Ablation Parameters Predicting Pulmonary Vein Reconnection after Very High-Power Short-Duration Pulmonary Vein Isolation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. Initial Ablation Procedure
2.3. Repeat Electrophysiology Study
2.4. Data Collection
2.5. Statistical Analysis
3. Results
3.1. Study Population and Initial Procedural Characteristics
3.2. Incidence and Location of Gaps and Reconnections
3.3. Ablation Point Parameters
3.4. Optimal ILD Cut-Offs
3.5. Atrial Rhythm during Ablation
3.6. Multivariable Analysis
4. Discussion
4.1. Main Findings
4.2. Lesion Formation with High RF Power Settings
4.3. Optimal Inter-Lesion Distance for vHPSD Ablation
4.4. Impedance, Applied Current and Charge
4.5. Catheter–Tissue Contact, Stability and Contact-Force
4.6. Maximum Catheter Tip Temperature
4.7. Location of Gaps and Reconnections
4.8. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- El Haddad, M.; Taghji, P.; Phlips, T.; Wolf, M.; Demolder, A.; Choudhury, R.; Knecht, S.; Vandekerckhove, Y.; Tavernier, R.; Nakagawa, H.; et al. Determinants of acute and late pulmonary vein reconnection in contact force-guided pulmonary vein isolation: Identifying the weakest link in the ablation chain. Circ. Arrhythmia Electrophysiol. 2017, 10, e004867. [Google Scholar] [CrossRef] [PubMed]
- Phlips, T.; Taghji, P.; El Haddad, M.; Wolf, M.; Knecht, S.; Vandekerckhove, Y.; Tavernier, R.; Duytschaever, M. Improving procedural and one-year outcome after contact force-guided pulmonary vein isolation: The role of interlesion distance, ablation index, and contact force variability in the ‘CLOSE’-protocol. EP Eur. 2018, 20, f419–f427. [Google Scholar] [CrossRef] [PubMed]
- Taghji, P.; El Haddad, M.; Phlips, T.; Wolf, M.; Knecht, S.; Vandekerckhove, Y.; Tavernier, R.; Nakagawa, H.; Duytschaever, M. Evaluation of a Strategy Aiming to Enclose the Pulmonary Veins With Contiguous and Optimized Radiofrequency Lesions in Paroxysmal Atrial Fibrillation: A Pilot Study. JACC Clin. Electrophysiol. 2018, 4, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Duytschaever, M.; Vijgen, J.; De Potter, T.; Scherr, D.; Van Herendael, H.; Knecht, S.; Kobza, R.; Berte, B.; Sandgaard, N.; Albenque, J.-P.; et al. Standardized pulmonary vein isolation workflow to enclose veins with contiguous lesions: The multicentre VISTAX trial. EP Eur. 2020, 22, 1645–1652. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, H.; Ikeda, A.; Sharma, T.; Govari, A.; Ashton, J.; Maffre, J.; Lifshitz, A.; Fuimaono, K.; Yokoyama, K.; Wittkampf, F.H.M.; et al. Comparison of In Vivo Tissue Temperature Profile and Lesion Geometry for Radiofrequency Ablation With High Power-Short Duration and Moderate Power-Moderate Duration: Effects of Thermal Latency and Contact Force on Lesion Formation. Circ. Arrhythm Electrophysiol. 2021, 14, e009899. [Google Scholar] [CrossRef] [PubMed]
