clin. Med. 2021, 10, 448. [Google Scholar] [CrossRef] [PubMed]
- Verdoia, M.; Barbieri, L.; Schaffer, A.; Cassetti, E.; Nardin, M.; Bellomo, G.; Aimaretti, G.; Marino, P.; Sinigaglia, F.; De Luca, G.; et al. Impact of diabetes on uric acid and its relationship with the extent of coronary artery disease and platelet aggregation: A single-centre cohort study. Metabolism 2014, 63, 640–646. [Google Scholar] [CrossRef] [PubMed]
- Nakahashi, T.; Tada, H.; Sakata, K.; Yoshida, T.; Tanaka, Y.; Nomura, A.; Terai, H.; Horita, Y.; Ikeda, M.; Namura, M.; et al. The Association between Serum Uric Acid and Mortality in Patients with Acute Coronary Syndrome after Percutaneous Coronary Intervention. Int. Heart J. 2022, 63, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Maas, A.H.; van der Schouw, Y.T.; Regitz-Zagrosek, V.; Swahn, E.; Appelman, Y.E.; Pasterkamp, G.; Ten Cate, H.; Nilsson, P.M.; Huisman, M.V.; Stam, H.C.; et al. Red alert for women’s heart: The urgent need for more research and knowledge on cardiovascular disease in women: Proceedings of the workshop held in Brussels on gender differences in cardiovascular disease, 29 September 2010. Eur. Heart J. 2011, 32, 1362–1368. [Google Scholar] [CrossRef] [PubMed]
- Regitz-Zagrosek, V.; Seeland, U. Sex and gender differences in myocardial hypertrophy and heart failure. Wien Med. Wochenschr. 2011, 161, 109–116. [Google Scholar] [CrossRef]
- Lenzen, M.J.; Rosengren, A.; Scholte op Reimer, W.J.; Follath, F.; Boersma, E.; Simoons, M.L.; Cleland, J.G.; Komajda, M. Management of patients with heart failure in clinical practice: Differences between men and women. Heart 2008, 94, e10. [Google Scholar] [CrossRef] [PubMed]
- Holme, I.; Aastveit, A.H.; Hammar, N.; Jungner, I.; Walldius, G. Uric acid and risk of myocardial infarction, stroke and congestive heart failure in 417,734 men and women in the Apolipoprotein MOrtality RISk study (AMORIS). J. Intern. Med. 2009, 266, 558–570. [Google Scholar] [CrossRef] [PubMed]
- Hoieggen, A.; Alderman, M.H.; Kjeldsen, S.E.; Julius, S.; Devereux, R.B.; De Faire, U.; Fyhrquist, F.; Ibsen, H.; Kristianson, K.; Lederballe-Pedersen, O.; et al. The impact of serum uric acid on cardiovascular outcomes in the LIFE study. Kidney Int. 2004, 65, 1041–1049. [Google Scholar] [CrossRef]
- Ross, R.M. ATS/ACCP Statement on cardiopulmonary exercise testing. Am. J. Respir. Crit. Care Med. 2003, 167, 211–277. [Google Scholar] [CrossRef]
- Leyva, F.; Chua, T.P.; Anker, S.D.; Coats, A.J. Uric acid in chronic heart failure: A measure of the anaerobic threshold. Metabolism 1998, 47, 1156–1159. [Google Scholar] [CrossRef] [PubMed]
- Leyva, F.; Anker, S.; Swan, J.W.; Godsland, I.F.; Wingrove, C.S.; Chua, T.P.; Stevenson, J.C.; Coats, A.J. Serum uric acid as an index of impaired oxidative metabolism in chronic heart failure. Eur. Heart J. 1997, 18, 858–865. [Google Scholar] [CrossRef] [PubMed]
- Kinugawa, T.; Fujita, M.; Ogino, K.; Kato, M.; Osaki, S.; Igawa, O.; Shigemasa, C.; Hisatome, I.; Kitakaze, M. Catabolism of adenine nucleotides favors adenosine production following exercise in patients with chronic heart failure. J. Card. Fail. 2006, 12, 720–725. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Cheng, J.D. Uric Acid and Cardiovascular Disease: An Update from Molecular Mechanism to Clinical Perspective. Front. Pharmacol. 2020, 11, 582680. [Google Scholar] [CrossRef] [PubMed]
- Freilich, M.; Arredondo, A.; Zonnoor, S.L.; McFarlane, I.M. Elevated Serum Uric Acid and Cardiovascular Disease: A Review and Potential Therapeutic Interventions. Cureus 2022, 14, e23582. [Google Scholar] [CrossRef] [PubMed]
