A Multi-Biomarker Approach to Increase the Accuracy of Diagnosis and Management of Coronary Artery Disease
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kadoglou, N.P.E.; Khattab, E.; Velidakis, N.; Gkougkoudi, E. The Role of Osteopontin in Atherosclerosis and Its Clinical Manifestations (Atherosclerotic Cardiovascular Diseases)—A Narrative Review. Biomedicines 2023, 11, 3178. [Google Scholar] [CrossRef] [PubMed]
- Gigante, B. Present and Future Perspectives on the Role of Biomarkers in Atherosclerotic Cardiovascular Disease Risk Stratification. Eur. Cardiol. 2023, 18, e13. [Google Scholar] [CrossRef]
- Jigoranu, R.-A.; Roca, M.; Costache, A.-D.; Mitu, O.; Oancea, A.-F.; Miftode, R.-S.; Haba, M.Ș.C.; Botnariu, E.G.; Maștaleru, A.; Gavril, R.-S.; et al. Novel Biomarkers for Atherosclerotic Disease: Advances in Cardiovascular Risk Assessment. Life 2023, 13, 1639. [Google Scholar] [CrossRef]
- Available online: https://www.worldlifeexpectancy.com/slovakia-coronary-heart-disease (accessed on 22 July 2024).
- Kong, P.; Cui, Z.Y.; Huang, X.F.; Zhang, D.D.; Guo, R.J.; Han, M. Inflammation and atherosclerosis: Signaling pathways and therapeutic intervention. Signal Transduct. Target. Ther. 2022, 7, 131. [Google Scholar] [CrossRef] [PubMed]
- Medina-Leyte, D.J.; Zepeda García, O.; Domínguez-Pérez, M. Endothelial Dysfunction, Inflammation and Coronary Artery Disease: Potential Biomarkers and Promising Therapeutical Approaches. Int. J. Mol. Sci. 2021, 22, 3850. [Google Scholar] [CrossRef]
- Shibata, K.; Sato, K.; Shirai, R.; Seki, T.; Okano, T.; Yamashita, T.; Koide, A.; Mitsuboshi, M.; Mori, Y.; Hirano, T.; et al. Lipocalin-2 exerts pro-atherosclerotic effects as evidenced by in vitro and in vivo experiments. Heart Vessel. 2020, 35, 1012–1024. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Fu, Y.; Wang, S.; Chen, P.; Pei, Y.; Zhang, J.; Zhang, R.; Niu, G.; Gu, F.; Li, X.; et al. Clinical significance of neutrophil gelatinase-associated lipocalin and sdLDL-C for coronary artery disease in patients with type 2 diabetes mellitus aged ≥ 65 years. Cardiovasc. Diabetol. 2022, 21, 252. [Google Scholar] [CrossRef]
- Skrypnyk, N.I.; Gist, K.M.; Okamura, K.; Montford, J.R.; You, Z.; Yang, H.; Moldovan, R.; Bodoni, E.; Blaine, J.T.; Edelstein, C.L.; et al. IL-6-mediated hepatocyte production is the primary source of plasma and urine neutrophil gelatinase-associated lipocalin during acute kidney injury. Kidney Int. 2020, 97, 966–979. [Google Scholar] [CrossRef]
- Eilenberg, W.; Stojkovic, S.; Kaider, A.; Kozakowski, N.; Domenig, C.; Burghuber, C.; Nanobachvili, J.; Huber, K.; Klinger, M.; Neumayer, C.; et al. NGAL and MMP-9/NGAL as biomarkers of plaque vulnerability and targets of statins in patients with carotid atherosclerosis. Clin. Chem. Lab. Med. 2018, 56, 147–156. [Google Scholar] [CrossRef]
