Assessment of the Aorto-Septal Angle Post-Thoracic Endovascular Aortic Repair through Segmentation and the Semi-Automatic Analysis of Cardiosynchronized Computed Tomography Angiography Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Endovascular Treatment
2.2. Image Acquisition
2.3. Geometric Analysis Pipeline
2.4. Statistical Methods
3. Results
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Upchurch, G.R., Jr.; Escobar, G.A.; Azizzadeh, A.; Beck, A.W.; Conrad, M.F.; Matsumura, J.S.; Murad, M.H.; Perry, R.J.; Singh, M.J.; Veeraswamy, R.K.; et al. Society for Vascular Surgery clinical practice guidelines of thoracic endovascular aortic repair for descending thoracic aortic aneurysms. J. Vasc. Surg. 2021, 73, 55S–83S. [Google Scholar] [CrossRef]
- Riambau, V.; Böckler, D.; Brunkwall, J.; Cao, P.; Chiesa, R.; Coppi, G.; Czerny, M.; Fraedrich, G.; Haulon, S.; Jacobs, M.; et al. Editor’s Choice—Management of Descending Thoracic Aorta Diseases: Clinical Practice Guidelines of the European Society for Vascular Surgery (ESVS). Eur. J. Vasc. Endovasc. Surg. 2017, 53, 4–52. [Google Scholar] [CrossRef] [PubMed]
- Salsano, A.; Salsano, G.; Spinella, G.; Zaottini, F.; Mavilio, N.; Perocchio, G.; Pane, B.; Ricci, D.; Pratesi, G.; Castellan, L.; et al. Endovascular versus Open Surgical Repair for Ruptured Descending Aortic Pathologies: A Systematic Review and Meta-Analysis of Observational Studies. CardioVasc. Interv. Radiol. 2021, 44, 1709–1719. [Google Scholar] [CrossRef] [PubMed]
- Bissacco, D.; Conti, M.; Domanin, M.; Bianchi, D.; Scudeller, L.; Mandigers, T.J.; Allievi, S.; Auricchio, F.; Trimarchi, S. Modifications in Aortic Stiffness After Endovascular or Open Aortic Repair: A Systematic Review and Meta-Analysis. Eur. J. Vasc. Endovasc. Surg. 2022, 63, 567–577. [Google Scholar] [CrossRef]
- Gil-Sala, D.; Guala, A.; Garcia Reyes, M.E.; Azancot, M.A.; Dux-Santoy, L.; Allegue, N.A.; Turà, G.T.; Martins, G.G.; Muñoz, A.R.; García, I.C.; et al. Geometric, Biomechanic and Haemodynamic Aortic Abnormalities Assessed by 4D Flow Cardiovascular Magnetic Resonance in Patients Treated by TEVAR Following Blunt Traumatic Thoracic Aortic Injury. Eur. J. Vasc. Endovasc. Surg. 2021, 62, 797–807. [Google Scholar] [CrossRef] [PubMed]
- Mandigers, T.J.; Bissacco, D.; Domanin, M.; D’alessio, I.; Tolva, V.S.; Piffaretti, G.; van Herwaarden, J.A.; Trimarchi, S. Cardiac and Aortic Modifications after Endovascular Repair for Blunt Thoracic Aortic Injury: A Systematic Review. Eur. J. Vasc. Endovasc. Surg. 2022, 64, 176–187. [Google Scholar] [CrossRef]
- Spinella, G.; Finotello, A.; Conti, M.; Faggiano, E.; Gazzola, V.; Auricchio, F.; Chakfé, N.; Palombo, D.; Pane, B. Assessment of geometrical remodelling of the aortic arch after hybrid treatment. Eur. J. Cardio-Thorac. Surg. 2019, 55, 1045–1053. [Google Scholar] [CrossRef]
- Spinella, G.; Boschetti, G.A.; Bauckneht, M.; Raffa, S.; Marini, C.; Finotello, A.; Pane, B.; Pratesi, G.; Palombo, D.; Sambuceti, G. Endovascular aortic repair impact on myocardial contractility: A prospective study. Eur. J. Clin. Investig. 2023, 53, e14011. [Google Scholar] [CrossRef]
- Canepa, M.; Malti, O.; David, M.; AlGhatrif, M.; Strait, J.B.; Ameri, P.; Brunelli, C.; Lakatta, E.G.; Ferrucci, L.; Abraham, T.P. Prevalence, clinical correlates, and functional impact of subaortic ventricular septal bulge (from the Baltimore Longitudinal Study of Aging). Am. J. Cardiol. 2014, 114, 796–802. [Google Scholar] [CrossRef]