- Bhaskaran, A.; Barry, M.A.; Pouliopoulos, J.; Nalliah, C.; Qian, P.; Chik, W.; Thavapalachandran, S.; Davis, L.; McEwan, A.; Thomas, S.; et al. Circuit Impedance Could Be a Crucial Factor Influencing Radiofrequency Ablation Efficacy and Safety: A Myocardial Phantom Study of the Problem and its Correction. J. Cardiovasc. Electrophysiol. 2016, 27, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Barkagan, M.; Rottmann, M.; Leshem, E.; Shen, C.; Buxton, A.E.; Anter, E. Effect of Baseline Impedance on Ablation Lesion Dimensions: A Multimodality Concept Validation From Physics to Clinical Experience. Circ. Arrhythmia Electrophysiol. 2018, 11, e006690. [Google Scholar] [CrossRef] [PubMed]
- Bourier, F.; Ramirez, F.D.; Martin, C.A.; Vlachos, K.; Frontera, A.; Takigawa, M.; Kitamura, T.; Lam, A.; Duchateau, J.; Pambrun, T.; et al. Impedance, power, and current in radiofrequency ablation: Insights from technical, ex vivo, and clinical studies. J. Cardiovasc. Electrophysiol. 2020, 31, 2836–2845. [Google Scholar] [CrossRef] [PubMed]
- Szegedi, N.; Salló, Z.; Nagy, V.K.; Osztheimer, I.; Hizoh, I.; Lakatos, B.; Boussoussou, M.; Orbán, G.; Boga, M.; Ferencz, A.B.; et al. Long-Term Durability of High- and Very High-Power Short-Duration PVI by Invasive Remapping: The HPSD Remap Study. Circ. Arrhythmia Electrophysiol. 2024, 17, e012402. [Google Scholar] [CrossRef] [PubMed]
- Barkagan, M.; Contreras-Valdes, F.M.; Leshem, E.; Buxton, A.E.; Nakagawa, H.; Anter, E. High-power and short-duration ablation for pulmonary vein isolation: Safety, efficacy, and long-term durability. J. Cardiovasc. Electrophysiol. 2018, 29, 1287–1296. [Google Scholar] [CrossRef]
- Leshem, E.; Zilberman, I.; Tschabrunn, C.M.; Barkagan, M.; Contreras-Valdes, F.M.; Govari, A.; Anter, E. High-Power and Short-Duration Ablation for Pulmonary Vein Isolation: Biophysical Characterization. JACC Clin. Electrophysiol. 2018, 4, 467–479. [Google Scholar] [CrossRef] [PubMed]
- Bortone, A.A.; Ramirez, F.D.; Constantin, M.; Bortone, C.; Hébert, C.; Constantin, J.; Bialas, P.; Limite, L.R. Optimal interlesion distance for 90 and 50 watt radiofrequency applications with low ablation index values: Experimental findings in a chronic ovine model. EP Eur. 2023, 25, euad310. [Google Scholar] [CrossRef] [PubMed]
- Heeger, C.H.; Sano, M.; Popescu, S.; Subin, B.; Feher, M.; Phan, H.L.; Kirstein, B.; Vogler, J.; Eitel, C.; Hatahet, S.; et al. Very high-power short-duration ablation for pulmonary vein isolation utilizing a very-close protocol-the FAST AND FURIOUS PVI study. Europace 2023, 25, 880–888. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, J.; Takigawa, M.; Goya, M.; Martin, C.A.; Yamamoto, T.; Ikenouchi, T.; Shigeta, T.; Nishimura, T.; Tao, S.; Miyazaki, S.; et al. Comparison of three different approaches to very high-power short-duration ablation using the QDOT-MICRO catheter. J. Cardiovasc. Electrophysiol. 2023, 34, 888–897. [Google Scholar] [CrossRef] [PubMed]
- Irastorza, R.M.; Gonzalez-Suarez, A.; Pérez, J.J.; Berjano, E. Differences in applied electrical power between full thorax models and limited-domain models for RF cardiac ablation. Int. J. Hyperth. 2020, 37, 677–687. [Google Scholar] [CrossRef] [PubMed]