- Gager, G.; Biesinger, B.; Hofer, F.; Winter, M.P.; Hengstenberg, C.; Jilma, B.; Eyileten, C.; Postula, M.; Lang, I.M.; Siller-Matula, J.M.; et al. Interleukin-6 level is a powerful predictor of long-term cardiovascular mortality in patients with acute coronary syndrome. Vasc. Pharmacol. 2020, 135, 106806. [Google Scholar] [CrossRef]
- Mossmann, M.; Wainstein, M.V.; Mariani, S.; Machado, G.P.; de Araújo, G.N.; Andrades, M.; Gonçalves, S.C.; Bertoluci, M.C. Increased serum IL-6 is predictive of long-term cardiovascular events in high-risk patients submitted to coronary angiography: An observational study. Diabetol. Metab. Syndr. 2022, 14, 125. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wei, L.; Yang, X.; Zhong, J. Roles of Growth Differentiation Factor 15 in Atherosclerosis and Coronary Artery Disease. J. Am. Heart Assoc. 2019, 8, e012826. [Google Scholar] [CrossRef]
- Schwarz, A.; Kinscherf, R.; Bonaterra, G.A. Role of the Stress- and Inflammation-Induced Cytokine GDF-15 in Cardiovascular Diseases: From Basic Research to Clinical Relevance. Rev. Cardiovasc. Med. 2023, 24, 81. [Google Scholar] [CrossRef]
- Zhang, J.; Zhan, F.; Liu, H. Expression Level and Significance of Tim-3 in CD4+ T Lymphocytes in Peripheral Blood of Patients with Coronary Heart Disease. Braz. J. Cardiovasc. Surg. 2022, 37, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Jia, Z.; Wang, L.; Liu, M.; Chen, X.; Gu, Z.; Chen, Y.; Li, Y.; Chen, M.; Hong, M. T-cell Immunoglobulin and Mucin Domain 3 in Circulating Monocytes as a Novel Biomarker for Coronary Artery Disease. J. Cardiovasc. Transl. Res. 2024, 17, 648–656. [Google Scholar] [CrossRef] [PubMed]
- Dogon, G.; Rigal, E.; Potel, E.; Josse, M.; Rochette, L.; Bejot, Y.; Vergely, C. Growth/differentiation factor 15 (GDF15) expression in the heart after myocardial infarction and cardioprotective effect of pre-ischemic rGDF15 administration. Sci. Rep. 2024, 14, 12949. [Google Scholar] [CrossRef] [PubMed]
- Dogan, Z.; Ileri, C.; Kay, E.A.; Sunbul, M.; Gurel, E.Y.; Özben Sadıc, B.; Sayar, N.; Ergun, T.; Tigen, K.M. Evaluation of Arterial Stiffness Parameters and the Growth Differentiation Factor-15 Level in Patients with Premature Myocardial Infarction. J. Pers. Med. 2023, 13, 1489. [Google Scholar] [CrossRef]
- Avci, A.; Ozturk, B.; Demir, K.; Akyürek, F.; Altunkeser, B.B. The Prognostic Utility of Plasma NGAL Levels in ST Segment Elevation in Myocardial Infarction Patients. Adv. Prev. Med. 2020, 2020, 4637043. [Google Scholar] [CrossRef]
- Ferencik, M.; Mayrhofer, T.; Lu, M.T.; Bittner, D.O.; Emami, H.; Puchner, S.B.; Meyersohn, N.M.; Ivanov, A.V.; Adami, E.C.; Voora, D.; et al. Coronary Atherosclerosis, Cardiac Troponin, and Interleukin-6 in Patients With Chest Pain: The PROMISE Trial Results. JACC Cardiovasc. Imaging 2022, 15, 1427–1438. [Google Scholar] [CrossRef]