- Gross-Sawicka, E.M.; Nagi, H.M.; Lever, H.M.; Salcedo, E.E.; Fouad-Tarazi, F.M. Aortoseptal angulation and left ventricular hypertrophy pattern: Anechocardiographic study in patients with aortic valvular stenosis. J. Am. Soc. Echocardiogr. 1991, 4, 583–588. [Google Scholar] [CrossRef]
- Shar, J.A.; Keswani, S.G.; Grande-Allen, K.J.; Sucosky, P. Significance of aortoseptal angle anomalies to left ventricular hemodynamics and subaortic stenosis: A numerical study. Comput. Biol. Med. 2022, 146, 105613. [Google Scholar] [CrossRef] [PubMed]
- Kauhanen, S.P.; Liimatainen, T.; Kariniemi, E.; Korhonen, M.; Parkkonen, J.; Vienonen, J.; Vanninen, R.; Hedman, M. A smaller heart-aorta-angle associates with ascending aortic dilatation and increases wall shear stress. Eur. Radiol. 2020, 30, 5149–5157. [Google Scholar] [CrossRef] [PubMed]
- Barkhordarian, R.; Wen-Hong, D.; Li, W.; Josen, M.; Henein, M.; Ho, S.Y. Geometry of the left ventricular outflow tract in fixed subaortic stenosis and intact ventricular septum: An echocardiographic study in children and adults. J. Thorac. Cardiovasc. Surg. 2007, 133, 196–203. [Google Scholar] [CrossRef]
- Canepa, M.; Pozios, I.; Vianello, P.F.; Ameri, P.; Brunelli, C.; Ferrucci, L.; Abraham, T.P. Distinguishing ventricular septal bulge versus hypertrophic cardiomyopathy in the elderly. Heart 2016, 102, 1087–1094. [Google Scholar] [CrossRef] [PubMed]
- Fantazzini, A.; Esposito, M.; Finotello, A.; Auricchio, F.; Pane, B.; Basso, C.; Spinella, G.; Conti, M. 3D Automatic Segmentation of Aortic Computed Tomography Angiography Combining Multi-View 2D Convolutional Neural Networks. Cardiovasc. Eng. Technol. 2020, 11, 576–586. [Google Scholar] [CrossRef]
- Yushkevich, P.A.; Piven, J.; Hazlett, H.C.; Smith, R.G.; Ho, S.; Gee, J.C.; Gerig, G. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage 2006, 31, 1116–1128. [Google Scholar] [CrossRef]
- Antiga, L.; Piccinelli, M.; Botti, L.; Ene-Iordache, B.; Remuzzi, A.; Steinman, D.A. An image-based modeling framework for patient-specific computational hemodynamics. Med. Biol. Eng. Comput. 2008, 46, 1097–1112. [Google Scholar] [CrossRef]
- Kwon, D.H.; Smedira, N.G.; Popovic, Z.B.; Lytle, B.W.; Setser, R.M.; Thamilarasan, M.; Schoenhagen, P.; Flamm, S.D.; Lever, H.M.; Desai, M.Y. Steep left ventricle to aortic root angle and hypertrophic obstructive cardiomyopathy: Study of a novel association using three-dimensional multimodality imaging. Heart 2009, 95, 1784–1791. [Google Scholar] [CrossRef]
- Ahrens, J.; Geveci, B.; Law, C. ParaView: An End-User Tool for Large Data Visualization. In Visualization Handbook; Elsevier: Amsterdam, The Netherlands, 2005; ISBN-13 9780123875822. [Google Scholar]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163, Erratum in J. Chiropr. Med. 2017, 16, 346. [Google Scholar] [CrossRef]
- Blanca, D.; Schwarz, E.C.; Olgers, T.J.; ter Avest, E.; Azizi, N.; Bouma, H.R.; Ter Maaten, J.C. Intra-and inter-observer variability of point of care ultrasound measurements to evaluate hemodynamic parameters in healthy volunteers. Ultrasound J. 2023, 15, 22. [Google Scholar] [CrossRef]