- Mulder, M.J.; Kemme, M.J.B.; Allaart, C.P. Radiofrequency ablation to achieve durable pulmonary vein isolation. EP Eur. 2021, 24, 874–886. [Google Scholar] [CrossRef] [PubMed]
- Boga, M.; Orbán, G.; Perge, P.; Salló, Z.; Tanai, E.; Ferencz, A.B.; Tóth, P.; Komlósi, F.; Osztheimer, I.; Nagy, K.V.; et al. Adherence to the CLOSE Protocol and Low Baseline Generator Impedance Are Independent Predictors of Durable Pulmonary Vein Isolation. J. Clin. Med. 2024, 13, 1960. [Google Scholar] [CrossRef] [PubMed]
- Boga, M.; Suhai, F.I.; Orbán, G.; Salló, Z.; Nagy, K.V.; Szegedi, L.; Jokkel, Z.; Csőre, J.; Osztheimer, I.; Perge, P.; et al. Incidence and Predictors of Stroke and Silent Cerebral Embolism Following Very High-Power Short-Duration Atrial Fibrillation Ablation. EP Eur. 2023, 25, euad327. [Google Scholar] [CrossRef] [PubMed]
- Orbán, G.; Salló, Z.; Perge, P.; Ábrahám, P.; Piros, K.; Nagy, K.V.; Osztheimer, I.; Merkely, B.; Gellér, L.; Szegedi, N. Characteristics of Very High-Power, Short-Duration Radiofrequency Applications. Front. Cardiovasc. Med. 2022, 9, 941434. [Google Scholar] [CrossRef] [PubMed]
- Gutbrod, S.R.; Shuros, A.; Koya, V.; Alexander-Curtis, M.; Lehn, L.; Miklos, K.; Mounsey, J.P.; Meyers, J.D. Improved Ablation Efficiency in PVI Guided by Contact Force and Local Impedance: Chronic Canine Model. Front. Physiol. 2022, 12, 808541. [Google Scholar] [CrossRef] [PubMed]
- Teres, C.; Soto-Iglesias, D.; Penela, D.; Jáuregui, B.; Ordoñez, A.; Chauca, A.; Carreño, J.M.; Scherer, C.; San Antonio, R.; Huguet, M.; et al. Personalized paroxysmal atrial fibrillation ablation by tailoring ablation index to the left atrial wall thickness: The ‘Ablate by-LAW’ single-centre study—A pilot study. EP Eur. 2022, 24, 390–399. [Google Scholar] [CrossRef]
Patient Characteristics (n = 20) | |
---|---|
Age, years | 63 ± 7 |
Female, n | 9 (45) |
BMI, kg/m2 | 31.3 ± 2.1 |
Paroxysmal AF, n | 10 (50) |
Hypertension, n | 11 (55) |
Diabetes, n | 5 (25) |
Ischemic heart disease, n | 1 (5) |
LVEF, % | 51.6 ± 5.6 |
LAVI, mL/m2 | 29.9 ± 9.4 |
Procedural Parameters (n = 20) | |
Procedure time, min | 75 ± 13 |
LA dwelling time, min | 63 ± 10 |
Number of RF applications, n | 85 ± 22 |
RF time, s | 335 ± 85 |
Irrigation fluid, mL | 215 ± 67 |
Bilateral FPI, n (%) | 16 (80) |
Comparative Analysis | Univariate Logistic Regression Analysis | |||||
---|---|---|---|---|---|---|
Points at Isolated Sites (n = 1311) | Points at Gap Sites (n = 45) | p-Value | OR | 95% CI | p-Value | |
ILD, mm | 3.3 (2.6–4.1) | 4 (3.6–4.4) | <0.0001 | 2.139 | 1.576–2.939 | <0.0001 |
tappl, s | 4 (3.97–4) | 3.9 (3.97–4) | 0.0646 | 0.3936 | 0.2364–0.7156 | 0.0006 |
Pmean, W | 83 (83–84) | 83 (83–84) | 0.9591 | 0.9119 | 0.8547–0.9824 | 0.0058 |
Etotal, J | 332 (330.3–334.2) | 331.8 (329.6–332.7) | 0.0629 | 0.9900 | 0.9844–0.9967 | 0.0010 |
Imean, mA | 858.4 (842.3–871.4) | 854.7 (834.4–864.1) | 0.0055 | 0.9841 | 0.9755–0.9930 | 0.0009 |