- Gerin, F.; Durmuş, E.; Yaman, A.; Sünbül, M.; Mammadov, C.; Bozbay, M.; Sarı, İ.; Kıvrak, T. Relation of interleukin-6 level with coronary artery disease severity in patients undergoing coronary angiography: Koroner anjiyografi yapılan hastalarda interlökin-6 düzeyi ile koroner arter hastalığının ciddiyeti arasındaki ilişki. Eur. J. Ther. 2017, 23, 117–121. [Google Scholar] [CrossRef]
- Kato, E.T.; Morrow, D.A.; Guo, J.; Berg, D.D.; Blazing, M.A.; Bohula, E.A.; Bonaca, M.P.; Cannon, C.P.; de Lemos, J.A.; Giugliano, R.P.; et al. Growth differentiation factor 15 and cardiovascular risk: Individual patient meta-analysis. Eur. Heart J. 2023, 44, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Sayed, A.I. Gender Differences in Coronary Artery Disease, Clinical Characteristics, and Angiographic Features in the Jazan Region, Saudi Arabia. Cureus 2022, 14, e30239. [Google Scholar] [CrossRef] [PubMed]
- Gilabert-Garcia, A.; Guerrero, C.; Dagio-Cuéllar, R.; Bermudez-Gonzalez, J.; Perez Partida, A.; Berarducci, J.; Armenta-Moreno, J.; Luna-Alvarez-Amezquita, J.; Straface, J.; Zavaleta, N.; et al. Coronary Artery Disease in Women: Getting to Know Gender Related Disparities. Int. J. Cardiovasc. Sci. 2023, 36, e20220022. [Google Scholar] [CrossRef]
- Kim, H.L. Sex differences in coronary atherogenesis: A narrative review. Ewha Med. J. 2024, 47, e15. [Google Scholar] [CrossRef]
- Nguyen, P.K.; Nag, D.; Wu, J.C. Sex differences in the diagnostic evaluation of coronary artery disease. J. Nucl. Cardiol. 2011, 18, 144–152. [Google Scholar] [CrossRef]
- Wang, J.; Liu, J.; Guo, W.; Bai, Y.; Li, H.; Chen, H.; Han, L.; Lyu, L.; Xu, C.; Liu, H. Multiple Biomarkers in the Context of Conventional Risk Factors in Patients With Coronary Artery Disease. J. Am. Coll. Cardiol. 2017, 69, 2769–2770. [Google Scholar] [CrossRef]
- Ho, J.E.; Lyass, A.; Courchesne, P.; Chen, G.; Liu, C.; Yin, X.; Hwang, S.J.; Massaro, J.M.; Larson, M.G.; Levy, D. Protein Biomarkers of Cardiovascular Disease and Mortality in the Community. J. Am. Heart Assoc. 2018, 7, e008108. [Google Scholar] [CrossRef]
- Surma, S.; Banach, M. Fibrinogen and Atherosclerotic Cardiovascular Diseases—Review of the Literature and Clinical Studies. Int. J. Mol. Sci. 2022, 23, 193. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, H.; Li, Y.-M.; Huang, B.-T.; Huang, F.-Y.; Xia, T.-L.; Chai, H.; Wang, P.-J.; Liu, W.; Zhang, C.; et al. Relation between admission plasma fibrinogen levels and mortality in Chinese patients with coronary artery disease. Sci. Rep. 2016, 6, 30506. [Google Scholar] [CrossRef]
- Safdar, B.; Spatz, E.S.; Dreyer, P.R.; Beltrame, J.F.; Lichtman, J.H.; Spertus, J.A.; Reynolds, H.R.; Geda, M.; Bueno, H.; Dziura, J.D.; et al. Presentation, Clinical Profile, and Prognosis of Young Patients with Myocardial Infarction With Nonobstructive Coronary Arteries (MINOCA): Results From the VIRGO Study. J. Am. Heart Assoc. 2018, 7, e009174. [Google Scholar] [CrossRef]