- Bunting, K.V.; Steeds, R.P.; Slater, L.T.; Rogers, J.K.; Gkoutos, G.V.; Kotecha, D. A Practical Guide to Assess the Reproducibility of Echocardiographic Measurements. J. Am. Soc. Echocardiogr. 2019, 32, 1505–1515. [Google Scholar] [CrossRef] [PubMed]
- Massé, D.D.; Shar, J.A.; Brown, K.N.; Keswani, S.G.; Grande-Allen, K.J.; Sucosky, P. Discrete Subaortic Stenosis: Perspective Roadmap to a Complex Disease. Front. Cardiovasc. Med. 2018, 5, 122. [Google Scholar] [CrossRef]
- Foker, J.E.; Carr, J.A.; Sugeng, L.; Weinert, L.; Jeevanandam, V.; Lang, R.M.; de Lezo, J.S.; Romero, M.; Segura, J.; Pan, M.; et al. Outcomes and questions about discrete subaortic stenosis. Circulation 2013, 127, 1447–1450. [Google Scholar] [CrossRef] [PubMed]
- Al-Wakeel, N.; Fernandes, J.F.; Amiri, A.; Siniawski, H.; Goubergrits, L.; Berger, F.; Kuehne, T. Hemodynamic and energetic aspects of the left ventricle in patients with mitral regurgitation before and after mitral valve surgery. J. Magn. Reson. Imaging 2015, 42, 1705–1712. [Google Scholar] [CrossRef] [PubMed]
- Shar, J.A.; Brown, K.N.; Keswani, S.G.; Grande-Allen, J.; Sucosky, P. Impact of Aortoseptal Angle Abnormalities and Discrete Subaortic Stenosis on Left-Ventricular Outflow Tract Hemodynamics: Preliminary Computational Assessment. Front. Bioeng. Biotechnol. 2020, 8, 114. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zafar, M.A.; Li, Y.; Saeyeldin, A.; Huang, Y.; Zhao, R.; Qiu, J.; Tanweer, M.; Abdelbaky, M.; Gryaznov, A.; et al. Ascending Aortic Length and Risk of Aortic Adverse Events: The Neglected Dimension. J. Am. Coll. Cardiol. 2019, 74, 1883–1894. [Google Scholar] [CrossRef]
- Della Corte, A.; Rubino, A.S.; Montella, A.P.; Bancone, C.; Presti, F.L.; Galbiati, D.; Dialetto, G.; De Feo, M. Implications of abnormal ascending aorta geometry for risk prediction of acute type A aortic dissection. Eur. J. Cardio-Thorac. Surg. 2021, 60, 978–986. [Google Scholar] [CrossRef]
- Kern, M.; Hauck, S.R.; Dachs, T.M.; Haider, L.; Stelzmüller, M.-E.; Ehrlich, M.; Loewe, C.; A Funovics, M. Endovascular repair in type A aortic dissection: Anatomical candidacy for currently manufactured stent grafts and conceptual valve-carrying devices for an Endo-Bentall procedure. Eur. J. Cardio-Thorac. Surg. 2023, 63, ezad085. [Google Scholar] [CrossRef]
Patient 1 | Patient 2 | Patient 3 | Patient 4 | Patient 5 | |
---|---|---|---|---|---|
Age | 73 | 68 | 65 | 72 | 72 |
Sex | F | M | F | M | F |
Pathology | DTAA | DTAA | TBAD | Aortic Arch Aneurysm | DTAA |
Stent Type | Gore | Gore | Bolton | Najuta | Najuta–Gore |
Stent Number | 1 | 1 | 2 | 1 | 4 |
FU Time (days) | 511 | 380 | 518 | 413 | 382 |
Proximal Landing Zone | 4 | 3 | 2 | 0 | 0 |
Landing Zone Distance (mm) | 160.31 | 171.06 | 78.07 | 74.04 | 85.03 |
Stent Coverage Length (mm) | 132.3 | 101 | 303 | 169 | 383 |
Hypertension | Yes | Yes | Yes | No | Yes |
Ischemic Heart Disease | Yes | No | No | No | No |
Diabetes | No | Yes | Yes | No | No |
Dyslipidemia | Yes | Yes | Yes | Yes | Yes |
Smoke | Active | No | Previous | Previous | Previous |
COPD | Yes | No | No | Yes | Yes |
RI | Yes | No | No | No | No |
LV Mass PRE [g/m2] | 82 | 56 | 76 | 48 | 58 |
LV Mass POST [g/m2] | 80 | 60 | 64 | 54 | – |
Observer 1 | Observer 2 | |||
---|---|---|---|---|
PRE | POST | PRE | POST | |
AS Angle PRE (°) | 117.13 | 128.6 | 117.25 | 126.18 |