- Jensen, J.; Ma, L.P.; Bjurman, C.; Hammarsten, O.; Fu, M.L. Prognostic values of NTpro BNP/BNP ratio in comparison with NTpro BNP or BNP alone in elderly patients with chronic heart failure in a 2-year follow up. Int. J. Cardiol. 2012, 155, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Von Haehling, S.; Jankowska, E.A.; van Veldhuisen, D.J.; Ponikowski, P.; Anker, S.D. Iron deficiency and cardiovascular disease. Nat. Rev. Cardiol. 2015, 12, 659–669. [Google Scholar] [CrossRef] [PubMed]
- Gremese, E.; Bruno, D.; Varriano, V.; Perniola, S.; Petricca, L.; Ferraccioli, G. Serum Albumin Levels: A Biomarker to Be Repurposed in Different Disease Settings in Clinical Practice. J. Clin. Med. 2023, 12, 6017. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Jo, Y.I.; Lee, J.H. Renal effects of uric acid: Hyperuricemia and hypouricemia. Korean J. Intern. Med. 2020, 35, 1291–1304. [Google Scholar] [CrossRef]
- Crawley, W.T.; Jungels, C.G.; Stenmark, K.R.; Fini, M.A. U-shaped association of uric acid to overall-cause mortality and its impact on clinical management of hyperuricemia. Redox. Biol. 2022, 51, 102271. [Google Scholar] [CrossRef]
- Liu, H.; Liu, J.; Zhao, H.; Zhou, Y.; Li, L.; Wang, H.; BEST Research Group. Relationship between Serum Uric Acid and Vascular Function and Structure Markers and Gender Difference in a Real-World Population of China-From Beijing Vascular Disease Patients Evaluation Study (BEST) Study. J. Atheroscler. Thromb. 2018, 25, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.H.; Li, R.H.; Huang, S.L.; Sia, H.K.; Yu, C.H.; Tang, F.C. Gender Difference in the Relationships between Inflammatory Markers, Serum Uric Acid and Framingham Risk Score. Int. J. Environ. Res. Public Health 2021, 18, 7103. [Google Scholar] [CrossRef] [PubMed]
- Regitz-Zagrosek, V.; Oertelt-Prigione, S.; Prescott, E.; Franconi, F.; Gerdts, E.; Foryst-Ludwig, A.; Maas, A.H.; Kautzky-Willer, A.; Knappe-Wegner, D.; Kintscher, U.; et al. Gender in cardiovascular diseases: Impact on clinical manifestations, management, and outcomes. Eur. Heart J. 2016, 37, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Mosca, L.; Barrett-Connor, E.; Wenger, N.K. Sex/gender differences in cardiovascular disease prevention: What a difference a decade makes. Circulation 2011, 124, 2145–2154. [Google Scholar] [CrossRef] [PubMed]
- Perticone, M.; Maio, R.; Shehaj, E.; Gigliotti, S.; Caroleo, B.; Suraci, E.; Sciacqua, A.; Andreozzi, F.; Perticone, F. Sex-related differences for uric acid in the prediction of cardiovascular events in essential hypertension. A population prospective study. Cardiovasc. Diabetol. 2023, 22, 298. [Google Scholar] [CrossRef] [PubMed]
- Kanbay, M.; Segal, M.; Afsar, B.; Kang, D.H.; Rodriguez-Iturbe, B.; Johnson, R.J. The role of uric acid in the pathogenesis of human cardiovascular disease. Heart 2013, 99, 759–766. [Google Scholar] [CrossRef] [PubMed]
- Sharaf El Din, U.A.A.; Salem, M.M.; Abdulazim, D.O. Uric acid in the pathogenesis of metabolic, renal, and cardiovascular diseases: A review. J. Adv. Res. 2017, 8, 537–548. [Google Scholar] [CrossRef]
- Ying, H.; Yuan, H.; Tang, X.; Guo, W.; Jiang, R.; Jiang, C. Impact of Serum Uric Acid Lowering and Contemporary Uric Acid-Lowering Therapies on Cardiovascular Outcomes: A Systematic Review and Meta-Analysis. Front. Cardiovasc. Med. 2021, 8, 641062. [Google Scholar] [CrossRef]
Low sUA (≤5.3 mg/dL) (n = 141) | Moderate sUA (5.4–6.9 mg/dL) (n = 141) | High sUA (≥7.0 mg/dL) (n = 129) | |
---|---|---|---|
Age (y) | 81 ± 7 | 81 ± 7 | 81 ± 8 |
Female (%) | 58 | 45 | 37 |
Body mass index (kg/m2) | 21.9 ± 3.6 | 22.3 ± 3.6 | 22.2 ± 3.9 |