- Yang, H.H.; Wang, X.; Li, S.; Liu, Y.; Akbar, R.; Fan, G.C. Lipocalin family proteins and their diverse roles in cardiovascular disease. Pharmacol. Ther. 2023, 244, 108385. [Google Scholar] [CrossRef] [PubMed]
- Zografos, T.; Haliassos, A.; Korovesis, S.; Giazitzoglou, E.; Voridis, E.; Katritsis, D. Association of neutrophil gelatinase-associated lipocalin with the severity of coronary artery disease. Am. J. Cardiol. 2009, 104, 917–920. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Li, X.L.; Zhao, C.R.; Pan, C.L.; Zhang, Z. Interleukin-6 as a Predictor of the Risk of Cardiovascular Disease: A Meta-Analysis of Prospective Epidemiological Studies. Immunol. Investig. 2018, 47, 689–699. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Wu, Z.; Xu, Y.; Liu, Y.; Liu, W.; Wang, T.; Li, C.; Zhang, C.; Yi, F.; Gao, L.; et al. Increased Tim-3 expression alleviates liver injury by regulating macrophage activation in MCD-induced NASH mice. Cell. Mol. Immunol. 2019, 16, 878–886. [Google Scholar] [CrossRef] [PubMed]
Category | Maximum Stenosis | Interpretation |
---|---|---|
CAD-RADS 0 | 0% | CAD absence |
CAD-RADS 1 | 1–24% | Minimal non-obstructive CAD |
CAD-RADS 2 | 25–49% | Mild non-obstructive CAD |
CAD-RADS 3 | 50–69% | Moderate stenosis |
CAD-RADS 4 | 70–99% | Severe stenosis |
CAD-RADS 5 | 100% | Total coronary occlusion |
RADS 0 | RADS 1 | RADS 2 | RADS 3 | RADS 4 | RADS 5 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Men, n = 18 | Women, n = 16 | Men, n = 5 | Women, n = 4 | Men, n = 6 | Women, n = 5 | Men, n = 14 | Women, n = 10 | Men, n = 27 | Women, n = 5 | Men, n = 15 | Women, n = 5 | |
age/years | 62 ± 11 | 62 ± 11 | 63 ± 9 | 72 ± 12 | 68 ± 8 | 68 ± 13 | 65 ± 9 | 69 ± 5 * | 64 ± 10 | 70 ± 5 * | 61 ± 9 | 67 ± 11 |
BMI | 30.69 ± 5.47 | 34.06 ± 11.4 | 28.08 ± 3.19 | 38.75 ± 5.46 | 30.97 ± 4.36 | 33.18 ± 9.56 | 31.76 ± 4.85 | 31.19 ± 4.99 | 31.48 ± 4.98 | 29.88 ± 8.70 | 29.81 ± 4.79 | 30.98 ± 3.58 |
BP * | 148.89 ± 13.4 | 144.06 ± 17.34 | 138 ± 8.37 | 145 ± 18.71 | 145.83 ± 12.01 | 147 ± 31.54 | 134.64 ± 19.66 * | 140 ± 11.55 | 138.98 ± 19.9 | 134.5 ± 11.24 | 137.00 ± 14.12 * | 147 ± 26.83 |
Urea [mmol/L] | 5.85 ± 1.42 | 5.54 ± 1.79 | 5.61 ± 1.21 | 6.37 ± 1.27 | 5.85 ± 0.75 | 5.29 ± 0.72 | 6.12 ± 1.27 | 7.08 ± 1.64 * | 5.65 ± 1.01 | 5.82 ± 1.11 | 5.87 ± 1.76 | 5.97 ± 1.37 |
CREAT ** [µmol/L] | 81.31 ± 24.6 | 65.99 ± 12.3 | 71.98 ± 7.45 | 72.87 ± 5.44 | 80.79 ± 9.25 | 71.24 ± 4.67 | 79.86 ± 20.1 | 74.6 ± 14.77 | 78.9 ± 16.44 | 67.84 ± 10.4 | 83.52 ± 20.7 | 72.78 ± 10.1 |
CRP [mg/L] | 1.71 (IQR) | 2.68 (IQR) | 2.86 (IQR) | 2.19 (IQR) | 2.13 (IQR) | 3.15 (IQR) | 1.66 (IQR) | 2.75 (IQR) | 2.63 (IQR) | 1.54 (IQR) | 2.80 (IQR) | 1.50 (IQR) |