AS Angle POST (°) | 102.01 | 106.1 | 103.43 | 106.75 |
AAS (%) | 114.05 | 111.43 | 113.62 | 107.83 |
CV PRE (%) | 109.97 | 107.1 | 108.05 | 111.2 |
CV POST (%) | 125.32 | 125.7 | 121 | 124.5 |
Patient 1 | Patient 2 | Patient 3 | Patient 4 | Patient 5 | |
---|---|---|---|---|---|
AS Angle PRE (°) | 117.25 ± 1.32 | 103.15 ± 1.35 | 113.62 ± 0.96 | 108.05 ± 1.23 | 121 ± 1.52 |
AS Angle POST (°) | 126.18 ± 1 | 106.75 ± 0.95 | 107.83 ± 1.45 | 111.2 ± 0.99 | 124.5 ± 1.26 |
AAS (%) | +7.07 | +3.5 | −5.1 | +2.91 | +2.89 |
CV PRE (%) | 1.12 | 1.35 | 0.96 | 1.14 | 1.26 |
CV POST (%) | 0.8 | 0.95 | 1.45 | 0.89 | 1 |
Patient | AAI (°) | DAA (mm) | TAA (--) | AA CL (mm) | Outer Line Length (mm) | Inner Line Length (mm) |
---|---|---|---|---|---|---|
PRE TEVAR | ||||||
1 | 10.95 ± 0.84 | 37.1 | 0.07 | 62.37 | 90.42 | 42.81 |
2 | 10.54 ± 0.45 | 32.67 | 0.21 | 80.92 | 108.56 | 56.75 |
3 | 16.61 ± 0.68 | 31.77 | 0.09 | 70.78 | 95.06 | 53.24 |
4 | 18.6 ± 1.02 | 34.83 | 0.14 | 90.61 | 115.73 | 69.50 |
5 | 12.55 ± 1.31 | 40.03 | 0.09 | 75.1 | 101.30 | 55.46 |
POST TEVAR | ||||||
1 | 15.74 ± 0.97 | 37.72 | 0.07 | 65.51 | 94.62 | 44.8 |
2 | 14.57 ± 0.35 | 31.29 | 0.17 | 79.18 | 110.6 | 57.38 |
3 | 6.52 ± 1.87 | 32.40 | 0.11 | 72.32 | 96.32 | 55.63 |
4 | 16.86 ± 0.91 | 34.91 | 0.17 | 93.88 | 122.03 | 72.27 |
5 | 8.44 ± 1.42 | 40.98 | 0.1 | 74.51 | 105 | 61.67 |
∆PRE-POST TEVAR | ||||||
1 | +4.8 | +0.62 | 0 | +3.4 | +4.2 | +1.99 |
2 | +4 | −1.38 | −0.04 | −1.74 | +2.04 | +0.63 |
3 | −10.1 | +0.63 | +0.02 | +1.54 | +1.26 | +2.39 |
4 | −1.73 | +0.08 | +0.03 | +3.27 | +6.3 | +2.77 |
5 | −4.11 | +0.95 | +0.01 | −1.59 | +3.7 | +5.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magliocco, M.; Conti, M.; Pane, B.; Canepa, M.; Seitun, S.; Morganti, S.; Pratesi, G.; Spinella, G. Assessment of the Aorto-Septal Angle Post-Thoracic Endovascular Aortic Repair through Segmentation and the Semi-Automatic Analysis of Cardiosynchronized Computed Tomography Angiography Images. J. Cardiovasc. Dev. Dis. 2024, 11, 275. https://doi.org/10.3390/jcdd11090275
Magliocco M, Conti M, Pane B, Canepa M, Seitun S, Morganti S, Pratesi G, Spinella G. Assessment of the Aorto-Septal Angle Post-Thoracic Endovascular Aortic Repair through Segmentation and the Semi-Automatic Analysis of Cardiosynchronized Computed Tomography Angiography Images. Journal of Cardiovascular Development and Disease. 2024; 11(9):275. https://doi.org/10.3390/jcdd11090275
Chicago/Turabian StyleMagliocco, Marco, Michele Conti, Bianca Pane, Marco Canepa, Sara Seitun, Simone Morganti, Giovanni Pratesi, and Giovanni Spinella. 2024. "Assessment of the Aorto-Septal Angle Post-Thoracic Endovascular Aortic Repair through Segmentation and the Semi-Automatic Analysis of Cardiosynchronized Computed Tomography Angiography Images" Journal of Cardiovascular Development and Disease 11, no. 9: 275. https://doi.org/10.3390/jcdd11090275
APA StyleMagliocco, M., Conti, M., Pane, B., Canepa, M., Seitun, S., Morganti, S., Pratesi, G., & Spinella, G. (2024). Assessment of the Aorto-Septal Angle Post-Thoracic Endovascular Aortic Repair through Segmentation and the Semi-Automatic Analysis of Cardiosynchronized Computed Tomography Angiography Images. Journal of Cardiovascular Development and Disease, 11(9), 275. https://doi.org/10.3390/jcdd11090275