Hypertension n, (%) | 93 (66) | 89 (63) | 76 (59) |
Diabetes mellitus, n, (%) | 26 (28) | 37 (26) | 30 (23) |
Hyperlipidemia, n, (%) | 58 (41) | 56 (40) | 43 (33) |
Underlying diseases | |||
Heart failure, n, (%) | 101 (72) | 104 (74) | 107 (83) |
Cardiomyopathy, n | 7 | 9 | 14 |
Ischemic, n | 17 | 17 | 17 |
Hypertensive, n | 10 | 17 | 12 |
Tachycardia, n | 24 | 32 | 27 |
Valvular disease, n | 19 | 12 | 19 |
Bradycardia, n | 15 | 11 | 11 |
Other, n | 9 | 6 | 7 |
AMI, n, (%) | 8 (7) | 13 (11) | 7 (6) |
Angina pectoris, n, (%) | 22 (18) | 17 (14) | 10 (9) |
Other, n, (%) | 10 (8) | 7 (6) | 5 (5) |
Medications | |||
Diuretic (%) | 38 | 50 | 67 |
Tolvaptan (%) | 13 | 17 | 24 |
ACE-I/ARB (%) | 38 | 44 | 42 |
Beta blocker (%) | 41 | 54 | 47 |
Antiplatelet (%) | 48 | 40 | 33 |
Anticoagulant (%) | 35 | 39 | 39 |
Spironolactone (%) | 48 | 40 | 33 |
sUA-lowering (%) | 17 | 22 | 32 |
LVEF (%) | 59.5 ± 10.1 | 56.1 ± 12.9 | 52.3 ± 15.4 *† |
E/e′ | 15.3 ± 6.0 | 14.8 ± 5.9 | 15.8 ± 6.7 |
BNP (pg/dL) | 111 ± 123 | 179 ± 248 * | 200 ± 205 * |
eGFR | 60.8 ± 17.6 | 52.4 ± 25.5 * | 44.8 ± 16.1 † |
GNRI | 98.4 ± 10.7 | 98.8 ± 11.5 | 97.1 ± 11.4 |
AT (mL/min/kg) | 9.6 ± 2.0 | 9.6 ± 3.0 | 8.6 ± 1.9 *† |
Peak VO2 (mL/min/kg) | 12.9 ± 3.2 | 12.3 ± 3.1 | 11.2 ± 3.3 * |
% peakVO2 (%) | 59.0 ± 16.1 | 56.7 ± 14.2 | 52.8 ± 15.7 * |
VE/VCO2 slope | 35.4 ± 8.0 | 36.1 ± 8.4 | 40.0 ± 8.5 * |
Univariate | B | Wald | p | Exp(B) | 95% CI | |
---|---|---|---|---|---|---|
Lower | Upper | |||||
Uric acid | 0.213 | 22.604 | <0.001 | 1.237 | 1.133 | 1.350 |
Multivariate | B | Wald | p | Exp(B) | 95 CI | |
Lower | Upper | |||||
BNP | 0.002 | 15.844 | <0.001 | 1.002 | 1.001 | 1.004 |
Fe | −0.013 | 7.742 | 0.005 | 0.987 | 0.977 | 0.996 |
Albumin | −0.775 | 6.616 | 0.010 | 0.461 | 0.255 | 0.832 |
Creatinine | 0.735 | 2.472 | 0.116 | 2.085 | 0.834 | 5.211 |
Total cholesterol | −0.006 | 2.359 | 0.125 | 0.994 | 0.986 | 1.002 |
Uric acid | 0.105 | 1.978 | 0.160 | 1.110 | 0.960 | 1.284 |
Triglyceride | 0.003 | 1.223 | 0.269 | 1.003 | 0.998 | 1.007 |
C-reactive protein | −0.055 | 0.385 | 0.535 | 0.946 | 0.795 | 1.127 |
Blood urea nitrogen | 0.008 | 0.155 | 0.694 | 1.008 | 0.971 | 1.046 |
eGFR | 0.002 | 0.034 | 0.854 | 1.002 | 0.980 | 1.024 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hirashiki, A.; Shimizu, A.; Kamihara, T.; Kokubo, M.; Hashimoto, K.; Ueda, I.; Murohara, T. Prognostic Significance of Serum Uric Acid and Exercise Capacity in Older Adults Hospitalized for Worsening Cardiovascular Disease. J. Cardiovasc. Dev. Dis. 2024, 11, 165. https://doi.org/10.3390/jcdd11060165
Hirashiki A, Shimizu A, Kamihara T, Kokubo M, Hashimoto K, Ueda I, Murohara T. Prognostic Significance of Serum Uric Acid and Exercise Capacity in Older Adults Hospitalized for Worsening Cardiovascular Disease. Journal of Cardiovascular Development and Disease. 2024; 11(6):165. https://doi.org/10.3390/jcdd11060165
Chicago/Turabian StyleHirashiki, Akihiro, Atsuya Shimizu, Takahiro Kamihara, Manabu Kokubo, Kakeru Hashimoto, Ikue Ueda, and Toyoaki Murohara. 2024. "Prognostic Significance of Serum Uric Acid and Exercise Capacity in Older Adults Hospitalized for Worsening Cardiovascular Disease" Journal of Cardiovascular Development and Disease 11, no. 6: 165. https://doi.org/10.3390/jcdd11060165
APA StyleHirashiki, A., Shimizu, A., Kamihara, T., Kokubo, M., Hashimoto, K., Ueda, I., & Murohara, T. (2024). Prognostic Significance of Serum Uric Acid and Exercise Capacity in Older Adults Hospitalized for Worsening Cardiovascular Disease. Journal of Cardiovascular Development and Disease, 11(6), 165. https://doi.org/10.3390/jcdd11060165