FBG [g/L] | 3.34 ± 1.10 | 3.14 ± 0.52 | 3.06 ± 0.79 | 3.65 ± 0.11 ** | 3.1 ± 0.65 | 3.31 ± 0.28 | 3.3 ± 0.50 | 3.44 ± 0.70 | 3.27 ± 0.76 | 3.94 ± 0.62 ** | 3.49 ± 0.69 | 3.41 ± 0.51 |
Leu [10 × 9/L] | 7.23 ± 2.07 | 6.87 ± 2.72 | 7.06 ± 1.56 | 7.73 ± 0.24 | 6.47 ± 1.83 | 6.48 ± 1.21 | 7.4 ± 2.05 | 7.68 ± 1.88 | 7.2 ± 1.30 | 9.81 ± 2.62 * | 6.58 ± 1.36 | 7.68 ± 1.54 |
LCN-2 [pg/mL] | 3593.6 ± 555 | 3175 ± 705.7 | - | 2948.84 ± 812 | 3245.8 ± 842.6 | 3067.6 ± 655.8 | 3558.4 ± 70.9 | 4207.7 ± 764 | 3652.9 ± 731.0 | 3418.3 ± 55.7 | 3681.4 ± 508.1 | 3277.2 ± 765.1 |
GDF-15 [pg/mL] | 1312 ± 386.1 | 1559.9 ± 669 | 1365.8 ± 569 | 1608.9 ± 611 | 1462.9 ± 135.7 | 1479.9 ± 125.1 | 1540.2 ± 291.9 | 1373.8 ± 536 | 1652.40 ± 391.73 ** | 1479.73 ± 154.51 | 1492.72 ± 358.21 | 1538.95 ± 203.03 |
IL-6 [pg/mL] | 5.03 (IQR) | 6.16 (IQR) | 5.52 (IQR) | 9.25 (IQR) | 1.65 * (IQR) | 0.48 (IQR) | 2.45 (IQR) | 3.81 (IQR) | 4.06 (IQR) | 1.71 (IQR) | 1.46 ** (IQR) | 1.59 (IQR) |
TIM-3 [pg/mL] | 79.43(IQR) | 129.43 (IQR) | 120.86 (IQR) | 80.14 (IQR) | 142.29 (IQR) | 225.14 (IQR) | 139.43(IQR) | 199.43(IQR) | 130.86 (IQR) | 99.43 (IQR) | 125.14 (IQR) | 219.43 * (IQR) |
Age | Gender 0-M 1-F | BP | Urea [mmol/L] | CREAT [µmol/L] | CRP [mg/L] | FBG [g/L] | Leu [10 × 9/L] | LCN-2 pg/mL | GDF-15 pg/mL | IL-6 pg/mL | TIM-3 pg/mL | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pearson Correlation (2-tailed) | 0.044 | −0.225 ** | −0.186 * | 0.044 | 0.127 | −0.023 | 0.100 | 0.049 | 0.125 | 0.120 | −0.033 | 0.055 |
p-value | 0.618 | 0.010 | 0.035 | 0.619 | 0.151 | 0.796 | 0.256 | 0.585 | 0.273 | 0.176 | 0.709 | 0.546 |
N | 130 | 130 | 130 | 130 | 130 | 130 | 130 | 129 | 79 | 128 | 128 | 125 |
Men | Women | ||||
---|---|---|---|---|---|
Finding | Frequency | Percentage | Finding | Frequency | Percentage |
RADS 0 | 18 | 21.2 | RADS 0 | 16 | 35.6 |
RADS 1 | 5 | 5.9 | RADS 1 | 4 | 8.9 |
RADS 2 | 6 | 7.1 | RADS 2 | 5 | 11.1 |
RADS 3 | 14 | 16.5 | RADS 3 | 10 | 22.2 |
RADS 4 | 27 | 31.8 | RADS 4 | 5 | 11.1 |
RADS 5 | 15 | 17.6 | RADS 5 | 5 | 11.1 |
Total | 85 | 100.0 | Total | 45 | 100.0 |
Finding | N | Mean | SD | Variance | Range | Min. | Max. |
---|---|---|---|---|---|---|---|
RADS 0 | 34 | 146.618 | 15.3603 | 235.940 | 70.0 | 110.0 | 180.0 |
RADS 1 | 9 | 141.111 | 13.4112 | 179.861 | 45.0 | 125.0 | 170.0 |
RADS 2 | 11 | 146.364 | 21.6900 | 470.455 | 85.0 | 115.0 | 200.0 |
RADS 3 | 24 | 136.875 | 16.6689 | 277.853 | 65.0 | 100.0 | 165.0 |
RADS 4 | 32 | 138.281 | 18.2880 | 334.451 | 80.0 | 100.0 | 180.0 |
RADS 5 | 20 | 139.500 | 17.370 | 318.158 | 75.0 | 105.0 | 180.0 |
Men | Women | |||||
---|---|---|---|---|---|---|
Pearson Correlation (2-Tailed) | p-Value | N | Pearson Correlation (2-Tailed) | p-Value | N | |
age [years] | −0.007 | 0.949 | 85 | 0.256 | 0.090 | 45 |
O_DM | 0.156 | 0.155 | 85 | 0.090 | 0.555 | 45 |
blood pressure | −0.238 * | 0.028 | 85 | −0.067 | 0.663 | 45 |