Qtotal, C | 3.43 (3.63–3.49) | 3.4 (3.32–3.47) | 0.0044 | 0.3238 | 0.1847–0.6058 | 0.0001 |
Tmax, °C | 46.4 (44–49) | 46 (43.7–48) | 0.3407 | 0.9171 | 0.8370–1.001 | 0.0574 |
Zgen, Ω | 112 (109–116) | 114 (111–118.5) | 0.0179 | 1.056 | 1.006–1.105 | 0.0278 |
ID, Ω | 9 (7–11) | 9 (7–11) | 0.6714 | 0.9643 | 0.8624–1.044 | 0.4976 |
CFmin, g | 6 (3–10) | 5 (3–8) | 0.0930 | 0.9362 | 0.8683–1.001 | 0.0688 |
CFmean, g | 14 (11–20) | 14 (10.5–19) | 0.5011 | 0.9849 | 0.9409–1.025 | 0.4868 |
CFmax, g | 25 (18–36) | 25 (19–35) | 0.8761 | 0.9917 | 0.9687–1.011 | 0.4460 |
CFrange, g | 18 (12–27) | 19 (14.5–28.5) | 0.4184 | 0.9981 | 0.9753–1.017 | 0.8579 |
LOC, n (%) | 36 (2.7) | 6 (13.3) | 0.0020 | 5.453 | 1.976–12.87 | 0.0003 |
Anterior, n (%) | 722 (55) | 34 (75.6) | 0.0060 | 2.526 | 1.310–5.264 | 0.0083 |
Right sided, n (%) | 694 (52.9) | 30 (66.7) | 0.0936 | 1.781 | 0.9646–3.429 | 0.0722 |
p-Value of Variables | Model 1 (tappl) | Model 2 (Pmean) | Model 3 (Etotal) | Model 4 (Imean) | Model 5 (Qtotal) | Model 6 (Zgen) |
---|---|---|---|---|---|---|
ILD >3.5 mm | 0.0049 + | 0.0062 + | 0.0052 + | 0.0065 + | 0.0056 + | 0.0038 + |
Anterior location | 0.0010 + | 0.0011 + | 0.0010 + | 0.0024 + | 0.0013 + | 0.0017 + |
LOC | <0.0001 + | <0.0001 + | <0.0001 + | <0.0001 + | <0.0001 + | <0.0001 + |
tappl | 0.0005 − | |||||
Pmean | 0.0131 − | |||||
Etotal | 0.0010 − | |||||
Imean | 0.0017 − | |||||
Qtotal | 0.0002 − | |||||
Zgen | 0.04878 + | |||||
AUC of models | 0.7356 | 0.7206 | 0.7420 | 0.7435 | 0.7452 | 0.7238 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boga, M.; Orbán, G.; Salló, Z.; Nagy, K.V.; Osztheimer, I.; Ferencz, A.B.; Komlósi, F.; Tóth, P.; Tanai, E.; Perge, P.; et al. Ablation Parameters Predicting Pulmonary Vein Reconnection after Very High-Power Short-Duration Pulmonary Vein Isolation. J. Cardiovasc. Dev. Dis. 2024, 11, 230. https://doi.org/10.3390/jcdd11080230
Boga M, Orbán G, Salló Z, Nagy KV, Osztheimer I, Ferencz AB, Komlósi F, Tóth P, Tanai E, Perge P, et al. Ablation Parameters Predicting Pulmonary Vein Reconnection after Very High-Power Short-Duration Pulmonary Vein Isolation. Journal of Cardiovascular Development and Disease. 2024; 11(8):230. https://doi.org/10.3390/jcdd11080230
Chicago/Turabian StyleBoga, Márton, Gábor Orbán, Zoltán Salló, Klaudia Vivien Nagy, István Osztheimer, Arnold Béla Ferencz, Ferenc Komlósi, Patrik Tóth, Edit Tanai, Péter Perge, and et al. 2024. "Ablation Parameters Predicting Pulmonary Vein Reconnection after Very High-Power Short-Duration Pulmonary Vein Isolation" Journal of Cardiovascular Development and Disease 11, no. 8: 230. https://doi.org/10.3390/jcdd11080230
APA StyleBoga, M., Orbán, G., Salló, Z., Nagy, K. V., Osztheimer, I., Ferencz, A. B., Komlósi, F., Tóth, P., Tanai, E., Perge, P., Merkely, B., Gellér, L., & Szegedi, N. (2024). Ablation Parameters Predicting Pulmonary Vein Reconnection after Very High-Power Short-Duration Pulmonary Vein Isolation. Journal of Cardiovascular Development and Disease, 11(8), 230. https://doi.org/10.3390/jcdd11080230