Urea [mmol/L] | −0.013 | 0.904 | 85 | 0.174 | 0.253 | 45 |
CREAT [µmol/L] | 0.029 | 0.795 | 85 | 0.201 | 0.187 | 45 |
CRP [mg/L] | 0.030 | 0.784 | 85 | −0.152 | 0.318 | 45 |
FBG [g/L] | 0.051 | 0.644 | 85 | 0.294 | 0.050 | 45 |
Leu [10 × 9/L] | −0.060 | 0.588 | 84 | 0.262 | 0.082 | 45 |
lipocalin 2 [pg/mL] | 0.099 | 0.483 | 52 | 0.135 | 0.504 | 27 |
GDF-15 [pg/mL] | 0.271 * | 0.013 | 83 | −0.081 | 0.595 | 45 |
IL-6 [pg/mL] | 0.010 | 0.928 | 84 | −0.109 | 0.483 | 44 |
TIM-3 [pg/mL] | 0.017 | 0.877 | 82 | 0.218 | 0.160 | 43 |
Finding | N | Mean | Median | SD | Variance | Range | Min. | Max. |
---|---|---|---|---|---|---|---|---|
RADS 0 | 17.00 | 1312.14 | 1278.00 | 386.15 | 149,114.67 | 1626.05 | 694.65 | 2320.70 |
RADS 1 | 5.00 | 1365.84 | 1580.36 | 569.27 | 324,070.84 | 1292.38 | 751.09 | 2043.47 |
RADS 2 | 6.00 | 1462.93 | 1491.41 | 135.78 | 18,435.04 | 314.40 | 1292.28 | 1606.68 |
RADS 3 | 13.00 | 1540.23 | 1533.77 | 291.90 | 85,203.77 | 1249.67 | 1052.25 | 2301.92 |
RADS 4 | 27.00 | 1652.40 | 1643.20 | 381.73 | 145,720.32 | 1428.50 | 951.61 | 2380.11 |
RADS 5 | 15.00 | 1492.72 | 1427.98 | 358.21 | 128,311.75 | 1433.74 | 1111.36 | 2545.10 |
FBG | N | Mean | Median | SD | Variance | Range | Min. | Max. |
---|---|---|---|---|---|---|---|---|
RADS 0 | 16 | 3.14 | 3.10 | 0.52 | 0.27 | 1.70 | 2.30 | 4.00 |
RADS 1 | 4 | 3.65 | 3.62 | 0.11 | 0.01 | 0.25 | 3.56 | 3.81 |
RADS 2 | 5 | 3.31 | 3.25 | 0.28 | 0.08 | 0.74 | 3.00 | 3.74 |
RADS 3 | 10 | 3.44 | 3.47 | 0.70 | 0.49 | 2.61 | 2.39 | 5.00 |
RADS 4 | 5 | 3.94 | 3.70 | 0.62 | 0.39 | 1.55 | 3.37 | 4.92 |
RADS 5 | 5 | 3.41 | 3.47 | 0.51 | 0.26 | 1.24 | 2.87 | 4.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hostačná, L.; Mašlanková, J.; Pella, D.; Hubková, B.; Mareková, M.; Pella, D. A Multi-Biomarker Approach to Increase the Accuracy of Diagnosis and Management of Coronary Artery Disease. J. Cardiovasc. Dev. Dis. 2024, 11, 258. https://doi.org/10.3390/jcdd11090258
Hostačná L, Mašlanková J, Pella D, Hubková B, Mareková M, Pella D. A Multi-Biomarker Approach to Increase the Accuracy of Diagnosis and Management of Coronary Artery Disease. Journal of Cardiovascular Development and Disease. 2024; 11(9):258. https://doi.org/10.3390/jcdd11090258
Chicago/Turabian StyleHostačná, Lenka, Jana Mašlanková, Dominik Pella, Beáta Hubková, Mária Mareková, and Daniel Pella. 2024. "A Multi-Biomarker Approach to Increase the Accuracy of Diagnosis and Management of Coronary Artery Disease" Journal of Cardiovascular Development and Disease 11, no. 9: 258. https://doi.org/10.3390/jcdd11090258
APA StyleHostačná, L., Mašlanková, J., Pella, D., Hubková, B., Mareková, M., & Pella, D. (2024). A Multi-Biomarker Approach to Increase the Accuracy of Diagnosis and Management of Coronary Artery Disease. Journal of Cardiovascular Development and Disease, 11(9), 258. https://doi.org/10.3390/jcdd11090258